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Abstract

In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have
diverse biological activities. Although both compounds were “discovered” more than seven decades ago, interest
into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and
anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the
current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and
heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in
the literature, and some of the synthetic biology techniques employed in this pursuit.
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Introduction
Bacterial strains are capable of producing many different
secondary metabolites, including anti-cancer and anti-
biotic drugs. Here, we discuss two such compounds that
are gaining interest due to their diverse biological activ-
ities, namely violacein and prodigiosin. Both of these
compounds are synthesized by Gram-negative hosts and
have been shown in studies from a wide berth of groups
to possess important biological activities, including as
potent antibiotics against multidrug resistant pathogens.
Although both compounds were “discovered” nearly a
century ago in the mid-20th century [1–3], their bio-
logical activities are still being studied to this day. How-
ever, one critical factor limiting research with either

compound is their cost, which range from $360 to $760
per milligram [4]. Within this review, therefore, discus-
sion will be given primarily to the biological activities of
these compounds, focusing on ecological and medical
considerations of both violacein and prodigiosin, as well
as current methods to over-produce these remarkable
compounds.

Violacein and Prodigiosin – Hydrophobic Bacterial
Chromogenic Pigments
Prodigiosin and violacein are both colorful secondary
metabolites, a trait that makes isolating and identify-
ing the bacterial strains that produce these com-
pounds in sufficient quantities easier. As shown in
Fig. 1, violacein is a purple-hued bacterial pigment.
The fact that this compound is produced by a range
of natural bacterial strains [5–8], including Chromo-
bacterium [9] and Janthinobacterium [10], and in a
wide-array of environmental locales, including the
deep seas [11], rivers [9, 12], agricultural and forest
soils [8, 13, 14], within polar and alpine glacial
regions [7, 15, 16], and even on the leaves of white
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clover [17] and the skin of amphibians [18], all sug-
gest the production of violacein should be relatively
advantageous for the host. However, the octanol-
water partitioning coefficient (Log POW) for violacein
is 3.34 [19, 20], classifying this compound as highly
hydrophobic and suggesting it is not readily secreted
by the host into the surrounding environment.
Similarly, prodigiosin is vibrant red in color (Fig. 1)

and is produced by a number of different Gram-negative
and Gram-positive bacterial strains, including Serratia
marcescens [21] and Streptomyces. As a compound, pro-
digiosin is a member of the prodiginines, a group of che-
micals with the same parent nucleus but differing side
groups. For this review, emphasis will be given primarily
to prodigiosin as this is the most extensively studied
compound within this group. When compared with
violacein, prodigiosin is even more hydrophobic, with a
Log POW of 5.16 [22].

Violacein and Prodigiosin as Antimicrobials
The antimicrobial activities of these two compounds
have been extensively studied (Tables 1 and 2), particu-
larly for violacein. It is historically recognized that very
few Gram-negative bacteria are susceptible to violacein,
data that is supported by independent groups in many
recent studies [3, 39–41, 58]. The fact that violacein has
been produced in recombinant strains of E. coli, as well
as in Salmonella typhimurium VNP20009, Enterobacter

aerogenes IAM1183 and Citrobacter freundii ACCC
05411, with no clear detriment to the growth or viability
of these strains [59–62] supports this further. However,
individual studies from some groups recently claim vio-
lacein exhibits low MIC or growth inhibitory activities
with Gram-negative strains [63–65]. Given the histor-
icity and wide range of reports suggesting otherwise, the
veracity of these studies needs to be demonstrated inde-
pendently by other research groups.
In contrast, the activity of violacein against many dif-

ferent Gram-positive bacterial strains (Table 1), includ-
ing Staphylococcus, Bacillus and Streptococcus [3, 40], is
well established. Despite this, its spectrum does not
extend to all Gram-positive strains. For instance, Entero-
coccus faecalis ATCC 29212 was not affected by the
addition of violacein [66], while Corynebacterium gluta-
micum ATCC 21850 was genetically engineered to
produce violacein [67]. It also exhibits antibiotic activ-
ities against Mycobacterium tuberculosis and M. smeg-
matis, which are acid-fast microbes, and the Gram-
variable Micrococcus luteus [7, 68].
Stemming from its recognized activities against Gram-

positive strains, many recent studies have evaluated the
use of violacein against antibiotic-resistant strains of S.
aureus [8, 41, 58, 66]. For instance, the minimal inhibi-
tory concentrations (MICs) for several S. aureus associ-
ated with Bovine Mastitis were between 6.25 and 25.00
μM violacein, even though these strains displayed

Fig. 1 Violacein and prodigiosin, showing the chemical structure and the colored phenotypes of the bacterial strains that produce
these compounds
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penicillin, ampicillin and/or intermediary erythromycin
resistance [58]. Moreover, violacein acted synergistically
with penicillin [58], an idea that was expanded on in an-
other study [64]. A separate study using methicillin-
resistant S. aureus (MRSA) reported MICs in basically
the same range, i.e., 7.5 to 30 μM [66], while research
from our group found a multidrug-resistant S. aureus
clinical isolate with resistance to seven different antibi-
otics was also susceptible to violacein [8]. In that study,
the MICs for both the clinical isolate and the non-
resistant type strain (S. aureus ATCC 25923) were iden-
tical (15 μM) while bactericidal effects against both were
seen when 30 μM or more violacein was employed [8].
This proved the antibacterial mechanism used by viola-
cein differs from that of the other antibiotics and also
that cross-resistance was not present.
For both compounds, their antimicrobial activities stem

in part due to their lipophilic natures. When introduced

into a bacterial culture, prodigiosin and violacein rapidly
insert into the membranes of the microbe and disrupt
their integrity, leading to ATP and protein leakage [22, 69,
70]. Interactions between violacein and bacterial mem-
branes were recently modeled [70], and suggested that this
compound does not embed very deeply within the lipid bi-
layer. The same study looked at the release of carboxyfluo-
rescein from large unilamellar vesicles (LUVs) prepared
using the lipids from three different bacteria, i.e., E. coli
ATCC 25922, B. subtilis PY79 and S. aureus ATCC
25923. They found, regardless of the strain, the LUVs
were equally susceptible [70], implying E. coli cellular
membranes are just as likely to be attacked by violacein
and that its inherent resistance to violacein stems from
the protective nature of the outer membrane, which ab-
sorbs this antibiotic and prevents its access to the cyto-
plasmic membrane. Recent work from our group studied
this further, but from a different perspective, by asking

Table 1 Prodigiosin’s antibiotic activity against microorganisms

Microbe Description Reference

Bacteria

Bacillus cereus [23]

Bacillus subtilis [24]

Enterobacter cloacae [25]

Escherichia coli [23, 25] [26]

Klebsiella aerogenes Human pathogen [25]

Pseudomonas aeruginosa Human pathogen [25]

Staphylococcus aureus Human pathogen [23, 25–27]

Streptococcus pyogenes Human pathogen [27]

Fungi

Batrachochytrium dendrobatidis Amphibian pathogen [28]

Batrachochytrium salamandrivorans Amphibian pathogen [28]

Botrytis cinerea Plant pathogen [29]

Fusarium oxysporum Plant pathogen [30]

Mucor irregularis Human pathogen [31]

Mycosphaerella fijiensis Plant pathogen [32]

Phytophthora infestans Plant pathogen [30]

Pythium myriotylum Plant pathogen [30]

Rhizoctonia solani Plant pathogen [30, 33]

Sclerotium rolfsii Plant pathogen [30]

Virus

HSV-1 Herpes [34]

Protozoa

Plasmodium falciparum Malaria [35, 36]

Trypanosoma cruzi Parasitic euglenoids [37]

Insect

Aedes aegypti Yellow fever mosquito [38]

Anopheles stephensi Malaria vector [38]
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how violacein acts as an antibiotic in nature if it is hydro-
phobic and remains embedded primarily within the mem-
brane of the strain that produced it. It was found C.
violaceum secretes violacein within membrane vesicles
(MVs) [20]. These vesicles bud off of the bacterium as it
grows and contained more violacein than proteins (mg/
mg), increasing the apparent water solubility of violacein.
Using S. aureus and a violacein-deficient vioA mutant, the
violacein-carrying MVs were proven to be bactericidal, al-
though a greater overall amount of violacein was required
to achieve the same killing efficiencies as crude purified
violacein. In contrast, MVs from the vioA mutant had no
impact on S. aureus viabilities, proving violacein was the
bactericidal factor responsible.

Table 2 Violacein’s antibiotic activity against microorganisms

Microbe Description Reference

Bacteria

Bacillus anthracis Anthrax [3]

Bacillus cereus [39]

Bacillus licheniformis [40]

Bacillus megaterium Plant pathogen [3, 40]

Bacillus mesentericus Potential probiotics [3]

Bacillus subtilis Common soil bacteria [3, 40]

Corynebacterium
diphtheriae

Diphtheria [3]

Neisseria meningitidis Meningococcal disease [3]

Pseudomonas
aeruginosa

Human pathogen [40, 41]

Staphylococcus aureus Human pathogen [3, 39–41]

Staphylococcus
epidermidis

[3, 39]

Staphylococcus
haemolyticus

Human pathogen [3]

Streptococcus
pneumoniae

Pneumonia [3]

Viridans streptococci [3]

Fungi

Aspergillus flavus [42]

Batrachochytrium
dendrobatidis

Amphibian chytrid fungus [18, 28, 43,
44]

Batrachochytrium
salamandrivorans

Amphibian chytrid fungus [28, 44]

Bipolaris leersia [45]

Botrytis cinerea Plant pathogen [45–47]

Candida albicans Yeast [42]

Candida tropicalis Yeast [42]

Colletotrichum
acutatum

Plant pathogen [47]

Colletotrichum
dematium

Plant pathogen [45]

Colletotrichum glycines Plant pathogen [46]

Colletotrichum
orbiculare

Plant pathogen, Affected by
deoxyviolacein

[46]

Cryptococcus gastricus [42]

Diaporthe nomurai [45]

Fusarium lateritium Plant pathogen [45]

Fusarium oxysporum Plant pathogen [42, 46]

Fusarium solani Plant pathogen [45]

Gibberella zeae Plant pathogen, Affected by
deoxyviolacein

[46]

Magnaporthe grisea Plant pathogen, Affected by
deoxyviolacein

[46]

Penicillium expansum Plant pathogen [42]

Phytophthora capsici Plant pathogen [46]

Table 2 Violacein’s antibiotic activity against microorganisms
(Continued)

Microbe Description Reference

Rhizoctonia solani Plant pathogen, Affected by
deoxyviolacein

[42, 46]

Rosellinia necatrix Plant pathogen [45]

Saccharomyces
cerevisiae

Yeast [3]

Sclerotinia sclerotiorum Plant pathogen [46]

Trichophyton rubrum Athlete's foot fungus [42]

Ustilaginoidea oryzae [46]

Verticillium dahliae Plant pathogen [46]

Virus

HSV-1 Herpes [48]

Poliovirus type 2 Poliomyelitis [48]

Simian rotavirus SA11 Rotavirus [48]

Nematode

Bursaphelenchus
xylophilus

Pine wilt nematode [49]

Caenorhabditis elegans [50, 51]

Protozoa

Acanthamoeba
castellanii

Amoeba [6]

Leishmania amazonensis Leishmaniasis parasite [52]

Plasmodium chabaudi Malaria [53]

Plasmodium falciparum Malaria [53, 54]

Rhynchomonas nasuta [6]

Tetrahymena sp. [6]

Trypanosoma brucei
gambiense

Human parasite [55]

Trypanosoma cruzi Human parasite [54]

Insect

Drosophila
melanogaster

Fruit flies [56]

Spodoptera litura Plant pest insects [57]
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A recent study also performed molecular dynamic
simulations with prodigiosin [71]. The authors found, in
contrast to violacein, prodigiosin embedded itself much
deeper within the membrane lipid bilayer, a finding that
helps explain why this compound is effective against
some Gram-negative strains as this would increase the
chances for prodigiosin to penetrate the outer mem-
brane and enter the cytoplasmic membrane. However, it
still remains to be seen if MVs are also used by
prodigiosin-producing strains to transport this antibiotic
to susceptible microbes.
In addition to membrane disruption, prodigiosin

apparently causes additional damage within the bacter-
ium, including the generation of reactive oxygen species
(ROS) [23, 72] and, based on the study by Darshan and
Manonmani (2016) [23], interacting with the bacterial
genomic DNA. This latter facet of its activities corrobo-
rates an earlier study where prodigiosin was shown to
cleave double-stranded DNA in vitro [73], an activity
that is mediated by oxidative radicals (i.e., ROS) and re-
quires the presence of a redox-active transition metal
since the addition of either catalase or EDTA inhibited
cleavage. Taken together, both studies suggest the ROS
production by prodigiosin and its interactions with
redox-active transition metals may act in concert in vivo
to cause DNA damage within the bacterial cell, although
this would benefit from further verification.

Prodigiosin and Violacein as Antifungals
In addition to their application towards bacterial patho-
gens, violacein (and its deoxyviolacein derivative) and
prodigiosin also work widely and effectively against
many pathogenic fungi (Tables 1 and 2). For violacein,
representative examples of fungi that are susceptible in-
clude the plant pathogen Rhizoctonia solani [42, 46] and
Batrachochytrium dendrobatidis [43, 44], a fungus that
is lethal to amphibians. In the latter case, the presence
of a violacein-producing bacterium, J. lividum, on the
skin of the black-backed salamander (Plethodon ciner-
eus) [44] or frog (Rana muscosa) [43] provided protec-
tion against B. dendrobatidis. Under these conditions,
this bacterium was clearly able to produce a significant
amount of violacein as the skin-associated concentra-
tions with the frogs averaged around 100 μM, which was
much higher than the 18 μM MIC needed to prevent
mortality and morbidity caused by B. dendrobatidis
based on the salamander study.
Although not studied as extensively, several reports

have also discussed prodigiosin and its activities against
different fungal species [30, 74–77]. Much like the two
studies mentioned above, one group even looked at the
ability of S. marcescens to protect Acris blanchardi
(Blanchard’s Cricket frog) from B. dendrobatidis infec-
tions, reporting a slight, yet significant, increase in

survival rates when compared against a pig mutant that
is unable to synthesize this compound [77]. Moreover,
although the mechanism of action is not fully under-
stood, detailed observation of S. marcescens invading
into fungus was reported recently [31]. In that study,
prodigiosin increased the membrane permeability of tar-
get cell, enabling S. marcescens to invade into F. oxy-
sporum. Given prodigiosin’s ability to damage the target
cell’s membrane was also suggested as a mechanism of
action against other bacterial cells [22], it would appear
this compound has similar properties against organisms
spanning different kingdoms.

Violacein and Prodigiosin as Nematicidal and
Anti-Protozoan Agents
A benefit of violacein and prodigiosin for the producing
bacteria is that it confers a survival advantage against
competitors and predators, providing selective advan-
tages against neighboring bacteria and an effective
defense and deterrent against bacterivores, such as
protozoa and nematodes (Tables 1 and 2).
Nematodes have caused detrimental disease to both

humans and agriculture worldwide. Pine wilt disease, a
serious epidemic that has devastated pine forests glo-
bally, especially in East Asia, is caused by the nematode
Bursaphelenchus xylophilus. This nematode, also called
pine wilt nematode, attacks the water transport system
of pine trees, causing them to wilt and die [78]. Expen-
sive nematicides have commonly been used to combat
pine wilt nematode with little success. Recently, a viola-
cein5'-O-glucoside derivative was constructed by ex-
pressing the glycosyltransferase (YjiC) from a Bacillus
sp. in E. coli along with the vioABCDE [49]. This novel
violacein derivative had increased water solubility and
was an effective treatment against the pine wood nema-
tode [49], suggesting its potential use in the future as an
anti-nematodal agent against pine wilt disease.
Violacein also negatively impacted the nematode gen-

etic model organism C. elegans. When fed on violacein-
producing Janthinobacterium, C. elegans displayed de-
velopmental arrest in early larval stages [50]. Similar de-
velopmental arrest and delay was seen when violacein
was expressed in E. coli OP50 [79] (Fig. 2), the normal
laboratory diet of C. elegans [50]. Consumption of this
compound induced the expression of several detoxifica-
tion genes regulated by the insulin-like signaling path-
way [80]. Interestingly, supplementation of unsaturated
fatty acids, especially oleate, alleviated the worm growth
and survival in violacein, whereas saturated fatty acids
had no effect [79]. In addition to highlighting the anti-
nematodal potential of violacein, studies in C. elegans
may help also elucidate if a conserved mechanism of
violacein-induced toxicity in metazoans exists. With the
extensive genetic and molecular tools available for C.
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elegans, exploring how unsaturated fatty acids are able
to mitigate violacein’s toxicity may provide a window
into this mechanism, and may also shed light on its ac-
tivities within cancer cells.

Anticancer Activities of Prodigiosin and Violacein
Another well-known characteristic of these two com-
pounds is their anti-tumor activities. Cancer is the sec-
ond leading cause of death globally [81], and although
recent therapeutics have been developed for some can-
cers, still it remains as devastating as ever. In the labora-
tory, prodigiosin has been reported to kill human cancer
cell lines by a process called programmed cell death or
apoptosis. Prodigiosin can induce apoptosis in haemato-
poietic cancer cells [82], human lung cancer cells [83], B
cells and T cells in chronic lymphocytic leukemia [84],
gastric cancer cells [85], multidrug resistant breast can-
cer cells [86], colorectal cancer cells [87] and glioblast-
oma multiforme cancer cells [88] (Table 3).
Despite the strong evidence that prodigiosin can

work against multiple types of cancer cells, how this
compound targets cancer cell death by apoptosis is
not yet clear. Prodigiosin can interact with and cleave
DNA [73, 92], supporting one possible mechanism of
cell death. Prodigiosin also facilitates proton and
chloride ion symport and can affect the acidification
of cellular compartments [94, 95], providing support
for an alternative mechanism of cancer cell apoptosis
[90]. Finally, prodigiosins also inhibit protein phos-
phatase activity in vitro [96, 97], suggesting another

possible mechanism of how this compound may in-
hibit cancer cell growth.
More recent studies have suggested that prodigiosin

causes cell death by affecting a cellular process called au-
tophagy. The process of autophagy causes an accumula-
tion of specific vesicles in the cell called
autophagosomes that can break down damaged organ-
elles or proteins [98]. Autophagy has also been a target

Fig. 2 Violacein stunts the growth and development of C. elegans. (A) Lawn of E. coli strain OP50 (left) and violacein-expressing OP50 (OP50-vio,
right). (B) Body length of worms grown on OP50 and OP50-vio from L1 larvae stage for 4 days. (C) Development of worms grown on OP50 and
OP50-vio. Day 1 image show L1 synchronized worms that has never been fed. Scale bar = 100 μm. Figure originally published in [79]

Table 3 List of cell lines evaluated with prodigiosin

Cell Line Description References

95-D Human highly metastatic lung cancer [89]

B-CLL Chronic lymphocytic leukemia [84]

DLD1 Colorectal cancer [87]

GLC4 Small cell lung cancer [83]

A549 Lung cancer [90]

HCT116 Colorectal cancer [87, 91]

SW480 Colorectal cancer [87, 91]

SW620 Colorectal cancer [87]

HGT-1 Gastric cancer [85]

HL-60 Haematopoietic cancer [73, 82]

Jurkat Haematopoietic cancer [82, 92]

U87MG Glioblastoma cancer [88]

GBM8401 Glioblastoma cancer [88]

MCF-7 Breast cancer [86, 92]

MDA-MB-231 Breast cancer [86, 93]

NSO Haematopoietic cancer [82]

Ramos Haematopoietic cancer [82]
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for cancer therapy [99], especially due to the fact that
this cellular process also regulates apoptosis in cancers
[100]. In a recent laboratory study, prodigiosin treatment
induced the death of glioblastoma cancer cells and re-
duced neurosphere growth, a marker associated with in-
creased death in glioblastoma patients [88]. The authors
further showed that apoptotic death of the glioblastoma
cells by prodigiosin treatment was due to increased au-
tophagy in the cancer cells. In another recent study,
colorectal cancer cells that were treated with the chem-
ical 5-fluorouracil, a common chemotherapy treatment
for colorectal cancer, showed increased apoptosis in the
presence of prodigiosin [91]. Interestingly, prodigiosin
impaired autophagic flux which actually promoted cell
death in the cancer cells in response to 5-fluorouracil.
Combination therapy, which uses two or more thera-

peutic agents as a cancer treatment, has become a main
strategy in cancer therapy in recent years [101]. The use
of prodigiosin in combination with other cancer therap-
ies is a promising strategy that is currently being ex-
plored. As mentioned previously, 5-fluorouracil in
combination with prodigiosin effectively killed colorectal
cancer cells by increasing apoptosis [91]. In addition, a
recent study showed that the combination of prodigiosin
and PU-H71, a candidate therapy for triple negative
breast cancer, induced apoptosis in a metastatic breast
cancer cell line killing many of the cancer cells [93].
These studies, as well as others, confirm that prodigiosin
promotes the killing of cancer cells in the laboratory and
demonstrate that it is an excellent candidate for cancer
therapy either as a combination therapy or singular
treatment. However, whether this activity can actually
translate to a treatment for cancer patients remains un-
known. Several phase I and phase II clinical studies with
various cancer patients have occurred with a prodigiosin
derivative called obatoclax [102–105], and the jury is still
out on whether prodigiosin is an effective therapy for
human cancer patients.
Similar with prodigiosin, violacein is also a promising

anti-tumor bacterial metabolite (Table 4). As with prodi-
giosin, violacein leads to mitochondrial dysfunction,
brought on by mitochondrial membrane hyperpolariza-
tion, in MRC-5 and HeLa cells [111]. It was also con-
firmed in RAS-mutated metastatic melanoma cell lines
that the autophagy process employed to resolve mito-
chondrial damage is impaired due to inhibition of AKT
and AXL [115]. Subsequent processes followed a general
apoptotic pathway leading to p38 MAP kinase phos-
phorylation, NFκB pathway activation, and activation of
caspases when treated with 1 μM of violacein in HL60
[113]. However, in TF1, which is known to have apop-
tosis resistance, the IC50 was still only 2 μM despite co-
treatment with inhibitors of pro-apoptotic caspases,
leading the authors to conclude that violacein induces

cell death via the activation of a non-canonical mechan-
ism of cell death [116]. Interestingly, an in vitro study
showed that violacein inhibits PKA and PKC activity
[117]. While the results do not exclude other possible
targets, and whether this leads to cancer cell death
in vivo awaits to be examined, it suggests PKA and PKC
could be a direct target of violacein.

Table 4 List of cell lines evaluated with violacein

Cell Line Description Ref

92.1 Uveal melanoma [106]

A549 Lung cancer [60, 107]

A431 Skin cancer [60]

Caco-2 Heterogeneous epithelial colorectal
adenocarcinoma

[108, 109]

CAL-27 Head and neck carcinoma cells [110]

CHO-K1 Chinese Hamster Ovary cells [111]

DLD1 Colorectal adenocarcinoma [109]

EAT Mouse Ehrlich ascites tumor [112]

FaDu Head and neck carcinoma cells [110]

FRhK-4 Fetal kidney [48]

HCT116 Colorectal adenocarcinoma [60, 109]

HeLa Hela cell, Cervix cancer [60, 111]

Hep2 Hela-derived [48]

HL60 Promyelocytic leukemia [113]

HN5 Head and neck squamous cell carcinoma cells [60]

HT29 Colorectal adenocarcinoma [60, 108]

K562 Lymphoma [113]

KM12 Colon cancer [114]

MA104 Monkey Kidney epithelial cells [48]

MCF7 Breast cancer [60, 107]

MOLT-4 Acute lymphoblastic leukemia [114]

MRC-5 Fetal lung fibroblast [111]

NCI-H460 Non-small-cell lung cancer [114]

OCM-1 Choroidal melanoma [106]

PC3 Prostate cnacer [60]

SALTO Head and neck carcinoma cells [110]

SCC-15 Head and neck carcinoma cells [110]

SKMEL-103 RAS-mutated metastatic melanoma [115]

SKMEL-28 RAS-mutated metastatic melanoma [115]

SW480 Colorectal adenocarcinoma [109]

TF1 Erythroleukemia [116]

U87 Glioblastoma [107]

U937 Chronic myelogenic leukemia [113]

V79 Chinese Hamster Fibroblast-like cell line from
lung tissue

[114]

Vero Monkey Kidney [48]
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This sequence of cell death mechanisms resulting from
mitochondrial damage brought on by violacein is due to
the profound threat to the energy metabolism of cells.
As a good indication of this, violacein has enhanced
anti-cancer activities against some cell lines in hypoxia,
such as HCT 116 (4.8-fold), HN5 (6.5-fold), HT29 (12.6-
fold), and MCF7 (4-fold) [60]. Moreover, violacein treat-
ment (1μM) led to the downregulated expression of che-
mokine/receptor CXCL12/CXCR4, which is important
for angiogenesis [118]. Since carcinoma development
without angiogenesis leads to hypoxic conditions, these
results suggest violacein may actually induce the condi-
tions within the tumor that increase its effectiveness as
an anticancer agent, as was reported in one study [119].
Other studies have confirmed that oral administration

of violacein contributes to NSAID-induced gastric dam-
age healing. This led to a decrease in inflammatory cyto-
kines, particularly TNF-α, and an increase in epidermal
growth factor (EGF), vascular endothelial growth factor
(VEGF) and hepatocyte growth factor (HGF) [120].
These appear to play an essential role in healing angio-
genesis and mucin secretion. In other words, violacein
administered orally plays a role in inhibiting inflamma-
tion, maintaining the balance of cytokines, while also
inhibiting apoptosis, angiogenesis, and promoting
healing.

Immunomodulatory Activities of Prodigiosin and
Violacein
Prodigiosin is also known to have immunosuppressive
effects. Specifically, this compound shows suppressive ef-
fects on T-cell proliferation, while having no effect in B-
cells [121]. Its mechanism of action is to inhibit expres-
sion of the interleukin-2 receptor α(IL-2Rα) chain, an
important contributor of T-cell activation [122]. In an-
other study, the authors developed a prodigiosin-
analogue molecule, PNU156804, which suppressed both
T-cell and B-cell activation [123]. This compound also
worked through inhibiting IL-2 dependent signaling, i.e.,
not by preventing IL-2Rα induction but rather by pre-
venting activation of AP-1 and NF-κB. Prodigiosin was
also synergistically active when administered with cyclo-
sporine A, each working through different pathways to
suppress T-cell activation [124], while another study
found it inhibited macrophage and NK killer cell activ-
ities and splenocyte proliferation [125]..
Violacein was also shown to have immunomodulatory

functions and inhibit inflammation. For instance, this
compound had antipyretic, analgesic, and immunomod-
ulatory reactions when orally administered to rats [126].
In ulcer rat models, violacein relieved inflammation of
the gastrointestinal tract, possibly working through the
COX-1 mediated pathways [120], while another study
reported that, when injected directly into the

intraperitoneal cavity, violacein can have immunomodu-
latory effects by regulating cytokine production: it down-
regulated the expression of IL-6 and TNF-α but induced
expression of IL-10 [127].
Some of the immunomodulatory mechanisms and

findings associated with violacein seem contradictory
with the cancer studies, however. Unlike the above study
that reported violacein inhibits TNF-α expression [127],
TNF-α expression was elevated in HL60, and TNF re-
ceptor 1 signaling was also activated when this cell line
was exposed to violacein [113]. It is also known to in-
crease the expression of TNF-α and upregulate the p53-
dependent mitochondrial pathway in MCF-7 [128], while
treatment with violacein also induced TNF-α expression
in Raw 264.7 and ANA-1 cells [129]. These differences
may be due to the experimental protocols, though, as
the above studies were performed in vitro, i.e., violacein
treatment directly into human or murine cell cultures
[128, 129], rather than in vivo, i.e., the oral administra-
tion or injection of violacein into the digestive tract or
intraperitoneal cavity [120, 126, 127]. In other words,
vastly different results may result depending on the
method of administration and the type of cells, but all of
the above studies confirmed that violacein has immuno-
modulatory aspects.

Bioproduction - Measurement of Prodigiosin and
Violacein – Spectrophotometry vs. HPLC
The classical method for prodigiosin extraction from the
bacterial host and culture is to use acidified ethanol (4%
1M HCl v/v) to prevent the rapid decomposition of this
molecule when above pH 5. The impurities present in
the extracted prodigiosin are then removed using a solv-
ent such as dichloromethane or n-hexane:chloroform
and the final product purified through chromatography
[130–132].
The simplest way to measure the extracted prodigiosin

is to use a spectrophotometer using an absorption wave-
length of 530-540 nm and convert this to the concentra-
tion using an extinction coefficient (ε) and the Beer–
Lambert law. However, this is not without issue as the
value of ε varies from study to study. Traditionally, the
value of ε535 is 0.159 L/mg-cm [133]. The most detailed
study on the extinction coefficient of prodigiosin is
Domröse et al. (2015) [130], where ε535 was calculated
to be 0.4322 L/mg-cm in acidified ethanol, a value that
was confirmed through quantitative 1H-NMR. This
value is near identical with that reported by another
group, i.e., ε535 = 0.4311 L/mg-cm [134]. Consequently,
due to the difference in the extinction coefficients, the
prodigiosin concentration using the classical ε value will
be over-estimated by 270%.
Similarly, violacein has often been quantified using a

spectrophotometer and its absorbance peaks at 575-
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590nm [8, 135–137]. However, because of differences in
reported ε between research groups, the yields claimed
in the literature are inconsistent. For example, the ε
values for violacein include, from lowest to highest, ε570
= 10.955 L/g-cm in ethanol [138], ε = 29.700 L/g-cm
[137], ε565 = 31.3 L/g-cm in acetone-water [139], ε570
= 46 L/g-cm in ethanol [67], ε575 = 56.010 L/g-cm in
ethanol [135] and ε575 = 74.3 L/g-cm in ethanol [140].
This disparity was raised in the study by Rodrigues et al.
(2013) [140] and in previous reviews [141, 142], poten-
tially inflating the violacein yields by as much as 670%.
To address this issue, Rodrigues et al. (2013) [140]

elected to quantify violacein through HPLC [140], a
protocol that has been successfully applied within several
of our own studies [20, 143, 144]. At present, similar
protocols have not been applied to quantify prodigiosin
and HPLC may consolidate the yields in the literature,
an idea that should be evaluated further. However, given
the wide-spread problems raised by this issue, the con-
centrations of these two compounds reportedly pro-
duced in the literature will not be discussed, but rather
the qualitative results of the studies.

Production by Natural Isolates
As discussed above, a wide-range of natural bacterial
strains are capable of synthesizing violacein and prodi-
giosin. It should come as no surprise, therefore, that re-
searchers have sought out a variety of strains for the lab
scale production and application of these two com-
pounds. For instance, S. marcescens FZSF02 was isolated
from the soil in the region of Fuzhou, China, and is cap-
able of producing prodigiosin in sufficient quantities that
it reportedly pellets out of solution [145]. Another nat-
ural strain, S. marcescens MO-1 was isolated from a
grasshopper [146] while S. marcescens UCP1459 and S.
marcescens UTM1 were isolated from semi-arid soil in
Brazil and an oxidation pond in Malaysia, respectively
[147, 148]. A related bacterium, S. rubidaea, also pro-
duced prodigiosin and was initially isolated from a
spoiled coconut, where it was discovered since it chan-
ged the color of the inside of the coconut, making it
pink [149].
Similarly, violacein production has been studied in dif-

ferent natural strains. For instance, production of this
compound in C. violaceum CCT 3496 was increased
around 2.5-fold when tryptone and yeast extract were
added, but the yields dropped with glucose [135]. In a
separate study, optimization in Duganella sp. B2 found
tryptophan, beef extract, and potassium nitrate were all
major factors impacting violacein yields [138] while in
Massilia sp. EP15224, an isolate known to be closely re-
lated to Duganella sp., the MM2 broth used to cultivate
this strain was improved by adjusting the amount of

phosphate, leading to faster production rates and slightly
better final violacein yields [150].
Some violacein-producing bacteria are also psychro-

trophic, such as strain RT102, which is related with J.
lividum, reported by Nakmura et al (2003) [40]. The au-
thors found that the conditions leading to optimum pro-
duction levels were a slightly acid pH of 6, the growth
temperature set to 20°C and with 1 mg/L of dissolved
oxygen. Although not as psychrophilic as RT102, J. livi-
dum was also successfully used to produce violacein, al-
beit at 25 °C and a pH of 7.0 [65]. Notably, in this study,
the addition of 0.2 mg/mL of the antibiotic of silver
ampicillin improved the yields by a factor of 1.3 while
glycerol was used as a carbon source, a choice the au-
thors claimed improves the violacein production relative
to the cell mass.
The idea of using ampicillin and glycerol to increase

violacein yields was actually reported more than a dec-
ade earlier in the study by Pantanella et al (2007), where
glycerol enhanced violacein production levels by ap-
proximately 12-fold, while ampicillin led to an estimated
3-fold increase [136]. These factors, unfortunately, were
not additive when used together – the maximum level
with glycerol with or without ampicillin were basically
identical.
The use of more natural feed stocks was also consid-

ered, as in the case with C. violaceum UTM5 where agri-
cultural wastes were used [151], or in a separate study
where liquid pineapple waste was used as the carbon
source along with addition of L-tryptophan [41]. How-
ever, as noted above, since these papers do not provide
the extinction coefficient and did not use HPLC tech-
niques when quantifying their yields, it is difficult to dir-
ectly compare their results with other studies.

Random Mutations to Enhance Prodigiosin
Production
One strategy used by researchers to enhance produc-
tion of prodigiosin is to generate random mutations
within the genome of the natural host, typically with ra-
diation. Since prodigiosin is a red pigment, screening is
a simple and quick method for researchers to identify
those colonies that overproduce this compound based
on their color intensity. This was successfully used by
one group with microwave irradiation to increase the
prodigiosin yields from S. marcescens jx1 by just over
two-fold [26], while a separate group used gamma ir-
radiation [152]. In the latter study, the authors varied
more than just the radiation dose and rate, including
the pH and inoculum size, to identify conditions that
optimize for prodigiosin production. However, as in the
microwave radiation study, the yields were only im-
proved by about 2-fold.
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Heterogeneous Expression and Metabolic
Pathway Engineering to Increase Prodigiosin and
Violacein Yields
The above yields, although definitely improved, are
not very significant and highlight potential limitations
linked with random mutation studies, namely that im-
provements may not be very substantial, particularly
when they involve complex metabolic pathways
encoded in multiple genes such as those involved in
prodigiosin biosynthesis. As such, researchers have
often sought to clone and express the genes in other
hosts where the metabolic and biosynthetic pathways
can be engineered.
The prodigiosin gene cluster (pig) includes many

genes, pigA to pigN, but may vary in gene order as well
as include some auxiliary genes depending on the bac-
terial host [153, 154]. During the mid-20th century,
studies in prodigiosin biosynthesis focused on related
molecular components and constructing the pathway
[21, 155–157], including the role of quorum sensing
mechanisms [158–161], while recent studies have pro-
vided a more detailed understanding of the biosynthetic
pathways involved [153, 154]. Violacein research has
followed a similar path, with the biosynthetic pathway
first mapped in 1991 [162] and the roles of the individ-
ual genes and enzymes characterized further in the early
2000’s [163, 164]. In addition, during the same period
many articles, were published discussing the roles of
quorum sensing in the production of this metabolite
[165–167]. This led to the eventual development and ap-
plication of C. violaceum CV026 as a quorum-sensing
reporter strain, as it visually responded to the presence
of acyl homoserine lactones (AHLs) with the production
or inhibition of violacein synthesis [166, 168, 169]. Re-
cently, this strain was reclassified as C. subtsugae [170].
As the last two decades have seen sequencing tech-

niques and comparative genome analyses dramatically
improve, a new era of prodigiosin and violacein produc-
tion has opened. Gene clusters related with prodigiosin
production were sequenced, analyzed and compared
among different species and subspecies [171, 172], as
have the genomes of numerous violacein-producing bac-
teria [173–175], particularly by Dr. Brooke Jude at Bard
University who, in the last couple of years, has published
several genomes [176–179]. Of particular note, one of
the Janthinobacter sp. sequenced by her group actually
lacked the genes for violacein but carried the pig gene
cluster, allowing it to produce prodigiosin [180]. They
concluded that, since this strain was isolated from the
region where other violacein-producing strains were also
located, including other Janthinobacter sp., the produc-
tion of prodigiosin by this strain may represent a com-
bined effort by the two groups to combat other bacterial
species.

All of this information will aid researchers in further
efforts to clone and express the genes required in
other bacterial strains. This is not to say that this has
not been done already, as a few groups reported the
heterogeneous production of prodigiosin [130, 181],
one as far back as 1984 [182]. However, only one study
truly sought to use the new host, in this case Pseudo-
monas putida KT2440, as a platform for the produc-
tion of this compound [130]. In their study, the
authors introduced the pig cluster randomly into the
genome of P. putida using a plasmid bearing a trans-
poson and screened the resulting clones for prodigio-
sin production, looking for insertions where the
cluster was expressed by a strong promoter. Using this
method, they were able to increase prodigiosin pro-
duction on agar plates by approximately five-fold over
the original S. marcescens and as much as 94 mg/L,
based on their quantification methods, in liquid
cultures.
In contrast, the expression of violacein in other

bacterial hosts is widespread, with the vioABCDE genes
cloned and expressed within many plasmids and bacter-
ial hosts. Some examples of this include Citrobacter
freundii [61, 62], Klebsiella aerogenes (formerly Entero-
bacter aerogenes) [62] and E. coli [62, 140, 162, 183–
185]. Other studies have sought to improve on the viola-
cein yields through synthetic biology, often with E. coli
as the host [54, 186], albeit not always for purification,
as illustrated in two recent studies where its expression
was used as a bioreporter [187, 188]. One prime example
where synthetic biology was employed to improve viola-
cein production is the study by Jeshek et al. (2016)
where they introduced the Reduced Libraries algorithm
[189]. These used this system to design smart combina-
torial libraries for pathway optimization based on the
ribosomal binding sites and, in this case, focused on in-
creasing violacein production while minimizing that of
deoxyviolacein. A second group used a different ap-
proach and elected to express each gene independently
by their own promoter [59]. By controlling the strengths
of each individual promoter, and using a combinatorial
assembly of the genes, they were able to increase the vio-
lacein titers by more than 60-fold over the control,
where each gene was expressed under the T7 promoter.
In addition to E. coli, other hosts have been used for the
heterogeneous production of violacein, including yeasts
[190, 191]. One such study used Yarrowia lipolytica, an
oleaginous yeast, as the host, where the vio genes were
expressed using three different promoters and assembled
using the Golden Gate assembly method to build com-
binatorial pathway libraries [191]. From this, three yeast
strains, each producing a different chromogenic com-
pound, i.e., violacein, deoxyviolacein and proviolacein,
were constructed.
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Conclusions
This review presented many biological traits of both pro-
digiosin and violacein reported in the recent and current
literature. Fig. 3 is a plot showing the number of peer-
reviewed articles listed in the National Center for Bio-
technology Information’s PubMed website [192] for each
year, providing visual evidence of the growing interest
into these two compounds and their activities. Although
the numbers may not be as great as some other hot-
topics, the data makes it clear that many research groups
continue to study and explore the biological activities of
these two compounds and different methods for produ-
cing them in greater quantities. As this field continues
to expand and mature, other derivatives of violacein and
prodigiosin are expected to move towards clinical trials
as antimicrobials and for the treatment of human dis-
eases, including cancer, as was noted above for obato-
clax. This will be supported in no small part by synthetic
biologists and chemical engineers who are currently de-
veloping novel and more efficient protocols and strains
to increase the productivity and yields of these two sec-
ondary metabolites, a trend that is also expected to re-
duce the costs of these compounds, which at present are
too high for conventional medical research.
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