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Abstract: Plasma etching processes for multi-atomic oxide thin films have become increasingly
important owing to the excellent material properties of such thin films, which can potentially be
employed in next-generation displays. To fabricate high-performance and reproducible devices, the
etching mechanism and surface properties must be understood. In this study, we investigated the
etching characteristics and changes in the surface properties of InGaZnO4 (IGZO) thin films with
the addition of O2 gases based on a CF4/Ar high-density-plasma system. A maximum etch rate of
32.7 nm/min for an IGZO thin film was achieved at an O2/CF4/Ar (=20:25:75 sccm) ratio. The etching
mechanism was interpreted in detail through plasma analysis via optical emission spectroscopy
and surface analysis via X-ray photoelectron microscopy. To determine the performance variation
according to the alteration in the surface composition of the IGZO thin films, we investigated the
changes in the work function, surface energy, and surface roughness through ultraviolet photoelectron
spectroscopy, contact angle measurement, and atomic force microscopy, respectively. After the plasma
etching process, the change in work function was up to 280 meV, the thin film surface became slightly
hydrophilic, and the surface roughness slightly decreased. This work suggests that plasma etching
causes various changes in thin-film surfaces, which affects device performance.

Keywords: IGZO; adaptively coupled plasma (ACP); OES; XPS; etch rate; UPS; work function; adhe-
sion

1. Introduction

In the development of the next-generation organic light emitting diode–based dis-
plays with a high resolution, high scan rate, and mechanical flexibility, amorphous oxide
semiconductor–based thin film transistors (OSTFTs) can potentially be employed as switch-
ing devices for backplanes [1,2]. Among many candidates, InGaZnO4 (IGZO) is a reliable
channel material owing to several remarkable properties, such as high mobility [2–5], high
transmittance due to its wide band gap [6,7], high stability against electrical stress owing
to strong ion bonding [8], excellent film uniformity [9], low fabrication temperature [10,11],
and mechanical flexibility [12–14]. In particular, many studies have focused on IGZO-
based TFTs because their mechanical flexibility and low-temperature processing enable the
realization of flexible display systems.

The demand for high-resolution and large-area displays has led to a decrease in the
size of TFT devices [15,16]. The bottlenecks to device scaling are the lithography and
etching processes. Lithography using the silicon process has been well established, but
the etching of IGZO thin films is challenging. Conventional wet etching using chemicals
has a high etch rate and selectivity, but it is not suitable for high-resolution patterning
processes because of the resulting anisotropy and low uniformity. Therefore, the dry
etching process using plasma is preferred, owing to its isotropic etch characteristics and
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high uniformity for high-resolution patterning. Yanbin et al. reported that the etch rate and
etch profile of InGaZnO4 thin films depended on the various process parameters, such as
gas mixtures and RF power [17]. Kim et al. reported the etching mechanisms of InGaZnO4
thin films in a CF4/Ar/O2 inductively coupled plasma system using a Langmuir probe [18].
Although there are many conventional studies on the plasma etching process of IGZO
thin films, most of them have focused on the investigation of etch rate, etch selectivity,
and the etch mechanism itself [17–20]. However, the composition of the thin-film surface
is altered after the etching process by etching residues or implanted atoms [21,22]. This
affects the work function, band gap, and surface energy, resulting in a change in device
performance [21,23,24]. The work function represents the potential required to add or
remove electrons from a material (i.e., the potential value required to reach the vacuum
level from the Fermi level). Therefore, the work function is an important parameter for
charge transfer at the interface. To provide electrons to the channel easily, the metal
electrode must have a lower work function than the active layer material. Moreover, the
active layer should have a high work function to capture electrons from the electrode [25].
In particular, IGZO has a high work function and low threshold voltage, which can greatly
reduce the switching power in n-channel TFTs. Furthermore, the surface energy affects
the interconnection with the metal layer. Therefore, surface characteristics after etching
have to be elaborately evaluated because the IGZO thin film is involved in the continuous
fabrication process [26].

In our previous study, the highest etch rate was obtained at a gas mixing ratio of
CF4/Ar = 25:75 for CF4/Ar plasma [27]. We had concluded that the F in the CF4/Ar
plasma bonds chemically to form In-F and Zn-F on the surface of the IGZO thin film, and
that ion bombardment with Ar ions helped to remove non-volatile byproducts, namely
In-F and Zn-F from the thin film surface. The addition of O2 to the CF4/Ar plasma induced
an increase in the number of F in the plasma. Therefore, in this study, we investigated
the etching characteristics resulting from the addition of O2 gas to the CF4/Ar plasma.
Here, we investigate not only the etching characteristics, but also the changes in the surface
properties after the etching of IGZO thin films; these changes result from the addition of
O2 gas to CF4/Ar plasma. The density of ions and radicals in the plasma was investigated
using optical emission spectroscopy (OES), and the change in the chemical composition of
the surface was investigated by X-ray photoelectron spectroscopy (XPS). To understand the
correlation between the surface composition and work function and to confirm the control-
lability of the work function by plasma etching, changes in the work function with respect
to the surface composition were evaluated using ultraviolet photoelectron spectroscopy
(UPS). The surface energy and surface roughness of the thin films were investigated using
a contact angle analyzer and atomic force microscopy (AFM), respectively.

2. Materials and Methods

Here, 100–150-nm-thick IGZO thin films were grown on a p-type boron-doped (100)
silicon substrate using an In:Ga:Zn:O (=1:1:1:4) target with a thickness of 1/8 inch and
2 inches diameter (RND Korea) in an RF sputtering system under the following conditions:
30 sccm Ar inert gas, 60 W RF power, and 10 mTorr pressure at room temperature. After
the deposition of the IGZO thin films, plasma etching was conducted with an O2/CF4/Ar
plasma using an adaptively coupled plasma (ACP) system. The ACP system possesses
the advantages of a capacitively coupled plasma capacitor structure and an inductively
coupled plasma coil, thereby achieving a higher plasma density [15]. The etching process
was conducted with a fixed CF4/Ar gas ratio (=25:75 sccm), 500 W source power, 100 W
bias power, and 15 mTorr pressure; further, we changed the additive O2 gas flow rate from
0 to 40 sccm. After etching, we measured the etched depth using a depth profiler (α-step
500, KLA Tencor, Milpitas, CA, USA). Active radicals in the plasma were measured by
OES analysis (VT500, Prime Solution, Gunpo-si, Korea). The chemical composition of the
surface was investigated through XPS analysis (Sigma Probe, Thermo Fisher Scientific,
Waltham, MA, USA) with a fixed retarding ratio mode using Al (1486.7 eV) and a calibrated
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C 1s binding energy of 284.8 eV. The change in the work function according to the surface
chemical composition was evaluated via UPS analysis (NEXSA, ThermoFisher Scientific,
Waltham, MA, USA) using extreme UV light (–10 eV bias voltage), and the results were
verified by Kelvin probe force microscope (KPFM) analysis (Multimode V, Veeco, Plainview,
NY, USA). The surface roughness and contact angle were estimated via AFM (Quadrexed
D3100, Veeco, Plainview, NY, USA) and by using a contact angle analyzer (Phoenix 300,
SEO, Suwon-si, Korea), respectively.

3. Results and Discussion

Figure S1 shows the etch rate of the IGZO thin films, depending on the gas mixing
ratio of CF4/Ar in the inductively coupled plasma (ICP) system; the obtained results
were similar to those of the previous study [27]. Figure 1 shows the etch rate of IGZO
thin films and etch selectivity to Al and Photoresist (PR) as a function of the additive O2
concentration under the following fixed conditions: CF4/Ar gas ratio =25:75 sccm, 500 W
source power, 100 W bias power, and 15 mTorr pressure. Here, Al (as well as PR) was
chosen to evaluate the etch selectivity as it is widely used as a source or drain electrode in
thin-film transistors [28,29]. Therefore, we evaluated not only the etch rate, but also the
selectivity of IGZO to Al and PR. As the flow rate of the additive O2 gas increased from 0
to 20 sccm, the etch rate of the IGZO thin films increased from 13.1 to 32.7 nm/min. When
the O2 gas flow rate increased further from 20 sccm to 40 sccm, the etch rate started to
decrease from 32.7 to 16.5 nm/min. Moreover, the etch selectivity of the IGZO thin films to
Al tended to be similar to the etch rate of the IGZO thin films; the etch selectivity was the
highest, at 0.9, when O2 was added at 20 sccm. However, the selectivity for PR decreased
as the addition ratio of O2 increased from 0.07 to 0.02, and the lowest selectivity for PR,
0.02, occurred when O2 was added at 40 sccm.
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Figure 1. Etch rate of IGZO thin films and etch selectivity to Al and PR as a function of additive
O2 gas flow rate with fixed CF4/Ar = 25:75 sccm. (500 W source power, 100 W bias power, and
15 mTorr pressure).

The results of the OES analysis provided clues to characterize the plasma state and the
mechanisms of the etching process in accordance with changes in the active species [30].
Figure 2 shows the emission intensity of the free radicals in the plasma as the oxygen
concentration increased in the CF4/Ar plasma, and OES analysis was performed under
the same conditions as in Figure 1. Overall, the emission intensity of Ar (615.49 nm) was
steady as the rate of O2 addition increased. However, the CF (255 nm) and CF2 (252.66 nm)
decreased gradually as soon as oxygen was added, and they decreased further as the
proportion of oxygen gas increased. The emission intensity of CO was the highest when
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10 sccm of oxygen was added, decreasing gradually with the further addition of oxygen.
The emission intensity of O (615.49 nm) increased steadily with the oxygen content. The
emission intensity of F (685.72 nm) increased rapidly as soon as oxygen was added, and F
showed the highest emission intensity when the oxygen flow rate was 20 sccm. As the rate
of O2 addition increased to 20 sccm, the electron-impact and gas-phase reactions occurred
in the O2/CF4/Ar plasma, as summarized in Table 1 [31–33].
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Table 1. Electron-impact and gas-phase reactions in O2/CF4/Ar plasma.

Electron-Impact Reaction Gas-Phase Reaction

e + CF4 → CF3 + F + e CF3 + O→ CF2O + F

e + CF4 → CF2 + 2F + e CF2 + O→ CFO + F

e + CF4 → CF + 3F + e CF2 + O→ CO + 2F

- CF + O→ CO + F

Thereafter, the F and CO decreased gradually as more O2 gas was added, which seems
to be due to the increase in gas-phase reactions between the F and CO as follows:

CO + F→ CFO

In the OES results, the trend of the emission intensity of F followed that of the etch
rate, shown in Figure 1, which means that the F were closely related to the chemical etching
of the IGZO thin films.

Figure 3 shows the change in elemental composition at the IGZO thin film surface
and the XPS narrow spectra of the F 1s peak before and after the etching process. F
was detected in the thin films etched in both CF4/Ar and O2/CF4/Ar plasmas, and the
ratio of F decreased despite the higher etch rate for O2/CF4/Ar plasma. This means
that etch residues on the thin-film surface were reduced. In the IGZO thin film etched
using O2/CF4/Ar plasma, the ratio of O, In, and Ga atoms was higher and the ratio of
Zn atoms was slightly lower than those in the thin film etched using the CF4/Ar plasma.
Figure 3b shows the XPS narrow-scan spectra of the F 1s peak. The peaks of the IGZO
thin films etched using the CF4/Ar and O2/CF4/Ar plasmas were observed at 685 and
686 eV, respectively. This means that the Zn-F reaction in the presence of O2 was more
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predominant than the In-F and Ga-F reactions under CF4/Ar plasma, which explains the
lowering of the ratio of Zn atoms, indicated in Figure 3a [33].
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Figure 4a–c show the XPS narrow scan spectra for the oxygen O 1s peaks of the IGZO
thin-film surface before and after the etching process, and each spectrum was deconvoluted
into three peaks, a low peak (LP), middle peak (MP), and high peak (HP). The low peak
centered at 530 eV is ascribed to oxygen bonding with metal ions in the IGZO thin films,
such as InxOy, GaxOy, and ZnxOy [34,35]. The middle peak centered at 531.2 eV is attributed
to oxygen vacancies in the IGZO compound structure [36]. The high peak is related to
chemisorbed or dissociated oxygen, absorbed H2O, or OH groups at the surface [37,38].
Figure 4d shows the atomic ratios corresponding to the low peak, middle peak, and high
peak. In the case of etching using CF4/Ar plasma, the low peak’s area decreased, whereas
the areas of the middle peak and high peak increased. Furthermore, in the IGZO thin
films etched using the O2/CF4/Ar plasma, the areas of the low peak and high peak were
further lowered and increased, respectively; however, the middle peak’s area was lower
than that in the case of the thin film etched using CF4/Ar. As the etching proceeded, the
metal atoms of the IGZO structure reacted with the F in the plasma to break the bond with
the oxygen, resulting in a decrease in the low peak’s ratio. In particular, the reduction
in the low peak’s ratio was more prominent in the O2/CF4/Ar plasma, which entailed
a high ratio of F. Oxygen atoms in the IGZO structure also broke the bonds with metals
as etching proceeded; thus, the increase in the middle peak, high peak, and dissociated
oxygens introduced oxygen vacancies. The IGZO thin film etched using the O2/CF4/Ar
plasma had a lower middle peak ratio than the thin film etched using the CF4/Ar plasma
because the reactive radicals in each plasma were different. In other words, oxygen atoms
in the IGZO thin film were etched away in the form of CFO and CO by CF2 and CF in the
CF4/Ar plasma, as shown in Table 1. By contrast, CF3, CF2, and CF were already converted
into CFO and CO in the O2/CF4/Ar plasma before reacting with oxygen on the surface of
the thin film; thus, the reaction rate with oxygen atoms in the IGZO thin film decreased.

After etching, the work function of the oxide semiconductor surface may change
owing to the stoichiometric ratio, etching residues, oxygen vacancies, etc. Therefore, we
performed a UPS analysis to confirm the effect of the plasma etching process on the work
function of the IGZO thin film. Figure 5a,b show the secondary electron cutoff and valence
band edge region of the IGZO thin film. The work function (φ) was calculated using the
following equation:

φ = hv− (Efermi − Ecutoff) (1)

where hv is the photon energy, Ecutoff is the secondary electron cutoff energy, and Efermi
is the Fermi level energy. The value of hv is 21.22 eV in the case of He(I) radiation. In
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addition, the UPS spectra were calibrated using Au with a binding energy 8.05 eV. The
work functions of the as-deposited IGZO thin film, IGZO thin film etched in CF4/Ar
plasma, and IGZO thin film etched in O2/CF4/Ar plasma were 4.776, 4.592, and 4.872 eV,
respectively, as shown in Figure 5c. Here, the maximum difference in the work function
was 280 meV. When the IGZO thin film was etched using the CF4/Ar plasma, the work
function decreased. By contrast, when the IGZO thin film was etched using the O2/CF4/Ar
plasma, the work function increased. This result indicates that the change in the work
function of IGZO thin films is caused not only by oxygen vacancies, but also by several
other factors such as the stoichiometry of the IGZO structure and etching residues on
the thin film surface [39–41]. Figure 5d and Figure S2 show the KPFM images for the
differences in the work functions; these images support the results of the UPS analysis.
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Considering that IGZO is used as an active layer in OSTFTs and needs to be bonded
with neighboring elements, such as the metals of the source and drain electrodes, the adhe-
sion of the etched IGZO must be considered as an important factor in the fabrication. There-
fore, contact angle measurements were performed to measure the surface energy before
and after etching. As shown in Figure 6, all samples etched by the CF4/Ar and O2/CF4/Ar
plasmas exhibited lower contact angles compared to the as-deposited IGZO thin film
(i.e., 109.96◦, 96.92◦, and 103.37◦ for as-deposited, etched using CF4/Ar = 25:75 sccm, and
etched using O2/CF4/Ar = 20:25:75 sccm, respectively). We confirmed that the HP’s area
increased after etching, as shown in Figure 4. This indicates the presence of chemically
absorbed or dissociated oxygen on the IGZO surface after etching. The chemically absorbed
or dissociated oxygen endows the surface. This surface has high surface energy, which
indicates a strong molecular attraction [42,43]. As a result, the IGZO thin films etched
using CF4/Ar and O2/CF4/Ar plasmas show a higher surface energy than that of the
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as-deposited IGZO thin film; thus, the etched thin films exhibit higher adhesions compared
to that of the as-deposited film.
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The surface roughness of the IGZO thin films must also be considered because the
roughness affects the device performance, such as the gate leakage current, and postpro-
cesses, such as S/D metallization [44]. Figure 7 shows the AFM images of the as-deposited
and etched IGZO thin films, where the surface roughness increased slightly to 0.0732 nm
after CF4/Ar plasma etching. By contrast, the surface roughness after etching using
O2/CF4/Ar plasma (0.0645 nm) is comparable to that of the as-deposited IGZO thin films.
It is considered that the increased surface roughness of the thin film etched in CF4/Ar
plasma is due to the surface residues mentioned in the XPS analysis. In other words, it
is considered that the surface roughness decreased as the surface residues were reduced
in the thin film etched in the O2/CF4/Ar plasma. These changes are so subtle that it
can be concluded that the surface roughness remains the same even after etching using
O2/CF4/Ar plasma.
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4. Conclusions

In this study, we observed the etch characteristics of an IGZO thin film and the change
in the surface characteristics after etching with the addition of O2 in a CF4/Ar-based ACP
system. The highest etch rate was 32.7 nm/min using a plasma with an O2/CF4/Ar gas
mixing ratio of 20:25:75 sccm. We confirmed through XPS and OES analyses that the etch
residue of the IGZO thin films decreased as O2 was added to the CF4/Ar plasma. The work
function of the IGZO thin films decreased upon etching in CF4/Ar plasma and increased
after etching in CF4/Ar plasma with O2 gas addition. The surface energy increased for
IGZO thin films etched in CF4/Ar and O2/CF4/Ar plasmas. The surface energy was the
highest when CF4/Ar plasma was employed for etching. CF4-based plasma etching did
not significantly affect the surface roughness. We expect these results to considerably
contribute to research on next-generation devices and processes.
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