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ABSTRACT: The ring opening metathesis polymerization of
cyclic allenes is described. Treating the monomers to a Grubbs-
type catalyst afforded polymers that featured allenes integrated into
their main chains, as confirmed through a range of spectroscopic,
chromatographic, and chemical techniques. Acyclic, 1,3-disubsti-
tuted allenes were used as chain transfer agents in the
aforementioned reactions. These additives not only provided the
corresponding end-functionalized polymers but also enabled
control over the molecular weights of the polymers produced. The polymers obtained from the ring opening metathesis
polymerization reactions were transformed into silyl-containing derivatives using a hydrosilylation-based, post-polymerization
modification. A polymerization mechanism was also deduced and proposed to proceed through a process that involved ruthenium
vinylidene intermediates and selective chain transfer.

■ INTRODUCTION

The allene is a unique functional group that features a sp-
hybridized carbon atom flanked by two sp2-hybridized carbon
atoms.1 The π-orbitals which comprise the cumulated double-
bonds are orthogonal, which effectively prevents electronic
delocalization across the system and enables the allene to react
as an isolated alkene.2 However, due to its unique geometry
coupled with a relatively high s orbital contribution and a high
degree of unsaturation, allenes are typically more reactive than
alkenes and thus have attracted attention for use in a wide range
of synthetic transformations,3 including cycloadditions,4−6

regioselective heteroatom additions,7−10 and enantioselective
reactions.11−14 Allenes have also found significant utility in
macromolecular chemistry.15−44 Similar to vinylic monomers,
such as ethylene, propylene, or styrene, addition polymers are
formed by subjecting allenes to various types of radical-,20,45,46

cationic-,21,24 or transition metal-based23,27,29,31,43 catalysts and,
depending on the polymerization mechanism, 1,2- and/or 2,3-
regioisomers can form as possible products (see Scheme 1).
Such polymers are unsaturated and relatively carbon-rich47 and
thus are amenable for further modification or adaptation.
Moreover, allene addition polymerization methodologies have
matured such that derivatives outfitted with aryl,29 alcohol,35

ester,36 amide,32 and other functional groups may be readily
polymerized. Recently, it was demonstrated that different
structural classes of allenes can be copolymerized to obtain
polymeric materials with tunable properties.30,43

Polymers that feature allenyl groups embedded in their
backbones are relatively rare.47,48 To the best of our knowledge,
the first example of such a polymer was reported by Ochiai
(1999).49 Approximately 10% of the repeat units found in
poly(4-phenyl-1-buten-3-yne), which was obtained via an
anionic polymerization, feature allenyl units. Kijima later

(2002) demonstrated that a nickel-catalyzed dehalogenative
polycondensation of 1,3-bis(4-bromophenyl)-1,3-diphenylpro-
padiene afforded a polymer with an alternating combination of
allenyl and biphenylene repeat units.50 More recently (2020),
Brantley showed how the polymer obtained from the ring-
opening metathesis polymerization (ROMP) of norbornene
may be transformed into allenyl-containing derivatives using the
Doering−Moore−Skattebøl reaction.51
We hypothesized that polymers with allenes in their main

chains, noted herein as “poly(allenamer)s”, may be obtained via
the ROMP of cyclic allenes. ROMP is a reaction where the
release of the ring-strain associated with the monomer drives the
formation of polymers.52 While the methodology is commonly
used to polymerize strained cyclic alkenes (e.g., cis,cis-1,5-
cyclooctadiene or norbornene),53−66 other unsaturated hydro-
carbons, such as cyclic alkynes, have also been utilized.67−70 A
unique feature of ROMP reaction is that the functional groups
present in the cyclic monomers employed are retained in the
metathetical polymers produced. Moreover, the use of allenes in
metathesis chemistry is precedented. For example, mono-
substituted acyclic allenes have been converted into 1,3-
disubstituted derivatives via cross metathesis34 and α,ω-
bisallenes have been ring-closed to afford cyclic allenes.71

Very recently, Neary and Moore disclosed a validation of the
aforementioned hypothesis.72 They reported that the ROMP of
1,2-cyclononadiene using the Grubbs second generation catalyst
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(G2) affords a poly(allenamer). The kinetics of the reaction
were also investigated, and the underlying polymerization
mechanism was elucidated to proceed through Ru alkylidene
intermediates. Prompted by the disclosure, a summary of our
results is provided here. We will show that subjecting 1,2-
cyclononadiene and other cyclic allenes to the Grubbs third
generation catalyst (G3) also affords poly(allenamer)s but that
the reaction may proceed via a distinct mechanistic pathway.We
also demonstrate that the addition of allenyl-based chain transfer
agents (CTAs) in the aforementioned ROMP reactions offers a
means to obtain end-functionalized polymers with tailored end-

groups and tunable molecular weights.73−79 Finally, we will
show that the chemical potential of the poly(allenamer)s may be
harnessed through post-polymerization modifications. The
results described below are complementary to the previous
report and aim to enrich our understanding of using allenes in
metathesis-based polymer chemistry.

■ RESULTS AND DISCUSSION

In an initial experiment, a tetrahydrofuran (THF) solution of
1,2-cyclononadiene (1)80−83 ([1]0 = 2.0M)was treated withG3
(1 mol %) at room temperature. The color of the reaction

Scheme 1. (Top) General Allene Addition Polymerization Reaction and (Bottom) Examples of Methods that Have been Used to
Synthesize Poly(allenamer)s

Figure 1. 1H NMR spectra recorded for 1 (top), poly(1) (middle), and the addition polymer of 1 (bottom) (CDCl3, 25 °C).
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mixture gradually changed from green to dark brown. After 30
min, excess ethyl vinyl ether was added to quench the
polymerization reaction and the resulting mixture was poured
into excess methanol. Assuming the structure shown for poly(1)
and quantitative initiation, the yield of the reaction was
determined to be 35% and the material was predicted to have
a number average molecular weight (Mn) of 4.3 kDa. The
polystyrene-equivalent number Mn of the polymer and its
polydispersity index (D̵) were measured to be 7.0 kDa and 1.6,
respectively, using size exclusion chromatography (SEC). The
difference between the theoretical and experimental molecular
weights coupled with the relative broad polydispersity was
attributed to chain transfer (vide inf ra).
A range of spectroscopic and chromatographic techniques

were used to analyze poly(1). For comparison, the addition
polymer of 1 was also prepared30 and analyzed. As shown in
Figure 1, distinct differences were observed upon inspecting the
1H NMR spectra that were recorded for the two polymers.
Poly(1) exhibited a sharp resonance at 5.04 ppm (CDCl3),
which was assigned to the allenyl protons in the polymer
backbone. For comparison, the monomer displayed a similar
signal, albeit it was slightly upfield (5.26 ppm), whereas the
addition polymer exhibited a broad signal in the region typically
expected for protons attached to alkenyl moieties (5.57 ppm).
Diagnostic signals were also observed at 204 ppm and 1960
cm−1 in the 13C NMR and FT-IR spectra, respectively, recorded
for poly(1) (see Figure S1); these signals were not observed in
the corresponding spectra recorded for the addition polymer or

the monomer. Based on these results, we concluded that the
structure of poly(1) was consistent with that shown.
Subsequent efforts were directed toward optimizing the

ROMP chemistry; key results are summarized in Table 1. Unless
otherwise noted, the initial monomer concentration ([1]0 = 2.0
M), the monomer-to-initiator feed ratio ([M]0/[I]0 = 100), and
the polymerization temperature (25 °C) were kept constant in
each of the following experiments. First, a range of solvents was
explored, including CH2Cl2, toluene, n-hexane, and chloroben-
zene; and optimal results were obtained in THF presumably due
to the relatively high stability of the catalyst in this solvent (see
Figure S2).72,84 The use of 2,6-diisopropylphenylimidoneophy-
lidene molybdenum(VI) bis(hexafluoro-t-butoxide) (i.e.,
Schrock’s Catalyst, Mo) or the Grubbs first generation catalyst
(G1) in lieu ofG3 did not result in any observable reaction upon
exposure to 1 as determined by NMR spectroscopy. In contrast,
the Grubbs second generation catalyst (G2) as well as the
Hoveyda−Grubbs second generation catalyst (HG2) afforded
conversions of monomer to polymer similar to G3 (∼35%).
Since ROMP reactions are enthalpically driven by the release

of ring-strain and entropically disfavored, it was hypothesized
that lower reaction temperatures would increase the yield of
polymers. However, no reaction was observed when the reaction
was conducted at −25 °C and only a 11% conversion of
monomer to polymer was measured at 0 °C. Although elevating
the reaction temperature to 60 °C increased monomer
conversion to 60%, significant improvements were not observed
when higher temperatures (80 or 100 °C in 1,4-dioxane) were
used. By analyzing a series of stoichiometric mixtures of 1 and
G3, it was determined that catalyst initiation efficiency also

Table 1. Summary of Polymerization Conditions and Resultsa

entry catalyst solvent [M]0/[I]0 [M]0 T (°C) Mn, theo
b (kDa) Mn, exp

c (kDa) D̵ yield (conversion) (%)d

1 G3 THF 100 2.0 25 4.3 7.0 1.6 33 (35)
2 G3 toluene 100 2.0 25 0 (trace)
3 G3 CH2Cl2 100 2.0 25 3.7 3.0 1.8 25 (30)
4 G3 n-hexane 100 2.0 25 0 (trace)
5 G3 chlorobenzene 100 2.0 25 0 (trace)
6 Mo THF 100 2.0 25 0 (0)
7 G1 THF 100 2.0 25 0 (0)
8 G2 THF 100 2.0 25 4.2 8.9 2.0 20 (34)
9 HG2 THF 100 2.0 25 4.5 8.6 2.1 25 (37)
10 G3 THF 100 2.0 −25 0 (0)
11 G3 THF 100 2.0 0 1.3 8.0 2.1 10 (11)
12 G3 THF 100 2.0 60 7.3 10.2 2.0 55 (60)
13 G2 THF 100 2.0 60 8.6 10.4 2.9e 63 (70)
14 HG2 THF 100 2.0 60 7.7 11.2 2.6e 46 (63)
15 G3 1,4-dioxane 100 2.0 80 5.1 10.1 2.5 30 (42)
16 G3 1,4-dioxane 100 2.0 100 7.1 12.4 2.5 50 (58)
17 G3 THF 50 2.0 60 5.1 7.0 2.6 75 (83)
18 G3 THF 25 1.0f 60 3.1 6.2 2.0 90 (99)
19 G3 THF 25 0.1 60 3.1 1.0 1.6 92 (99)
20 G3 THF 25 6.7g 60 0 (trace)

aConditions: [1]0 = 2.0 M, 30 min. bTheoretical number average molecular weight (Mn, theo) = molecular weight of 1 × [M]0/[I]0 × % conversion.
cExperimental number average molecular weight (Mn, exp) was determined by SEC in THF against polystyrene standards. dDetermined by 1H NMR
analysis of an aliquot that was removed from the reaction mixture. eBroad, bimodal distribution. fThe reaction mixture became gelatinous when
[1]0 = 1.5 M, although the FT-IR spectrum of the insoluble product was similar to the result recorded for poly(1) (see Figure S5). g[1]0 = 6.7 M
(neat).
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improves with temperature (see Figure S3). Since relatively
optimal results were obtained at 60 °C, the polymerization
reactions were separately repeated using G2 as well as HG2 in
lieu of G3 as the initiator. Although comparable conversions
were observed, the polymers obtained using the former featured
bimodal molecular weight distributions, whereas G3 yielded
unimodal polymers (see Figure S4). The molecular weights of
the polymers produced appeared to depend on monomer
conversions, although the initial monomer-to-initiator ratio as
well as the initial monomer concentration were found to be
contributing factors as well. In general, the use of a higher [1]0/
[G3]0 ratio or a lower [1]0 afforded higher yields of lower
molecular weight polymers. Polymerization was not observed in
neat monomer, presumably due to premature catalyst
decomposition.85

As part of an effort aimed at improving control over the
molecular weight of the polymers produced, the inclusion of
CTAs in the reaction mixtures was considered.52,86 The ROMP
of cyclic alkenes in the presence of α,ω-disubstituted acyclic
alkenes, which effectively function as CTAs, has been shown to
be an effective method for not only controlling polymer
molecular weight but for producing end-functionalized poly-
mers.75 When chain transfer is efficient, the polymerization
approximates a step-growth polymerization and the molecular
weight of the polymer produced approaches the monomer-to-
CTA feed ratio. To ascertain if a similar approach could be used
to control the ROMP of cyclic allenes, 2,8-dimethylnona-4,5-
diene (2), an allene outfitted with isobutyl groups, was
synthesized according to literature procedures87,88 and explored
as a CTA.
As shown in Scheme 2, a THF mixture 1 and 2 (10 : 1 molar

ratio; [1]0 = 2.0 M) was treated with G3 (2 mol %) and then
stirred at 60 °C for 30 min. Afterward, the polymerization
reaction was quenched by the addition of excess ethyl vinyl ether
and the resulting mixture was poured into excess methanol. The
precipitate that formed was collected via filtration and washed

with methanol to remove any residual starting material. As
shown in Figure 2, 1H NMR analysis of the isolated material
revealed that the structure of the polymer was similar to that of
poly(1); however, new signals were observed at 1.88 ppm (m,
Hd), 1.65 ppm (septet, He), and 0.92 ppm (d, Hf), which were
assigned to the isobutyl end-groups. Integration of the end-
groups followed by comparison to the repeat unit indicated that
theMn of the polymer was 6.6 kDa. For comparison, the polymer
was measured to have aMn of 5.0 kDa by SEC. As summarized in
Table 2 and Figure S6, repeating the aforementioned experi-

ments with different monomer-to-CTA ratios revealed that the
molecular weights of the polymers produced correlated with the
feed ratio. Similarly, varying the [1]0/[G3]0 while holding the
[1]0/[2]0 constant was also found to affect the molecular weight
of the polymer produced and provided further support for chain
transfer. Allenes 3 and 4, which feature pendant and hydroxyl
functional groups, respectively, were also synthesized and
utilized as CTAs.88,89 For example, the ROMP of 1 in the
presence of CTA 3 or 4 (10:1 molar ratio; [1]0 = 2.0M; 2mol %
G3 for 3 and 1 mol % G3 for 4) afforded poly(1) with the
expected phenethyl or hydroxyethyl end-groups. TheMn values,

Scheme 2. Synthesis of poly(1) in the Presence of Various Chain Transfer Agents (2−4)

Figure 2. 1H NMR spectrum recorded for an end-functionalized polymer that was prepared via the ROMP of 1 in the presence of CTA 2 (CDCl3, 25
°C).

Table 2. ROMP of 1 in the Presence of CTA 2a

entry [1]0/[2]0 [1]0/[G3]0 Mn
b (kDa) D̵ yield (%)

1 100 50 9.9 2.5 71
2 50 50 7.3 2.8 92
3 20 50 6.9 2.8 92
4 10 50 4.7 2.2 99
5 10 100 5.5 2.0 50
6c 10 20 3.8 2.6 96
7c 10 10 2.2 2.1 99

aConditions: [1]0 = 2.0 M in THF, 30 min. bDetermined by SEC in
THF against polystyrene standards. cSince gelation was observed
when [1]0 = 2.0 M, the initial monomer concentration was reduced to
1.0 M.
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as calculated using 1HNMR spectroscopy, were also comparable
to their SEC-derived values (c.f., 4.5 kDa vs 4.2 kDa and 8.9 kDa
vs 7.2 kDa, respectively).
As described in Figure 3, two possible mechanistic pathways

can be envisioned and depend on monomer insertion vis-a-̀vis
the formation of ruthenium alkylidene or vinylidene inter-
mediates. The mechanism appeared to be selective as polymers
with [3]cumulene90,91 or alkene repeat units were not observed
in any of the experiments described above. To distinguish
between the two potential pathways shown, each of which
affords the observed poly(allenamer)s, efforts were directed
toward the identification of the propagating catalytically active
species. A CDCl3 solution of 1 ([1]0 = 20 mM) was treated with
an equimolar quantity of G3 for 5 min at 60 °C and then
analyzed by 1H NMR spectroscopy. Downfield signals were
observed over the range of 5.66 to 6.40 ppm and assigned to
terminal cis (∼33%) and trans (∼66%) styrenyl moieties
(Figure 4).92,93 Moreover, the distinctive Ru benzylidene 1H

NMR signal of G3 (19.1 ppm) transformed into a new, broad
signal at 5.35 ppm, which was attributed to the formation of a Ru
vinylidene.94,95 Additional support for vinylidene formation was
obtained when a CDCl3 solution of G3 ([G3]0 = 360 mM) was
treated with 5 molar equivalents of 1 at 60 °C and then analyzed
by 13C NMR spectroscopy, which resulted in the identification
of a new, diagnostic signal at 350 ppm (see Figure S8).96−98

Initiation as well as monomer conversion were quantitative.
Collectively, these observations were consistent, indicating that
the polymerizationmechanism predominately proceeds through
Pathway 1. Neary andMoore reported that the ROMPof 1 using
G2 proceeds through Ru alkylidene intermediates and thus the
polymerization mechanism may be sensitive to the catalyst
structure and/or the conditions employed.
Since allenes have been used in a broad range of chemical

transformations, the potential of transforming poly(1) into
allylsilyl or vinylsilyl derivatives via a post-polymerization
hydrosilylation was explored. Unsaturated silanes are versatile

Figure 3. Proposed mechanistic pathways.

Figure 4. Partial 1H NMR spectrum recorded for an equimolar mixture of 1 and G3 (CDCl3, 60 °C).
99
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reagents for use in cross-coupling reactions10,100−104 and
polymers that feature such groups have been converted into
various types of functional derivatives.105,106 As shown in Figure
5, a CH2Cl2 solution of poly(1) ([1]0 = 0.2 M) was treated with
dimethyl(phenyl)silane (1.9 equiv) and Karstedt’s catalyst (5
mol %).107,108 After 12 h at room temperature, the reaction
mixture was poured into methanol and the resulting precipitate
was collected. Analysis of the precipitate revealed that the
characteristic 1H NMR signals of poly(1) disappeared and were
replaced with new alkenyl signals, which were assigned to
different hydrosilylated isomers: 1,2-addition product (A), 23%;
E-1,3-addition product (B), 62%; and Z-1,3-addition product
(C), 15%.10,109,110 In addition, SEC showed that the Mn of the
hydrosilylated polymer shifted toward a higher value when
compared to the starting material (c.f., 6.0 kDa vs 5.3 kDa),
which provided further support for the post-polymerization
modification.
Finally, efforts were directed toward exploring whether other

cyclic allenes could be polymerized using G3. 1,2,6-Cyclo-
nonatriene (5) was selected, prepared from cis,cis-1,5-cyclo-
octadiene (COD) using the Doering−Moore−Skattebøl
reaction and subjected to G3 using optimized conditions ([5]
= 1.0 M, THF, 4 mol % G3, 60 °C, 20 h); see Scheme 3. The

resulting polymer was obtained in 70% yield based on the
presumed structure and determined by SEC to featureMn of 2.4
kDa (D̵ = 2.2). The 1H NMR spectra recorded for poly(5)
featured two signals at 5.09 and 5.41 ppm, which were assigned
to the allenyl and the alkenyl groups in the polymer backbone,
respectively. Similarly, the alkenyl units exhibited a 13C NMR
signal at 129.7 ppm, whereas the allenyl units were observed at
90.7 and 204.0 ppm. Integration of the signals indicated that the
two functional groups were present in an equimolar ratio. A
signal at 27.2 ppm was also observed in the 13C NMR spectrum

recorded for poly(5), which indicated that the geometry of the
alkenes in the polymer backbone were predominately cis.
Additional support for the assignment was obtained via FT-IR
spectroscopy, which revealed that the polymer exhibited a
strong absorbance at 727 cm−1.111,112

■ CONCLUSIONS
The third generation Grubbs catalyst was found to initiate the
ROMP of various cyclic allenes and afforded polymers that
feature allene functional groups in their backbones. Derivatives
comprising alternating allenyl/alkenyl repeat units were also
prepared. Adding CTAs to the polymerization reactions
afforded end-functionalized polymers and facilitated control
over molecular weight. Subjecting the poly(allenamer)s to
standard hydrosilylation conditions revealed that the polymers
can be transformed using standard post-polymerization
modification methodology. When the third generation Grubbs
catalyst was used as an initiator, the polymerization mechanism
appeared to be selective and involved Ru vinylidene
intermediates. Overall, the results are complementary to recent
reports and, collectively, can be expected to guide catalyst
selection and optimize conditions. In a broader perspective, the
ROMP of cyclic allenes facilitates access to an underdeveloped
class of unsaturated polymers with high potential for further
modification and/or for use in a broad range of contemporary
applications.
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