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SUMMARY
Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant
felid species, that went extinct at the end of the Pleistocene [1–4]. They possessed large, saber-form serrated
canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key charac-
teristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested
that it was a highly divergent sister lineage to all extant cat species [6–8]. However, mitochondrial phylog-
enies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns
[10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies
have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we gener-
ated a�7x nuclear genome and a�38x exome fromH. latidens using shotgun and target-capture sequencing
approaches. Phylogenetic analyses reveal Homotherium as highly divergent (�22.5 Ma) from living cat spe-
cies, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive se-
lection in several genes, including those involved in vision, cognitive function, and energy consumption, pu-
tatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we
uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abun-
dant than the limited fossil record suggests [3, 4, 11–14]. Our findings complement and extend previous in-
ferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolu-
tion and ecology of this remarkable lineage.
RESULTS AND DISCUSSION

Weuseda combination of shotgun andwhole genomeand exome

target-capture Illumina sequencing to generate the nuclear

genome of a single Homotherium latidens individual to a depth
5018 Current Biology 30, 5018–5025, December 21, 2020 ª 2020 Th
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of �7x coverage, and its exome to �38x coverage. The genome

was sequenced from a fossil humerus (specimen YG 439.38),

which was determined to be older than the limits of radiocarbon

dating (>47.5 kya [UCIAMS-142835]), recovered fromPleistocene

permafrost sediments nearDawsonCity, Yukon Territory, Canada
e Authors. Published by Elsevier Inc.
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[8]. This nuclear dataset represents a large increase in the number

of independent genetic loci available for analysis, each of which

has been uniquely passed down overmany generations of lineage

sorting, drift, selection, and recombination. By investigating such

a large number of independent loci, we are able to better under-

stand the Homotherium lineage and make broad evolutionary in-

ferences that are not possible with datasets comprising a more

limited number of markers. Therefore, we refer to the genus

without mentioning the species name throughout the manuscript

when results can be interpreted as representing the lineage

as a whole. After filtering for quality and mapping against the

lion (Panthera leo) nuclear genome [15] (NCBI accession:

JAAVKH000000000), we undertook phylogenomic analyses using

a supermatrix of the exonic data, as well as a combined tree con-

structed from multiple individual gene trees. The inferred topol-

ogies are consistent with those of previous studies based on

both fossil [2] and mitochondrial datasets [8] in which Homothe-

rium is a sister lineage to all extant cat species (Figures 1 and S1).

We next dated the divergence between Homotherium and the

extant cat species using MCMCTree [16] and four fossil calibra-

tions (see STAR Methods and Table S1). We found that Homo-

therium diverged from extant cat species �22.5 Ma (95%
credibility interval [CI] 17.4–27.8 Ma), close to the Oligocene/

Miocene boundary �23 Ma. This timing coincides with either

late Proailurus sp. or early Pseudaelurus sp. as potential ances-

tors [17]. Our inferred date is similar to the estimate of �20 Ma

(95% CI 18.2–22.0 Ma) that was previously determined based

on mitochondrial genomes [8]. This deep divergence confirms

that Homotherium belonged to a distinct clade from all living fe-

lids, providing support for Machairodontinae as a separate sub-

family from Felinae.

Still, the clear-cut phylogenetic relationships reported here

might not represent the full evolutionary relationship of Homo-

therium to living felids. Several recent genomic studies have

demonstrated that interspecific hybridization ismuchmore com-

mon than previously believed in several lineages within

Carnivora, including crown canids [18], hyenas [9], and extant

cats [10, 19, 20]. For this reason, we explored our dataset for ev-

idence of topological incongruencies that could arise due to

incomplete lineage sorting (ILS) or potentially indicate gene

flow. In regard to gene flow, Homotherium is of considerable in-

terest, as it once spanned from southern Africa, across Eurasia

and North America, to South America, arguably the largest

geographical range of all the saber-toothed cats
Current Biology 30, 5018–5025, December 21, 2020 5019
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Figure 1. Evolutionary Time-Tree of 17 Cats

and Two Hyenas

Tree topology inferred using both RAxML and

ASTRAL-II, with node ages estimated using a

Bayesian relaxed-clock analysis of concatenated

sequences of 21,034 exons (total length

29,216,712 bp) (Figure S1). A separate correlated-

rates relaxed clock was applied to each of the

three codon positions. Relative frequencies of the

three possible bipartitions (possible arrangements

of a quartet on an unrooted tree) are shown for the

internal branch containing Homotherium (branch

12) and the remaining nodes in Figure S2. Dashed

lines show the threshold value of one-third, shown

theoretically to be the minimum frequency for a

true bipartition. Relevant branch labels have been

given based on those in Figure S2. Blue horizontal

bars represent 95% credibility intervals of node

times. Blue circles indicate internal nodes with

fossil-based age constraints. A geological time-

scale is shown below the tree (Q. = Quaternary,

Pl. = Pliocene, Ps. = Pleistocene). Ages of key

nodes in the phylogeny can be found in Table S1.
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(Machairodontinae), although it is uncertain whether it occurred

in all those regions simultaneously [2–4, 14, 21]. In addition to

occupying a huge geographical distribution, it also colonized a

variety of different habitats, from densely vegetated Java to

open steppe-tundra across the Holarctic [13, 22]. Furthermore,

fossil evidence suggests that Homotherium succeeded in ex-

panding its distribution despite potential competition with other

sympatric large cats, including lions (Panthera leo and the

now-extinct cave lion P. spelaea), leopards (P. pardus) and the

now-extinct dirk-toothed cat Megantereon cultridens across

Eurasia and Africa, tigers (P. tigris) in Southeast Asia, and jaguars

(P. onca), American lions (P. atrox), and other now-extinct saber-

toothed cats (Smilodon spp.) in the Americas [2, 23].

To explorewhether gene flowmay have occurred betweenHo-

motherium and living cat species, we investigated conflicting

phylogenetic signals in our phylogenomic tree using ASTRAL-II

[24] and DiscoVista [25] (Figures 1 and S2). Although our results

reproduce some of the notorious cases of genealogical discor-

dance in other felids (e.g., the relationships among lion, jaguar,

and leopard [node 6]; or the relative placement of the Lynx and

Puma lineages [node 15]), gene-tree quartet frequencies of alter-

native topologies for the node separating Homotherium from all

other cat species were lower than would be expected (less than

one-third) if gene flow or ILS had played an important role in

this divergence (Figure 1). This implies no gene flow between

the lineage that our Homotherium sample represents and the

extant cat species, but does not exclude the possibility of unde-

tectable gene flowbetween the ancestor of all extant cat lineages

and theHomotherium lineage. Themost plausible explanation for

the inferred lack of gene flow is thedeepdivergence betweenHo-

motherium and extant cat species. The oldest signal of gene flow

wewouldbeable todetectwith thecurrent datasetwouldbeafter

the divergence of stem Felinae �14 Ma (Figure 1). This means

that any gene flow over an �8-million-year period between Ma-

chairodontinae and Felinae is undetectable. In contrast, the radi-

ation of the main lineages of modern cats occurred within a �5-

million-year period (Figure 1). This rapid radiation may have
5020 Current Biology 30, 5018–5025, December 21, 2020
allowed gene flow to occur between these lineages before they

became too genetically divergent from one another to produce

viable offspring [10]. Although alternative explanations could

apply to the apparent lack of gene flow, these aremuchmore un-

likely. One possibility is that Homotheriumwere simply unable to

interact with other cat species due to either eco-geographical

barriers, competitive exclusion, or low population density. The

former seems implausible given their above-described distribu-

tion and affinities to very different habitats. Competitive exclusion

also seems unlikely, as Homotherium fossils are found at the

same sites as Panthera, and they are likely contemporaneous

[23]. Low population density could be interpreted as more likely,

as the fossil record of Homotherium is considerably more frag-

mentary than those of other contemporary large cats, including

Smilodon and Panthera (especially lions), tentatively suggesting

that Homotherium occurred at lower population densities [3, 4,

11–14]. However, even at low densities, occasional contact

with sympatric species would not be precluded.

Another alternative explanation is that behavioral and/or other

ecological mechanisms may have prevented hybridization. An

example of this can be seen between extant lions and leopards.

Though they often occupy the same area, leopards are known

to actively avoid lions [26]. A similar behavioral and/or ecological

mechanismof avoidancemay have occurred betweenHomothe-

rium and other sympatric felids. To further add evidence to our

finding of a lack of gene flow, although archaic admixture be-

tween living mammalian species and unknown, unsampled line-

ages has been uncovered (e.g., humans [27], bonobos [28], and

dogs [18]), including signatures of introgression into leopards

from an extinct Felinae species closely related to Panthera [19],

no signs of archaic admixture between living cat species and

an unknown lineage as divergent asHomotherium have been de-

tected in previous studies.

This divergence thus leads to the question of what genetic ad-

aptations occurred as these lineages differentiated from one

another. To address the question of what genomic underpin-

nings made Homotherium unique, we performed a comparative



Figure 2. Depiction of 18 of the 31 Genes under Positive Selection with High Values (Free Ratio > 2) in the Homotherium Genome

Hypothetical functions and the adaptive insights that these provide on the species’ behavior, morphology, and functional adaptations are also shown. Additional

genes not depicted here are likely involved in cellular processes such as apoptosis, protein synthesis, and protein signaling, as well as immunity/cancer, olfaction,

and reproduction (Table S3). All genes showing significant signs of positive selection can be seen in Table S2.
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genomics analysis and uncovered signatures of positive selec-

tion in several protein-coding regions across its genome (Table

S2). We found evidence of positive selection (5 > dN/dS ratio >

1) in 230 genes out of the 2,191 assessed 1:1 orthologous loci.

Of these 230 genes, 31 were deemed to be highly significant (a

free ratio >2) and were further explored for putative functions

and phenotypic roles (Table S3). Several highly significant posi-

tively selected genes were consistent with a putative diurnal

behavior in Homotherium [5] (Figure 2). Strong positive selection

was detected in genes linked to vision (B3GALNT2, AGBL5,

CAPNS2, and SLC1A7) that have known phenotypes involving

retinal degeneration, retinitis pigmentosa, hydrolysis of natural

lens proteins, and visual processing, e.g., [29, 30]. We also found

evidence of positive selection in genes linked with entrainment

and the master regulation of circadian clock rhythm (SFPQ and

Per1) [31, 32]. Although not in the same genes specifically, pre-

vious studies have shown polymorphisms in circadian clock reg-

ulatory genes to be related to diurnal preference [33, 34],

strengthening the link between circadian genes and diurnal

behavior. While speculative, these results do provide some sup-

port toward the idea that Homotherium hunted during the day,

unlike many extant cat species, which are either crepuscular or

nocturnal [35]. This hypothesis is further supported by several

anatomical features of this species, including an enlarged optic

bulb and a large and complex visual cortex [5].
Signals of positive selection were also inferred in genes that

were plausibly involved in adaptations helping to increase endur-

ance for a cursorial hunting style in Homotherium. These include

genes with major influences on the respiratory system/hypoxia

(TMEM45A, which has been tied to the deprivation of oxygen

supply), the circulatory system (F5 and MMP12), angiogenesis

(ECSCR—involved in the formation of new blood vessels), adi-

pogenesis (TAF8—a positive adipogenesis regulator playing a vi-

tal role in energy homeostasis), the respiratory/circulatory sys-

tems (MMP12, with a role in aneurysm, a result of a weakened

blood vessel wall), and mitochondrial respiration (AK3, ISCU,

and SURF, with relevance in skeletal muscle and the myopathy

phenotype with severe exercise intolerance, e.g., [36] and the

biogenesis of the cytochrome c oxidase [COX] complex). Novel

adaptations in these genes may have enabled sustained running

necessary for hunting in more open habitats and the pursuit of

prey until their point of exhaustion. The synergistic interplay of

these various functional enhancements could have also been as-

sisted by improvements in bone mineralization (PGD). Improved

bone mineralization would have been invaluable to develop and

sustain a robust skeletal framework and powerful forelimbs

needed for a putatively cursorial hunting style. Furthermore,

although not the PGD gene specifically, two other genes playing

a role in bone development and repair (DMP1 and PTN) have

been found to be under positive selection in a number of
Current Biology 30, 5018–5025, December 21, 2020 5021



Figure 3. Autosome-wide Heterozygosity Estimates for Each Species Included in the Current Study

Variance was estimated by calculating the average heterozygosity for each scaffold independently. Colors represent the genus that each individual belongs to

(red: Homotherium; cyan: Acinonyx; green: Caracal; yellow: Felis; gray: Lynx; white: Neofelis; blue: Panthera; pink: Prionailurus). Exome-wide heterozygosity can

be seen in Figure S3.
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carnivore genomes (including several felid species) [37], sug-

gesting that robust bonesmay be key for adaptation to predatory

behavior. The signatures of selection in the above-mentioned

genes add additional evidence to a cursorial hunting style sug-

gested by post-cranial skeletal morphological data, including

less-retractable claws, which are thought to improve traction

during long-distance, medium-speed travel, similar to canids

or hyenas [23], along with a higher brachial index (radius to hu-

merus ratio) [2, 14, 38, 39].

Finally, although social behavior is very complex and therefore

difficult to directly link to certain genetic traits, we found evi-

dence of positive selection in genes that putatively play roles in

cognition/behavior (SCTR, which is linked to impaired synaptic

plasticity and social behavior [Mouse Genome Informatics—

MGI database—http://www.informatics.jax.org]) and the ner-

vous system (NTF3—influencing the nerve growth factor). We

speculate that these genes may have played a role in coordi-

nated social interactions that others have suggested were

required for Homotherium to successfully hunt large prey spe-

cies [13, 14], but additional data would be needed to support

this notion. Although our results do not provide definitive links

between genes under positive selection and their ecological

consequences, we provide the starting ground for functional

studies into the relationship between the genetics and ecology

of the extinct hypercarnivore Homotherium. We find a number

of positively selected genes whose known functions comple-

ment the paleontological data and represent the putative genetic

underpinnings for several unique adaptations of Homotherium

that appear to be closely linked to cursorial group-hunting stra-

tegies and diurnal behavior.

As mentioned above, the fossil record for Homotherium is

considerably more fragmentary than those of other contemporary
5022 Current Biology 30, 5018–5025, December 21, 2020
large cats, including Smilodon and Panthera (especially lions),

tentatively suggesting thatHomotherium occurred at lower popu-

lation densities [3, 4, 11–14]. This leads to the question of whether

the fragmentary fossil record of Homotherium truly reflects low

population densities or is a stochastic result based on the likeli-

hood of preservation due to their habitat or behavior. To examine

the relative abundance of Homotherium latidens compared with

extant cat species, we compared the genetic diversity (which is

correlatedwith the effective population size), in the formof hetero-

zygosity, from our Homotherium latidens genome to that of single

individual representatives from 15 extant cat species included in

this study. We used two different approaches (autosome-wide

and exome-wide) to estimate heterozygosity. To ensure compara-

bility between species when calculating heterozygosity, we only

considered transversions to remove biases that could occur due

to the much higher ancient DNA (aDNA) damage levels expected

in our Homotherium individual relative to the extant species. For

the autosome-wide heterozygosity estimates, to further ensure

comparability between results, we downsampled all individuals

to a comparable read depth to theHomotherium latidens genome

before estimating heterozygosity. As we performed exome cap-

tureonourHomotherium latidens individual and thereforehad rela-

tively high coverage, we did not perform any downsampling with

this dataset. We caution that our estimations are based on esti-

mates from single representatives of each species, and thus may

not hold true species-wide. However, it is striking that our Homo-

therium latidens genome exhibitsmedium to high levels of genetic

diversity, higher than that inferred for theotherbigcat species. This

inferenceheldtrueregardlessofwhetherautosome-wide (Figure3)

or exome-wide heterozygosity (Figure S3) was compared. Given

the relationship between genome-wide heterozygosity, effective

population size, and census size, this finding suggests that

http://www.informatics.jax.org


ll
OPEN ACCESSReport
Homotherium latidenswas relatively abundant in contrast to previ-

ously suggested low population densities based on low levels of

mitochondrial genetic diversity compared with other species of

large cats [8]. However, as this previous suggestion was purely

based on the single-locus mitochondrial genome from three indi-

viduals, the inference on diversity was limited.

Our finding of a putative high abundance in Homotherium lat-

idens is strengthened by Homotherium having had the largest

geographical range of all Machairodontinae, ranging from south-

ern Africa, across Eurasia and North America, to South America

[2–4, 14, 21]. Although genetic diversity often reflects population

size, the demography and life history traits of the population/spe-

cies can also play a role. One notable factor that may have re-

sulted in higher levels of genetic diversity in Homotherium occu-

pying the (sub)Arctic would be long-distance migration between

structured populations. In general, species (including cursorial

predators) dwelling in areas with dramatic seasonal variability

or low primary productivity (e.g., the [sub]Arctic) travel greater

distances than those in more stable and productive regions

[40]. Therefore, it may have been possible that Homotherium,

as a cursorial predator living in the less-productive (sub)Arctic re-

gion, moved across an enormous range, leading to increased

gene flow between distant populations. Regardless, the huge

geographical distribution of Homotherium, and the apparent

ability of the genus to colonize different habitats, suggests it

was a very successful taxon and fits our inference that it may

have been relatively abundant.

The apparent success of Homotherium leads to the question

of why the lineage was unable to survive to the present. Although

it cannot be known for certain, some of the exact adaptations/

specializations that led to Homotherium’s success could also

have led to its downfall. Toward the end of the Late Pleistocene,

a decrease in large prey availability may have causedmore direct

competition with other cat species that were likely more effective

at capturing the remaining smaller prey species. The specific ad-

aptations Homotherium had acquired would have suddenly

become less advantageous, leaving the lineage stuck on a

path to extinction.
Conclusions
The genome sequence of the scimitar-toothed cat, Homothe-

rium latidens, improves our understanding of its evolutionary

relationships with other extant cat species and into the ge-

netic underpinnings of its unique adaptations. Our results

demonstrate that Homotherium was highly divergent (�22.5

Ma) from all living cat species and did not undergo any

detectable gene flow with extant felid species after their initial

radiation �14 Ma. This placement supports the recognition of

Machairodontinae as a distinct subfamily within the Felidae.

Furthermore, we found evidence of positive selection in

several genes involved in vision, cognitive function, and en-

ergy consumption, potentially consistent with the diurnal

and hunting/social behavior of this extinct lineage. Finally,

we uncovered relatively high levels of genetic diversity in

our Homotherium latidens individual, suggesting that it was

not only a successful lineage, but also rather abundant rela-

tive to extant cat species. Our study shows how the fossil re-

cord and paleogenomics can be used synergistically to better
understand the evolution and ecology of extinct species that

lack extant close relatives for comparison.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological sample

Homotherium latidens This paper Yukon Government Palaeontology Program

Lion (Panthera leo) This paper Copenhagen Zoo

Sand cat (Felis margarita) This paper Leibniz Institute for Zoo and Wildlife Research

Fishing cat (Prionailurus viverrinus) This paper Leibniz Institute for Zoo and Wildlife Research

Leopard cat (P. bengalensis) This paper Leibniz Institute for Zoo and Wildlife Research

Caracal (Caracal caracal) This paper Copenhagen Zoo

Chemicals, Peptides, and Recombinant Proteins

AccuPrim Pfx DNA Polymerase Invitrogen Cat# 12344024

Phusion High-Fidelity DNA Polymerase New England Biolabs Cat# M0530S

KAPA HiFi HotStart polymerase Roche Cat# KK2801 07959052001

Critical Commercial Assays

NEBNext DNA Library Prep Master Mix Set New England Biolabs Cat# E6070

MinElute PCR Purification Kit QIAGEN Cat# 28006

QIAquick column system QIAGEN Cat# 28104

myBaits target enrichment kit Arbor Biosciences NA

Kingfisher blood DNA extraction kit Thermo Fisher Scientific Cat# 98010196

PCR-free Truseq Illumina library kit Illumina Cat# 20015962

Deposited data

Felis nigripes 99 Lives Cat Genome

Sequencing Initiative

NCBI SRA accession code: SRR2511865

Felis catus 99 Lives Cat Genome

Sequencing Initiative

NCBI SRA accession code: SRR2224864

Felis chaus [20] NCBI SRA accession code: SRR2062187

Felis margarita This study NCBI Bioproject accession code: PRJNA649575

Felis margarita [20] NCBI SRA accession code: SRR2062538

Prionailurus viverrinus This study NCBI Bioproject accession code: PRJNA649563

Prionailurus bengalensis NA NCBI SRA accession code: SRR2062628

Prionailurus bengalensis This study NCBI Bioproject accession code: PRJNA649572

Lynx pardinus [41] European nucleotide archive accession code: ERA562804

Acinonyx jubatus [42] NCBI SRA accession code: SRS1123638

Caracal caracal This study NCBI SRA sample accession code: SAMN15096300

Neofilis nebulosa [15] NCBI SRA sample accession code: SAMN14352199

Panthera tigris altaica [43] NCBI SRA accession code: SRR836311

Panthera tigris tigris [43] NCBI SRA accession code: SRR836354

Panthera uncia [43] NCBI SRA accession code: SRR836372

Panthera onca [19] NCBI SRA sample accession code: SAMN05907657

Panthera pardus [37] NCBI SRA accession code: SRR3041424

Panthera leo [43] NCBI SRA accession code: SRR836361

Panthera leo [43] NCBI SRA accession code: SRR836370

Hyaena hyaena [44] NCBI Bioproject accession code: PRJNA390068

Crocuta crocuta [9] NCBI Bioproject accession code: PRJNA554753

Homotherium latidens This study NCBI Bioproject accession code: PRJNA649760

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Illumina compatible adapters Illumina NA

Hybridization capture probes Arbor Biosciences NA

Software and Algorithms

PALEOMIX v1.2.5 [45] https://github.com/MikkelSchubert/paleomix

AdapterRemoval v2.0.0 [46] https://github.com/MikkelSchubert/adapterremoval

BWA v0.7.5a [47] http://bio-bwa.sourceforge.net/

Picard v2.18.0 NA https://broadinstitute.github.io/picard

GATK v3.8.0 [48] https://gatk.broadinstitute.org/hc/en-us

mapDamage v2.0.5 [49, 50] https://ginolhac.github.io/mapDamage/

vcf-tools v0.1.14 [51] https://vcftools.github.io/

bedtools v2.29.0 [52] https://github.com/arq5x/bedtools2

EMBOSS v6.6.0 [53] https://www.ebi.ac.uk/Tools/emboss/

OrthoMCL v2.0.9 [54] https://orthomcl.org/

RAxML v8.2.11 [55] https://sco.h-its.org/exelixis/software.html

ASTRAL-II [24] https://github.com/smirarab/ASTRAL

DiscoVista [25] https://github.com/esayyari/DiscoVista

PAML 4.5 [16, 56] http://evomics.org/resources/software/

molecular-evolution-software/paml/

Tracer [57] https://github.com/beast-dev/tracer/releases/latest

PRANK [58] https://www.ebi.ac.uk/research/goldman/software/prank

SAMtools v1.6 [59] http://samtools.sourceforge.net/

https://github.com/ANGSD/angsd
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ANGSD v0.921 [60]
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents and data may be directed to and will be fulfilled by the Lead Contact, Michael V West-

bury (m.westbury@sund.ku.dk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
NCBI accession codes for all newly generated raw fastq reads can be found in the key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fossil information
Specimen YG 439.38 was sampled from the collections of the Yukon Government Palaeontology Program housed in Whitehorse,

Yukon Territory, Canada, and was recovered from the placer gold mining site of Dominion Creek, near Dawson City, Yukon Territory.

Initially identified as a large felid humerus by GZ, it was later assigned based on morphology to Homotherium, the scimitar-toothed

cat. Here, we refer to our fossil material as H. latidens in accordance with the mitochondrial genomic data which suggested that all

late Pleistocene Holarctic Homotherium belonged to a single species [8].

Radiocarbon dating
A section of bone was delivered to Stafford Research LLC for radiocarbon dating. Briefly, samples of crushed bone were decalcified

andwashed, treated with 0.05 NNaOH overnight to remove humics, soaked in 0.1 NHCl, gelatinised at 60�C at pH 2, and ultrafiltered

at 30 kDa. Resultant collagen was then graphitised and run on an accelerator mass spectrometer according to standard protocol

[61, 62].
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METHOD DETAILS

Ancient DNA extraction, library preparation, and sequencing
Samples of cortical bone were taken from a long bone element (approx. 1 cm3) using a Dremel drill and reduced to powder in a Mik-

rodismembrator. DNA extraction was performed as described in Orlando et al. [63] in a dedicated ancient DNA laboratory in parallel

with negative extraction controls. DNA extracts and negative controls were built into genomic libraries using the NEB E6070 kit and a

slightly modified version of the protocol as used by Vilstrup et al. [64]. Briefly, the extract (30 ml) was end-repaired and passed through

a MinElute column. The collected flow-through was adaptor-ligated and passed through a QiaQuick column. Adaptor fill-in reaction

was performed on the flowthrough, before a final incubation at 37�C (30 min) followed by inactivation overnight at �20�C.
We amplified the resulting library in a 50 ml volume reaction, using 25 ml of library for 12 cycles under the following reaction

conditions. Final concentrations of reagents in the master mix were: 1.25 U AccuPrime Pfx DNA Polymerase (Invitrogen), 1x Accu-

Prime Pfx reaction mix (Invitrogen), 0.4 mg/mL BSA, 120 nM primer inPE, 120 nM of a multiplexing indexing primer containing a

unique 6-nucleotide index code (Illumina). PCR cycling conditions consisted of an initial denaturation step at 95�C for 2 min, followed

by 12 cycles of 95�C denaturation for 15 s, 60�C annealing for 30 s, and 68�C extension for 30 s and a final extension step at 68�C for

7 min. Amplified libraries were checked for the presence of DNA on a 2% Agarose gel before purification using the QIAquick column

system (QIAGEN) and quantification on an Agilent 2100 BioAnalyzer. Quantified libraries were communally pooled in equimolar ratios

and sequenced as 100 bp single-end reads on three lanes of an Illumina HiSeq2000 platform at the Danish National High-Throughput

Sequencing Centre and 100 bp paired-end reads on two lanes of Illumina Hiseq2000 at BGI Copenhagen.

Genome capture
Shotgun-sequenced libraries were assessed for endogenous content and the best libraries were taken forward for two sets of cap-

ture experiments. The first method used biotinylated RNA probes transcribed from fresh DNA extract derived frommodern lion tissue

in an attempt to capture the whole genome (whole genome capture/WGC). The second method used previously published lion

genomic data [43] to identify exon coding regions and create biotinylated RNA baits that covered these regions (exome capture).

Both types of baits were generated by Arbor Biosciences (Ann Arbor, MI, USA). Capture experiments using both sets of baits

were carried out using the myBaits target enrichment kit and following the instructions described in manual V3 (https://

arborbiosci.com/wp-content/uploads/2017/10/MYbaits-manual-v3.pdf) to enrich the ancient libraries for endogenous DNA. After

capture and cleanup, enriched libraries were re-amplified for further sequencing using either Phusion polymerase or KAPA HiFi Hot-

Start polymerase with primers IS5_reamp.P5 and IS6_reamp.P7 over 14 cycles [65]. Following quantification using a TapeStation

instrument, amplified captured libraries were sequenced on an Illumina Hiseq2000 platform. In total we sequenced 303,621,590 sin-

gle-end reads and 524,795,913 paired end reads.

Modern DNA extraction, library preparation, and sequencing
We extracted DNA from the sand cat (Felis margarita), fishing cat (Prionailurus viverrinus), leopard cat (P. bengalensis), and caracal

(Caracal caracal) on a KingFisher Duo Prime robot using the Kingfisher blood DNA extraction kit (Thermo Fisher Scientific) according

to the manufacturer’s instructions. The extracts were built into PCR-free Truseq Illumina sequencing libraries and sequenced on an

Illumina HiSeqX using 23 150 bp paired-end sequencing at the National Genomics Infrastructure (NGI) in Stockholm. The sand cat,

fishing cat, leopard cat, and caracal had 1,706,953,684, 992,351,075, 1,264,528,157, 1,596,359,637 raw paired-end reads

sequenced respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing pipeline
Post-sequencing read processing of Homotherium was performed using the PALEOMIX v1.2.5 pipeline [45]. Removal of

adaptor contamination and adaptor dimers, as well as trimming of low-quality bases (BaseQ < 5 or Ns) was accomplished with

AdapterRemoval v2.0.0 [46], while also removing reads shorter than 30 bp or with over 50 bp missing data. All retained reads

were mapped against the publicly available African lion reference genome [15] (NCBI Bioproject: PRJNA615082, NCBI Accession:

JAAVKH000000000) with BWA-MEM v0.7.5a and default parameters [47]. We used Picard v2.18.0 (http://broadinstitute.github.io/

picard/) to identify and filter PCR duplicates by the 5-prime end mapping coordinate. GATK v3.8.0 [48] was used to perform an inser-

tion/deletion (indel) realignment step to adjust for increased error rates at the ends of short reads in the presence of indels. In the

absence of a curated dataset of indels, this step relied on a set of indels identified in the specific sample being processed. DNA dam-

age patterns were assessed, and base quality scores were recalibrated using mapDamage v2.0.5 [49, 50]. Genotypes were called

with HaplotypeCaller from GATK v3.8. Data processing of the extant species followed the same pipeline with slight modifications: no

minimum read length cut-off or missing data cut-off was applied during the adaptor trimming step, and bases were not recalibrated

using mapDamage. These steps were removed as the data from the extant species was not highly fragmented and damaged as is

expected for ancient DNA. For the sand cat, fishing cat, leopard cat, and caracal 1,661,576,497, 966,303,222, 1,229,116,793,

1,563,010,218 unique reads successfully mapped to the reference nuclear genome respectively. 195,372,434 Homotherium latidens

unique reads successfully mapped to the nuclear genome and 14,900,381 successfully mapped to the exome.
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Extracting coding and protein sequences
To obtain the coding sequence (CDS) regions for each species, we ignored all indels and calculated a consensus genome sequence

using vcf-consensus from vcf-tools v0.1.14 [51]. Subsequently, since vcf-consensus assumes the reference sequence in the case of

missing data, we masked all regions in which depth was lower than 5x using maskFastaFromBed from bedtools v2.29.0 [52]. Finally,

we used the gene annotations (v2) from the reference African lion genome to extract the coding sequences from themasked genomic

sequence, and converted them to protein using transeq from EMBOSS v6.6.0 [53]. Afterward, orthologs were identified using the

OrthoMCL v2.0.9 pipeline [54] with a BLAST e-value cut-off of 10�5 and mcl inflation of 1.5, only retaining 1-1 orthologs for down-

stream analyses.

Phylogenetic analyses
Custom python scripts were used to construct a multiple sequence alignment of the genotypes for the CDS regions. To achieve this,

diploid genotypes were extracted from the aforementioned VCF file for every position in the African lion reference genomewith a CDS

annotation (v2 annotation). Genotypes passing filters (minimum genotype quality of 20, minimum read depth of 4) were used to

populate the multiple sequence alignments with IUPAC ambiguity codes, while genotypes not passing the filters were replaced

by the character ‘N’. Indel variants were ignored (replaced by ‘N’) such that the lengths of CDS regions were the same for every taxon.

Genotypes from antisense CDS regions were reverse-complemented such that the multiple sequence alignment for each gene con-

sisted of a concatenation of sense genotypes from all CDS regions.

For phylogenetic reconstruction, all of the aforementioned CDS alignments were concatenated into a supermatrix of

29,216,712 bp. Of these, 370,311 (1.3% of total) positions were completely undetermined. RAxML v8.2.11 [55] was used to perform

amaximum-likelihood phylogenetic analysis, with 100 bootstrap replicates (Figure S1). The dataset was partitioned such that a sepa-

rate GTR+G model was assigned to each of the three codon positions.

In addition to the phylogenetic tree estimated using the concatenated exon sequences, a separate phylogenetic tree was con-

structed for 13,164 genes, using the concatenated exon sequences for each gene. Similar to the supermatrix tree, a separate

GTR+G model was assigned for the three codon positions. Using these maximum-likelihood gene trees estimated using RAxML,

we inferred the species tree under the multispecies coalescent using ASTRAL-II [24]. Subsequently, we visualized the discor-

dance between the 13,164 gene trees and the species tree. At each node, the local posterior probabilities were computed

with ASTRAL-II [24], while the relative frequencies of the three possible bipartitions (possible arrangements of a quartet on

an unrooted tree) induced by each internal branch of the estimated species tree were computed and visualized using DiscoVista

v1.0 [25] (Figure S2).

Phylogenomic dating
We inferred the evolutionary timescale using a Bayesian phylogenomic dating analysis of the concatenated exon sequences

from 20 species (Table S1). The sequence data were analyzed using MCMCTree, part of the PAML package [16]. Rate variation

among lineages was modeled using a separate correlated-rates relaxed clock for each of the three codon positions. A uniform

prior was specified for the relative node times. To evaluate the robustness of our date estimates, we repeated the analysis using

an independent-rates relaxed clock model assigned to each codon position. We also varied the gamma prior on the mean sub-

stitution rate.

Approximate likelihood calculation was used to reduce computational expense [66]. Posterior distributions of node times were

obtained by Markov chain Monte Carlo sampling. Following a burn-in of 10 million steps, we drew samples every 5,000 steps

over a total of 100 million steps. To check for convergence to the stationary distribution, all analyses were carried out in duplicate.

Sufficient sampling was checked by inspection of the trace files in Tracer v1.7.1 [57].

The phylogenomic dating analysis was calibrated using age constraints (uniform priors) on four divergence events: (i) 29–35million

years for the Hyaenidae-Felidae split, based on the reasoning described by Barnett et al. [7]; (ii) minimum age of 3.8 million years for

the Neofelis-Panthera split, based on the oldest fossil of Panthera [2, 67]; (iii) minimum age of 1.5 million years for the split between

snow leopard and tiger, based on the oldest fossil of Panthera tigris [2]; and (iv) minimum age of 5.3 million years for the split between

Lynx and Prionailurus+Felis, based on the oldest fossil of Lynx [68].

Tests of positive selection
We constructed multiple sequence alignments of CDS sequences of 1-1 orthologs using PRANK, taking codon positions into

account and default parameters [58]. The CODEML module in PAML 4.5 [16, 56] was used to calculate the dN/dS ratio (u)

with the one-ratio and free-ratio models. We used the one-ratio model to estimate the general selection pressure with a single

dN/dS ratio across all branches. The free-ratio model was employed to investigate the dN/dS ratio of each branch. The branch-

site model was additionally used to further investigate potential positive selection. We specified Homotherium latidens as the

foreground species and Panthera leo, Panthera pardus, Panthera onca, Panthera tigris tigris, Panthera uncia, Neofelis nebulosa,

Acinonyx jubatus, Lynx pardinus, Felis catus, and Crocuta crocuta as background species and Hyaena hyaena as outgroup for

the tests. We assessed the statistical significance of the likelihood ratio with a 10% false discovery rate criterion (Table S2).

Genes with a free-ratio > 2 were considered as highly significant for signatures of positive selection (Table S3).
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Genetic diversity
To estimate the genetic diversity of our Homotherium latidens genome, we used two independent approaches to calculate

heterozygosity. These included the exome-wide heterozygosity, and autosome-wide heterozygosity. For comparative purposes,

we calculated the same metrics from single representatives from each of the 15 cat species included in our study.

To calculate the exome-wide heterozygosity, we first extracted only the coding regions from themapped bam files using SAMtools

v1.6 [59]. We ran the resultant exome only bam files through ANGSD v0.921 [60] for each individual independently, sampling allele

frequencies (-doSaf 1), taking genotype likelihoods into account using the GATK algorithm (-GL 2 and -domajorminor 1), and spec-

ifying the following parameters; only include sites with at least 5x read depth (-mininddepth 5), only include reads with a mapping

quality > 30 (-minmapq 30), only consider bases with a quality > 30 (-minq 30), only consider readsmapping to one location (-unique-

only 1), adjust quality scores around indels (-baq 2). Moreover, we only considered transversions (-notrans 1) for all species as aDNA

damage is known to cause C-T transitions (G-A on the reverse strand) which could artificially inflate the diversity estimates in the

Homotherium relative to the less damaged extant species. From this we calculated a folded SFS to recover the number of sites

that are either homozygous or heterozygous in each individual using the realSFS command as part of the ANGSD package, with

a tolerance of 1e-8. To calculate the variance of these results we included the -nSites parameter specifying 200kb windows of

covered bases.

Following this, we calculated the autosome-wide patterns of heterozygosity of the same individuals, excluding coding sequences.

Coding regions were removed from the mapped bam files using bedtools v2.26.0 intersect [52]. To make results comparable be-

tween individuals, and due to the relatively low coverage of our Homotherium latidens individual, we first calculated the average

read depth across the genome excluding coding regions of all individuals and downsampled all individuals to an average read depth

of �7.75x using SAMtools. To remove scaffolds putatively linked to sex chromosomes, we calculated the average read depth of the

downsampled bam files for each scaffold in two individuals known to be male (African lion, and cheetah). Scaffolds that had an

average read depth < 4.5x were deemed as candidates for originating from either the X or Y chromosome so were removed from

further analyses. This resulted in the cumulative removal of �50Mb from the downstream analyses. We used the same ANGSD pro-

tocol as for the exome but reduced the minimum read depth from 5x to 3x due to the much lower average read depth of the whole

genome data and restricted the analysis to scaffolds > 1MB. Furthermore, as opposed to the 200kb windows of covered bases, to

obtain the variance of heterozygosity across the autosomes, we calculated the heterozygosity for each scaffold independently.
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