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ABSTRACT We consider the optimal experimental design (OED) problem for an uncertain system described
by coupled ordinary differential equations (ODEs), whose parameters are not completely known. The
primary objective of this work is to develop a general experimental design strategy that is applicable to any
ODE-based model in the presence of uncertainty. For this purpose, we focus on non-homogeneous Kuramoto
models in this study as a vehicle to develop the OED strategy. A Kuramoto model consists of N interacting
oscillators described by coupled ODEs, and they have been widely studied in various domains to investigate
the synchronization phenomena in biological and chemical oscillators. Here we assume that the pairwise
coupling strengths between the oscillators are non-uniform and unknown. This gives rise to an uncertainty
class of possible Kuramoto models, which includes the true unknown model. Given an uncertainty class
of Kuramoto models, we focus on the problem of achieving robust synchronization of the uncertain model
through external control. Should experimental budget be available for performing experiments to reduce
model uncertainty, an important practical question is how the experiments can be prioritized so that one
can select the sequence of experiments within the budget that can most effectively reduce the uncertainty.
In this paper, we present an OED strategy that quantifies the objective uncertainty of the model via the
mean objective cost of uncertainty (MOCU), based on which we identify the optimal experiment that is
expected to maximally reduce the MOCU. We demonstrate the importance of quantifying the operational
impact of the potential experiments in designing optimal experiments and show that the MOCU-based OED
scheme enables us to minimize the cost of robust control of the uncertain Kuramoto model with the fewest
experiments compared to other alternatives. The proposed scheme is fairly general and can be applied to any
uncertain complex system represented by coupled ODEs.

INDEX TERMS Mean objective cost of uncertainty (MOCU), optimal experimental design (OED), objective
uncertainty quantification (objective UQ), Kuramoto model.

I. INTRODUCTION
In many real-world applications, we often have to deal with
complex systems, for which we do not have complete knowl-
edge. While collecting more data may lead to better system
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modeling, there exist many scientific applications in which
gathering sufficient data for accurate system identification is
practically impossible due to the enormous complexity of the
system, prohibitively high cost of data acquisition, or both.
Relevant examples abound across various domains, includ-
ing multi-scale climate modeling for long-term prediction,
inference of genome-scale regulatory network for predicting
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effective intervention strategies, characterization of amaterial
system for optimization of targeted functional properties, just
to name a few. In such cases, experimental design should
target improving one’s knowledge of the uncertain system on
aspects that critically affect one’s operational goals, which
may be related to control, classification, filtering, or others.

In this paper, we consider the problem of optimal experi-
mental design (OED) for an uncertain complex system based
on coupled ordinary differential equations (ODEs). Specifi-
cally, we focus on the Kuramoto oscillator model [1], [2] as
a vehicle to develop the OED capabilities, which could be
ultimately applied to any uncertain model based on coupled
ODEs beyond the Kuramoto model. The Kuramoto model
has been widely studied by many researchers and has a rich
published literature. However, the model has not been much
investigated for cases when there is substantial uncertainty in
the model.

The primary goal of this paper is to identify the opti-
mal experiment that is expected to effectively reduce the
model uncertainty in such a way that minimizes the cost
of controlling the uncertain system. The mean objective
cost of uncertainty (MOCU) [3] can be used to quantify
the objective-based uncertainty, which then can be used
to predict the optimal experiment that maximally reduces
the uncertainty pertaining the cost of control [4]. Recently,
MOCU-based OED has been applied to a number of applica-
tions such as gene regulatory network intervention [4], [5],
adaptive sequential sampling [6], active learning [7], [8],
robust filtering [9], and autonomous materials discovery [10].
While the Kuramoto model has been extensively stud-
ied in the past, we would like to note that neither the
objective-based uncertainty quantification (UQ) of uncer-
tain Kuramoto models nor OED strategies for reducing
the uncertainty present therein have been studied to date.
For the first time, we tackle the experimental design prob-
lem for an uncertain coupled-ODE system. Unlike previous
studies [4]–[6], [9]–[12], we do not assume experiments can
directly measure the unknown parameters. Instead, we con-
sider realistic experiments, whose outcomes may be used to
narrow down the range of the unknown parameters rather than
exactly estimating them, which may not be always possible
in real applications.

II. UNCERTAIN KURAMOTO MODEL
A. KURAMOTO MODEL OF INTERACTING OSCILLATORS
We consider the Kuramoto model:

θ̇i(t) = ωi +
N∑
j=1

ai,j sin(θj(t)− θi(t)), i = 1, · · · ,N , (1)

where θi = θi(t) is the phase of the i-th oscillator with
the intrinsic natural frequency ωi, ai,j(= aj,i) represents
the coupling strength constant between the i-th and the
j-th oscillators, and N is the total number of oscillators
in the model. The system (1) was first introduced by
Yoshiki Kuramoto in [1], [2] to describe the phenomena

of collective synchronization observed in the systems of
chemical and biological oscillators, in which an ensemble
of oscillators spontaneously locks to a common frequency,
despite the differences in the natural frequencies of the indi-
vidual oscillators. This model makes assumptions that (i) the
oscillators are all-to-all, weakly coupled and that (ii) the pair-
wise interaction between two oscillators depends sinusoidally
on their phase difference. From a mathematical point of view,
the model can be derived by employing the normal form
calculation and perturbation method for a system of globally
coupled differential equations with stable limits cycles, which
is discussed in great details in [2]. Such collective synchro-
nization phenomena have been observed and investigated
in various domains, where circadian rhythms [13], cortical
oscillations in neuroscience [14], [15], and synchronously
flashing fireflies [16] are well-known examples in biology.
There are also examples in engineering and physics, for
instance, arrays of lasers [17] and superconducting Josephson
junction arrays [18]. There have been extensive studies for
the Kuramoto model shown in (1), and we refer interested
readers to [19], [20] for excellent reviews addressing the
motivation, derivation, and applications of themodel.We also
refer to [21]–[23] and the references therein for other recent
theoretical developments.

It is worth noting that the analysis of Kuramoto models
in the past, especially their synchronization phenomena, has
beenmade based onmean-field coupling [11], [12]. Although
analytic solutions exist for conditions that guarantee the syn-
chronization of Kuramoto models, they only apply to spe-
cial cases, such as the homogeneous case when all pairwise
coupling strength parameters ai,j are uniform. In our work,
we do not constrain our model to such cases, and ai,j can
take arbitrary values that are different for different oscillator
pairs (i, j). For example, we may even have ai,j = 0 for
some pairs (i, j), such that the interaction graph underlying
the Kuramoto model may not be fully connected.

B. UNCERTAINTY CLASS OF KURAMOTO MODELS
For Kuramoto models, it is known that the underlying net-
work structure is closely related to synchronization, yet
the precise relation is not well understood. Especially we
consider the situation where the coupling strengths in the
network (1) are not fully known.

More precisely, we consider a set of N Kuramoto oscilla-
tors, where the natural frequency ωi is known for all oscil-
lators. However the interaction strength ai,j between the i-th
and the j-th oscillators is not known with certainty. Instead,
we assume that only a lower bound a`i,j and an upper bound
aui,j is known for ai,j. This gives rise to an uncertainty classA
of N interacting Kuramoto oscillators, where a = {ai,j}, 1 ≤
i < j ≤ N is an uncertain parameter vector. We assume that a
is uniformly distributed in A following the prior distribution
below:

p(a) =

{
c, if ai,j ∈ [a`i,j, a

u
i,j], ∀i, j

0, otherwise
(2)
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where

c =
N−1∏
i=1

N∏
j=i+1

1

(aui,j − a
`
i,j)
. (3)

C. QUANTIFYING THE OBJECTIVE COST OF UNCERTAINTY
When this uncertain Kuramoto model is initially non-
synchronous, can we bring it to synchronization via external
control, for example, by connecting an additional oscilla-
tor to the rest of the oscillators to catalyze the synchro-
nization? If so, how can it be done optimally? Suppose
we want to ensure the frequency synchronization of the
N interacting Kuramoto oscillators with uncertain interaction
strength a ∈ A by adding an additional oscillator which inter-
acts with the N oscillators in the original system. Here the
Kuramoto oscillator ensemble ϑ(t) := (θ1(t), · · · , θN (t)) is
said to achieve the frequency synchronization asymptotically
if it locks to a common frequency such that

lim
t→∞
|θ̇i(t)− θ̇j(t)| = 0 for all 1 ≤ i, j ≤ N . (4)

We assume that the (N + 1)-th oscillator added to the
original system for control (i.e., to achieve frequency syn-
chronization) has a known natural frequency ωN+1 and that
its interaction strength with the i-th oscillator (part of the
original system) is uniform ai,N+1 = aN+1, ∀i = 1, · · · ,N .
By selecting a sufficiently large interaction strength aN+1,
we can enforce all N oscillators in the original system to
be synchronized with each other in terms of their oscillation
frequency (i.e., angular speed). With the introduction of the
additional oscillator, now we have

θ̇i(t) = ωi +
N∑
j=1

ai,j sin(θj(t)− θi(t))

+ aN+1 sin(θN+1(t)− θi(t)) (5)

for i = 1, · · · ,N . Although aN+1 → ∞ would guaran-
tee synchronization, our goal is to minimize the interaction
strength aN+1 as it affects the cost of control, a larger aN+1
resulting in a higher cost for synchronizing the oscillators in
the system.

For a given a, we define ξ (a) as the minimum value of
the interaction strength aN+1 that guarantees synchronization
of all oscillators. As aN+1 = ξ (a) would be optimal for a
specific a, we call it ξ (a) the optimal interaction strength.
In the presence of uncertainty, we are unable to identify ξ (a)
since a is unknown. Instead, we desire an optimal robust
interaction strength ξ∗(A) such that

ξ∗(A) = max
a∈A

ξ (a). (6)

Note that it is robust because aN+1 = ξ∗(A) guarantees
synchronization for any a ∈ A. It is optimal because it
is the smallest such value. As we can see from (6), aN+1
increases due to the uncertainty, which forces us to choose
a larger interaction strength than might be actually needed
for synchronization. The expected increase of this differential

cost can be measured by computing the expected value of the
cost increase

M (A) = Ea

[
ξ∗(A)− ξ (a)

]
, (7)

based on p(a), which governs the distribution of a within
the uncertainty class A. This average differential cost M (A)
is referred to as the mean objective cost of uncertainty
(MOCU) [3], and it quantifies the impact that the model
uncertainty has on the operational objective. When there are
two or more objectives, the definition of MOCU in (7) can be
further extended as shown in [24].

III. OPTIMAL EXPERIMENTAL DESIGN
Suppose wewant to perform additional experiments to reduce
the uncertainty class. In general, the outcome of an experi-
ment may reduce the uncertainty class, which may help us
predict a better robust controller—in this case, the (N + 1)-th
oscillator with a smaller interaction strength aN+1 = ξ∗(A)
that ensures the synchronization of all oscillators despite the
uncertainty in a. While the original oscillators do not neces-
sarily have to be non-synchronous, in such a case the cost
of controlling (synchronizing) the Kuramoto model would be
zero. To avoid such trivial cases, we assume in our examples
that the oscillators in the original model are non-synchronous.
A practical question arises naturally: among the possible
experiments, how can we select the optimal experiment?
We address this question in what follows.

A. EXPERIMENTAL DESIGN SPACE
We restrict our experimental design space to experiments that
test pairwise synchronization between oscillators. Suppose
we choose the oscillator pair (i, j) for our experiment, where
we initialize the angles to θi(0) = θj(0) and observe whether
the two oscillators will become eventually synchronized
in the absence of any influence from all other oscillators.
We define a binary random variable Bi,j for the experimental
outcome, whereBi,j = 1 corresponds to the eventual synchro-
nization of the oscillator pair, while Bi,j = 0 corresponds to
the opposite.

If the interaction strength ai,j between the oscillators i and j
were known, the outcome Bi,j would be known with certainty.
In fact, Theorem 1 below shows that the oscillator pair will
be synchronized if and only if |ωi−ωj| ≤ K , whereK =2 ai,j
in this case.
Theorem 1: Consider the Kuramoto model of two-

oscillators:

θ̇1(t) = ω1 +
K
2
sin(θ2(t)− θ1(t)),

θ̇2(t) = ω2 +
K
2
sin(θ1(t)− θ2(t)) (8)

with the initial angles θ1(0), θ2(0) ∈ [0, 2π ). Then, for any
solutions θ1 and θ2 to (8), there holds |θ̇1(t)− θ̇2(t)| → 0 as
t →∞ if and only if |ω1 − ω2| ≤ K.

Proof: First assume that |ω1 − ω2| ≤ K . By symmetry,
we may assume without loss of generality, that ω1 ≥ ω2 and
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that θ1(0) − θ2(0) ∈ [0, 2π ). By subtracting the equations
of (8), one has

2̇(t) = ω1 − ω2−K sin(2(t)) =: F(2(t)), (9)

where2(t) := θ1(t)−θ2(t). Since 0 ≤ ω1−ω2 ≤ K , there is
a number 2∗ ∈ [0, π/2] such that sin2∗ = (ω1 − ω2)/K ∈
[0, 1]. We can easily check that F ′(2∗) = −K cos2∗ ≤
0, indicating that 2∗ is a unique (mod 2π) stable critical
point of (9). This implies that 2(t) → 2∗ (mod 2π) as
t → ∞ unless 2(0) = π − 2∗, in turn 2̇(t) → 0. When
2(0) = π −2∗, which is an unstable critical point, we have
2(t) = π − 2∗ for all t ≥ 0. These prove our assertion.
On the other hand, if |ω1 − ω2| > K , one has from (9) that

|θ̇1(t)− θ̇2(t)| ≥ |ω1 − ω2|−K |sin(θ1(t)− θ2(t))|

≥ |ω1 − ω2|−K

> 0. (10)

This completes the proof. �
However, the uncertainty regarding ai,j renders Bi,j a ran-

dom variable whose outcome is unknown before performing
the pairwise synchronization experiment described above.
Suppose our experiment results in the eventual synchroniza-
tion of the two oscillators (Bi,j = 1). Based on Theorem 1,
the inequality |ωi − ωj| ≤2 ai,j must hold. This experimental
outcome allows us to update the lower bound of ai,j from a`i,j
to ã`i,j defined as

ã`i,j = max(
1
2
|ωi − ωj|, a`i,j). (11)

On the other hand, we have |ωi−ωj| >2 ai,j if the oscillators
do not get synchronized (Bi,j = 0), which allows us to update
the upper bound of ai,j from aui,j to ã

u
i,j given by

ãui,j = min(
1
2
|ωi − ωj|, aui,j). (12)

In either case, the pairwise experiment can potentially reduce
the uncertainty regarding ai,j, thereby shrinking the uncer-
tainty class A.

B. SELECTING THE OPTIMAL EXPERIMENT
Knowing that the aforementioned pairwise experiments can
potentially reduce the uncertainty class, how should we pri-
oritize the experiments to select the optimal one? TheMOCU
framework can be used to predict the optimal experiment that
is expected to maximally reduce the uncertainty [4]–[6], [9]
in such a way that minimizes the cost of uncertainty, namely,
the expected cost increase for controlling (i.e., synchronizing)
the N Kuramoto oscillators due to the uncertain interaction
strength.More specifically, for every experiment in the exper-
imental design space, we first compute the expected remain-
ing MOCU after performing the given experiment. Based on
these results, we can prioritize the experiments and select the
one that is expected tominimize theMOCU that remains after
carrying out the experiment.

For convenience, let us denote the uncertainty class A
reduced based on the experimental outcome Bi,j as A|Bi,j.

Then the expected remaining MOCU for the synchronization
experiment of the oscillator pair (i, j) can be computed by

R(i, j) = EBi,j
[
M (A|Bi,j)

]
=

∑
b∈{0,1}

Pr(Bi,j = b)M (A|Bi,j = b) (13)

Based on the prior p(a) in (2), we can compute the probabil-
ities for the possible experimental outcomes as follows

Pr(Bi,j = 1) =
aui,j − ãi,j

aui,j − a
`
i,j

, (14)

Pr(Bi,j = 0) =
ãi,j − a`i,j
aui,j − a

`
i,j

(15)

where we define

ãi,j = min
(
max

(
1
2
|ωi − ωj|, a`i,j

)
, aui,j

)
(16)

to ensure that ãi,j ∈ [a`i,j, a
u
i,j]. The optimal oscillator pair,

the outcome of whose pairwise synchronization experiment is
expected to most effectively improve the control performance
among the

(N
2

)
pairs can be predicted by

(i∗, j∗) = argmin
1≤i<j≤N

R(i, j). (17)

C. COMPUTATIONAL COMPLEXITY
While computing the entropy of an uncertain coupling
strength takes a fixed amount of time O(1), the computation
of MOCU in (7) requires solving the ordinary differential
equation in (1) multiple times to estimate the expectation
based on Monte Carlo sampling. As a result, the computa-
tional complexity of computing the MOCU defined in (7) is

O(TSN 2), (18)

where T , S, and N denote the final duration of time for solv-
ing the differential equation, the sample size (forMonte Carlo
sampling), and the number of oscillators in the Kuramoto
model, respectively. For practical values of these parameters,
please see Section IV. However, we would like to note that
the computation of MOCU does not take a large amount of
time in practice, since the main MOCU computation module
can be highly parallelized by taking advantage of modern
GPU programming. In fact, we implemented our code using
PyCUDA [25] and ran our simulations with Nvidia GTX
1080-Ti, which reduces the overall computational cost
by 1

n , where n = 57, 344 is the maximum number of CUDA
cores in the graphic card. This massive parallelization allows
us to reduce the computational cost significantly by increas-
ing the number of threads on the thread block. For instance,
the average runtime for the MOCU computation module was
about 2.87 seconds when N = 5, T = 4, and S = 20, 000.
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IV. SIMULATION RESULTS
In this section, we present numerical experiments to demon-
strate our proposed OED method described in Section III-C.
A classical fourth-order Runge-Kutta method is used to com-
pute the Kuramoto model in (1) for 0 ≤ t ≤ T for T = 5 with
time discretization 1t = 1/160. For the sake of simplicity,
the initial conditions are set to θi = 0, 1 ≤ i ≤ N .
As the system is regular enough, the Runge-Kutta solvers pro-
vide reasonably accurate numerical solutions. For instance,
the relative L2-error of a five-oscillator model (N = 5) is
10−10 ∼ 10−9 at t = T . Due to the immense uncertainty in
parameters, the sample size S for computing the expectation
in (7) should be sufficiently large (e.g. S ≥ 20, 000) to obtain
reliable experimental results. In this regard, massive com-
puting power is highly desired, and we adopt GPU parallel
computing, PyCUDA [25], using Nvidia GTX 1080-Ti.
As a paradigm example, we first implemented a

5-oscillator Kuramoto model. The following natural fre-
quencies were used for the experiment in Figure 1:
w1 = −2.5000,w2 = −0.6667,w3 = 1.1667,w4 =

2.0000,w5 = 5.8333. For the additional oscillator used for
control, we simply chose w6 = mean1≤i≤5wi. The upper and
lower bounds of interaction strength were chosen by

aui,j = 1.15 di,j

(
1
2
|wi − wj|

)
,

ali,j = 0.85 di,j

(
1
2
|wi − wj|

)

FIGURE 1. The model uncertainty decreases with sequential experimental
updates. The MOCU-based scheme is clearly the most efficient, quickly
reducing the uncertainty in fewer updates.

where di,j is a correction constant. If di,j ≡ 1 for all i, j,
the system is already synchronized in general as all entries of
the interaction strength ai,j are large enough. Hence, we intro-
duced the correction parameter di,j such that

di,j =

{
1, (i, j) ∈ I1,
d∗i,j, (i, j) ∈ I2,

where 0.3 ≤ d∗i,j ≤ 0.5, and I1 and I2 are partition of the
set of indices I = {(i, j) ∈ N : 1 ≤ i, j ≤ N , i < j}.
Here, the set I1, I2 and the corresponding quantity d∗i,j were
empirically determined. This results in a class of uncertain
Kuramoto models that are non-synchronous, fully connected,
but whose coupling strengths are uncertain.

To compare numerical results, we carried out a sequence
of experiments based on three different experiment selec-
tion strategies:MOCU-based, random selection, and entropy-
based. In the MOCU-based selection strategy, the pairwise
experiment with the smallest expected remaining MOCU
in (13) was chosen, and the corresponding entry of aui,j or
a`i,j was updated based on the experimental outcome. More
precisely, from the result of the pairwise experiment between
the i-th and the j-th oscillators, if the oscillators were syn-
chronized, then the lower bound a`i,j was updated to ãi,j
defined in (16). Otherwise, the upper bound aui,j was updated
to ãi,j. In the entropy-based approach, we selected the pair-
wise experiment with the largest value of aui,j − a`i,j, and
the corresponding entry of aui,j or a

`
i,j was updated based on

the outcome in the same fashion. In the random approach,
we randomly chose one of the

(N
2

)
possible experiments

and updated the corresponding entry of aui,j or a
`
i,j based

on the experimental outcome. Figure 1 shows that while
all three methods eventually reached the minimum attain-
able uncertainty level after exhausting all experiments, the
MOCU-based experiment selection strategy led to the most
efficient updates. Especially, it identified effective exper-
iments early on, nearly reaching the minimum attainable
uncertainty level in just 3 updates.

Next, we conducted numerical simulations with a larger
number of oscillators, N = 9, in which case the num-
ber of possible experiments increases to

(9
2

)
= 36.

We used the following natural frequencies: w1 = 1.19,
w2 = 3.23,w3 = 6.34,w4 = 7.48,w5 = 10.9,w6 =

11.62,w7 = 14.74,w8 = 29.58,w9 = 38.88. We set
the natural frequency of the additional oscillator to w10 =
1
2mean1≤i≤9wi. To start with a non-synchronized model,
we selected sufficiently large natural frequencies for w8 and
w9. The upper and lower bounds of the interaction strengths
were set to

aui,j = 1.03 di,j

(
1
2
|wi − wj|

)
,

ali,j = 0.97 di,j

(
1
2
|wi − wj|

)
where di,j is the correction parameter and that was empiri-
cally determined as in the previous example. Figure 2 shows
the simulation results, which clearly demonstrate that the
MOCU-based experimental design results in the most effi-
cient updates among all three methods. Here we considered
up to 18 updates (out of 36 experiments in total). As shown
in Figure 2, the MOCU-based OED was able to drastically
reduce uncertainty with a single update, and it reached the
minimum uncertainty level just in 9 updates.
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FIGURE 2. The model uncertainty decreases with sequential experimental
updates. The baseline shows the minimum attainable uncertainty after all
possible updates (36 experiments in total).

V. CONCLUDING REMARKS
As shown in our results, designing effective experiments
for complex uncertain systems requires quantifying the
state of our current knowledge of the system and mea-
suring the impact of the remaining uncertainty on the
operator performance. It is clear that we cannot expect
system-agnostic black-box optimization schemes to perform
well.
Furthermore, experiments that aim to enhance our knowledge
regarding parameters with the largest uncertainties do not
necessarily help, as they may not be pertinent to the operator
performance. Our work shows that the MOCU-based OED
framework can effectively prioritize the experiments in the
design space by quantifying the impact of their potential
outcomes on the operational goal using scientific knowledge
as in Theorem 1.

The proposed OED strategy can be immediately applied
to various scientific problems that utilize Kuramoto models
for studying synchronization phenomena in diverse fields.
For example, Kuramoto models have been widely used
for investigating brain network synchronization [26], [27]
and its relation to neurological disorders [28]. Different
brain regions may be represented by different oscillators
in a Kuramoto model, where the coupling strengths reflect
the underlying neuronal connectivity between regions. The
resulting Kuramoto model is well-known for its capability
to effectively capture oscillatory brain dynamics [26], [27].
The graph structure underlying the Kuramoto model and
the actual coupling strength may not be known with cer-
tainty and they may have to be estimated from neuroimaging
data [29], [30] or through experiments that combine imag-
ing techniques with noninvasive brain stimulation [31]. The
uncertain Kuramoto model may be used for various tasks,
including the prediction of a personalized structure–function
relationship [32] or therapeutic modulation of brain activity
for management of neurological disorders [28], [31].

Beyond the Kuramoto models, on which we focused in
this study, our MOCU-based OED strategy can be adapted

to a wide range of other uncertain systems that are described
by ordinary differential equations. For example, one may
apply the proposed OED scheme to the effective uncertainty
reduction in non-linear systems considered in [33]–[35].

An interesting direction for future research is to expand the
experimental design space to encompass experiments, whose
outcomes cannot be directly used to measure the uncertain
model parameters (as assumed in many past studies [4]–[6],
[9], [10]) or to reduce model uncertainty by leveraging math-
ematical theorems (as we have proposed in this work). In gen-
eral, we expect that taking a Bayesian approach would be
most effective for addressing this inverse problem [36]–[38],
and we are currently investigating strategies for Bayesian
inversion of experimental outcomes to effectively reduce the
objective model uncertainty.
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