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The extracellular matrix is a critical component of every human 
tissue. ECM not only functions as a structural component but 
also regulates a variety of cellular processes such as cell mig-
ration, differentiation, proliferation, and cell death. In addition, 
current studies suggest that ECM is critical for the pathophy-
siology of various human diseases. ECM is composed of di-
verse components including several proteins and polysaccha-
ride chains such as chondroitin sulfate, heparan sulfate, and 
hyaluronic acid. Each component of ECM exerts its own func-
tions in cellular and pathophysiological processes. One of the 
interesting recent findings is that ECM is involved in inflamma-
tory responses in various human tissues. In this review, we 
summarized the known functions of ECM in neuroinflamma-
tion after acute injury and chronic inflammatory diseases of 
the central nerve systems. [BMB Reports 2020; 53(10): 491-499]

INTRODUCTION

Neurons and glial cells in the central nervous system are tightly 
associated to each other, maintaining physiological homeostasis 
of the human body. In addition to the cell-cell interaction, the 
CNS is also composed of elaborated and complicated extra-
cellular matrixes (ECMs). Neural ECMs are radically different 
from those of other tissues. The interstitial ECMs are mainly com-
posed of a loose meshwork of hyaluronan, sulfated proteogly-
cans, and tenascins (1, 2). Perineuronal net (PNN) is a unique 
ECM structure surrounding the neuronal cell bodies and neurites 
to stabilize synaptic connections. PNN is also composed of 
hyalectans which are the meshwork of interconnected hyaluro-
nans and lecticans (aggrecan, brevican, neurocan, and versican) 
(Fig. 1, 2) (3, 4). Neurons and glial cells are both responsible for 
the production and formation of neuronal ECMs (5). The expres-

sion of neuronal ECMs are actively regulated during CNS 
development. The functions of neuronal ECMs in development 
and synaptogenesis are extensively studied (6), but the correla-
tions between neuronal ECMs and neuroinflammation are cur-
rently under intense research because they are not precisely 
understood. Upon the initial damage of CNS tissues by either 
traumatic injury or degenerative processes, the inflammatory 
responses in the CNS actively remodel the neuronal ECMs to 
prevent expansion of neuronal damage or to promote recovery 
of damaged tissue. These active changes in ECMs not only 
regulate transcription of genes involved in ECM production, 
but also modify existing ECM molecules by post translational 
modifications such as proteolytic cleavages, fragmentation, or 
release of GAG (glycosaminoglycan) residues from the core pro-
teins. These modifications may either improve the recovery of 
neuronal damage or may aggravate the inflammatory cycles, 
leading to chronic inflammation in the CNS.

In this review, we describe the structural composition of 
neural ECMs and the changes of neural ECMs initiated by 
damage to the CNS. Also, we summarize the inflammatory re-
actions regulated by the changes in neural ECMs.

EXTRACELLULAR MATRIXES IN CNS

Most of the ECMs in other tissues are mainly composed of 
fibrous proteins such as collagen, fibronectin, and laminin. In 
contrast, the major components of ECMs in the CNS are pro-
teoglycans, hyaluronan, and tenascins meshwork which are 
interconnected to each other (1, 2). The ECM in the CNS takes 
about 20% of the total volume (7) and there are mainly two 
different types (Fig. 1). 

Interstitial ECM is loosely distributed in the CNS and mainly 
composed of proteoglycans and hyaluronic acid with a small 
amount of fibrous matrix. The other specialized ECM in the 
brain is perineuronal net (PNN). Most neuronal cell bodies and 
neurites in the vicinity of the cell body are tightly associated 
and covered by PNN. PNN is believed to be more than mecha-
nical support for neurons; rather, PNN regulates synaptic plas-
ticity by stabilizing synaptic connections. PNN is also com-
posed of a large amount of hyaluronic and proteoglycans, mainly 
sulfated proteoglycans and a small amount of fibrous proteins 
(3, 4). In this review we will summarize the structures and 
functions of sulfated proteoglycans and hyaluronic acid in 
neuronal ECM.

BMB Rep. 2020; 53(10): 491-499
www.bmbreports.org

Invited Mini Review



Extracellular matrixes and neuroinflammation
Dong Gil Jang, et al.

492 BMB Reports http://bmbreports.org

Fig. 1. The extracellular matrices in central nervous systems. Interstitial ECM is loosely distributed in the CNS and neuronal cell bodies 
and are tightly associated and covered by PNN. Neural ECMs are mainly composed of proteoglycans and hyaluronic acid with a small amount 
of fibrous matrix.

Fig. 2. Hyalectan in neuronal ECMs. Neural ECMs are mainly composed of hyalectans which are the meshwork of interconnected hyaluro-
nans and chondroitin sulfate proteoglycans such as aggrecan, brevican, neurocan, and versican.

LECTICAN, THE SULFATED PROTEOGLYCAN IN 
NEURONAL ECMS

Lecticans are a class of chondroitin sulfate proteoglycan (CSPG) 
which share structural features and comprise major ECM net-
works in the CNS. All lecticans have a conserved binding site 
to hyaluronan in their N-terminus G1-domain, the central do-
main which the GAG chain is attached to, and a lectin-con-
taining G3 domain mediating the binding to glycoproteins such 
as tenascins (8, 9) (Fig. 3).

Although the entire lectican family of CSPGs shares struc-
tural similarity, lectican may exist as a variety of isoforms 
based on the chemical composition of GAG chains. The GAG 
chain is attached to the core proteins in the endoplasmic reti-
culum (ER) and Golgi compartment (10-13). The glycosylation 
of lectican proteoglycan is initiated by the addition of xylose 

residue to a serine in the central domain of lecticans. This re-
action is mediated by xylotransferase in ER (10, 11, 13). Next, 
two additional galactoses are sequentially added to the xylose 
in the Golgi compartment prior to the addition of GAG chains 
(14). The GAG chains in CSPGs are repeating disaccharide units 
composed of N-acetyl-D-galactosamine (GalNAc) and D-glucu-
ronic acid (GlcUA) (15). The length of a GAG chain is variable 
and more than 100 GalNAc-GlcUA disaccharide can be attached 
to the central domain of each lectican (15). 

Beside the diversity of the length of GAG chains in lecticans, 
more complexity is due to the sulfation of chondroitin disac-
charides. The modifications of chondroitin are mediated by 
sulfotransferase which adds sulfates on the specific carbons of 
either GalNAc or GlcUA (16). Based on the position of the sul-
fation, the CS chain is named CS-A (sulfation on C4 of GalNAc), 
CS-C (sulfation C6 of GalNAc), CS-D (sulfation on C6 of GalNAc 
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Fig. 3. Lectican family of chondroitin sulfate proteoglycan. Lecticans are a class of chondroitin sulfate proteoglycan (CSPG) including Aggre-
can, Versican, Neurocan, and Brevican. All lecticans have a G1-domain which is a conserved binding site to hyaluronan, the central GAG 
attachment domain, and a lectin-containing G3 domain mediating the binding to glycoproteins such as tenascins.

and C2 of GlcUA), or CS-E (sulfation on C4 and C6 of GalNAc). 
CS-A and CS-C are known to be the most prevalent forms of 
chondroitin sulfate in the GAG chains of neuronal lecticans.

The functions of CSPG may be very different based on their 
number, sulfation, and the core proteins in CNS development 
and function. The diverse roles of CSPGs in normal brain develop-
ment and functions are reviewed elsewhere.

AGGRECAN

Aggrecan is well-known as a major proteoglycan in cartilages 
(17). It functions to absorb pressure from mechanical loading. 
In the brain, aggrecan exerts different functions as it is predo-
minantly observed in the perineuronal net (PNN) around the 
neuronal bodies and dendrites (18, 19). Neurons and astrocytes 
express aggrecan (20), which is thought to function on the matu-
ration and stabilization of synaptic connections in the develo-
ping brain (19, 21).

As one of the major lecticans in the brain, aggrecan is 
connected to the hyaluronan via its N-terminus G1 domain, 
and its C-terminus binds to tenascin as a structural unit of 
neuronal ECMs (22). There are several suggested functions of 
aggrecan. Aggrecan secures high-rate synaptic transmission in 
PN-associated neurons (23), and protect neurons form the 
oxidative stress through scavenging redox-active cations (24).

VERSICAN

Versican is the second most dominant neuronal ECM. It is 
expressed by neurons, astrocytes, and oligodendrocytes (25-27). 
As with other lecticans, the structure of versican includes an 
N-terminus G1 domain, C-terminus G3 domain, and central 
GAG attachment sites. One of the unique properties of versi-

can is that it is expressed as four splicing variants by alter-
native splicing (28). The central GAG attachment domain is a 
major splicing site; versican-V0 has the largest GAG attachment 
sites while versican-V1 and V2 have shorter central domains. 
The central GAG glycosylation region is spliced out in Versi-
can-V3. The isoforms of versican are expressed in various tissues 
and Versican-V2 is predominantly expressed in the brain (29). 
Versican is involved in various cellular functions such as cell 
migration and inflammation. Especially, during an inflamma-
tory response, versican regulate leukocytes migration and infil-
tration by integrating with CD44 and Toll-like receptors (30).

BREVICAN 

Brevican is one of the CNS specific lecticans and is expressed 
in broad regions of the brain (31, 32). Both neurons and 
astrocytes express it (26). In addition to the secreted ECM 
components, brevican is also expressed in an alternative spli-
ced form which gives rise to the GPI linked form of proteo-
glycan. As a structural component of PNN, brevican seems to 
regulate neuronal plasticity. Brevican was suggested to be 
involved in CNS injury and Alzheimer's disease (33).

NEUROCAN

Neurocan is also a CNS specific lectican and is predominantly 
found in PNN (34, 35). Although the exact function of neuro-
can in brain function and development is still under research, 
a genetic association study has suggested that the neurocan 
gene is associated with human bipolar disorder and schizophrenia 
(36, 37). 
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LECTICANS AND NEUROINFLAMMATION

The functions of CSPGs in neuroinflammation are most well 
studied in acute injury and inflammatory responses of the CNS.

The immediate responses to an acute injury of the CNS is 
the activation of astrocytes (38). Activated astrocytes migrate to 
the injury site, secrete inflammatory factors, and remodel the 
neuronal ECMs to prevent the expansion of neuronal damage 
(39, 40). One of the major outcomes of the inflammatory re-
action mediated by activated astrocytes is to construct glial scars 
comprised of CSPGs. The glial scar functions as a barrier and 
isolates the damaged region from other tissues (41). This barrier 
protects neuronal tissues from further blood-driven inflamma-
tory factors such as fibrinogen TNF- and IL-1 (42). The com-
mon response of activated astrocytes and infiltrated leucocytes 
upon neuronal damage is increased expression of several 
CSPGs such as neurocan, versican, and brevican around the 
injury (43). In contrast, aggrecan expression was reported to be 
downregulated. The major signaling molecules modulating CSPG 
expression is thought to be TGF- molecules. Once TGF- mole-
cules leak out from the blood stream, they activate SMAD2 
phosphorylation. SMAD2 is known as a critical signal for 
proliferation and activation of astrocytes. In addition, activated 
SMAD2 induces CSPG expression from the astrocytes (43). 
Recent study showed that CSPG expression is differentially 
regulated by SMAD2 or SMAD3 such that neurocan expres-
sion requires both Smad2 and Smad3, whereas phosphacan 
and chondroitin synthase 1 expression is regulated by Smad2 
but not Smad3 (44). Other research, however, reported that 
TGF- induces expression of three different CSPGs by PI3K-Akt- 
mTOR signaling pathway, not by the canonical SMAD sig-
naling pathways (45).

Although the CSPG-mediated changes in ECMs protect the 
expansion of inflammatory signals from the injury site, increased 
expression of CSPGs inhibits the axonal regeneration by indu-
cing growth cone collapse (46). This inhibitory function of CSPGs 
suppresses the recovery from CNS damages. Furthermore, CSPGs 
inhibit NSPCs neural progenitor cell migration while, facilita-
ting differentiation of neural progenitor cells into astrocytes 
(47).

The length and sulfation pattern of GAG seem to have 
differential effects on the neuroinflammation. For example, CS- 
A and CS-B GAGs are more potent in promoting the release of 
inflammatory factors such as IL-1, IL-2, and IL-12 (48-50). In 
contrast to the proinflammatory function, aggrecan derived 
6-sulfated CS possesses protective functions from the neuro-
inflammation by suppressing of NF-B nuclear translocation 
which inhibits the infiltration of T-cells and activation of micro-
glial cells (51, 52). Also, Chondroitin 6-O-sulfate was reported 
to ameliorates CNS damages in experimental autoimmune en-
cephalomyelitis model (53). However, other research showed 
that liberated CS may increase proinflammatory cytokines. 

CSPGs also modulate chronic neuroinflammatory diseases 
such as Alzheimer’s disease (AD) and multiple sclerosis (MS) 

(54). CS-GAG was shown to promote the aggregation of A1– 
42 fibrils in vitro (55). Among CSPGs, chondroitin 4-sulfate, 
chondroitin 6-sulfate, and unsulfated chondroitin were immuno-
stained in senile plaques and neurofibrillary tangles in AD 
(56). One of the brain specific CSPGs, brevican, is shown to 
be found in smaller CS side chains (57). In addition, brevican 
binds to A1–42 fibrils (58). 

MS is an inflammatory auto-immune disease characterized 
by gradual loss of myelination in the CNS. Several lecticans 
such as neurocan, aggrecan, and versican are known to be 
upregulated around MS lesions (59, 60). CSPGs in the multiple 
sclerosis are known to facilitate the activity and migration of 
leucocytes the central nervous system (61). In addition, the 
polymorphism of the ChGN1 gene, encoding a critical glycosyl 
transferase for CS production, is shown to be associated with 
MS progression (62).

Despite conflicting observations on the functions of CSPGs, 
targeting CSPGs is a promising strategy to enhance neuronal 
regeneration around the lesion. One of the strategies to control 
CSPGs in a CNS lesion is to use chondroitinase-ABC (Ch-ABC), 
which is a bacterial enzyme that liberates CS-GAG from the 
CSPG core proteins. Treating Ch-ABC in a CNS lesion effici-
ently reduces the accumulation of CSPGs in the glial scar (63, 
64). Furthermore, Ch-ABC treatment promoted axonal regene-
ration in the CNS lesion and resulted in better recovery in 
mouse models of spinal cord injury (64, 65). Recent studies 
showed that intrathecal injection of ChABC increases IL-10 and 
reduces proinflammatory IL-12 (66). Ch-ABC was also effecti-
vely used to ameliorate AD symptoms in animal models (58). 

Another strategy to modulate CSPGs after CNS injury is to 
inhibit CSPG synthesis by treating -d-xylopyranosides, an inhi-
bitor for xylose attachment to the serine residue of lecticans. 
Treating -d-xylopyranosides two days after spinal cord injury 
significantly improved recovery (67). Interestingly, immediate 
treatment of xyloside after injury inhibited the recovery, indi-
cating that the timing for targeting CSPG is critical for better 
recovery (67). In addition to the use of xyloside to treat acute 
lesions, xyloside treated lysolecithin‐demyelinated mice increased 
the number of oligodendrocytes in lesions and improved remye-
lination (68).

In addition to changing the expression of CSPGs, neuronal 
injury also triggers fragmentation of CSPGs. Liberated fragments 
of CSPGs may directly influence the inflammatory responses 
(69). Fragmented CSPG is known to function as damage asso-
ciated-molecular pattern (DAMP) and directly binds to pattern 
recognition receptors (PRR) such as Toll-like receptors (TLR) 
(70). Indeed, for an example, versican can directly bind to the 
TLR-2 and activate macrophages (71). Theses fragmented-ECMs 
and their pathogenic roles as DAMP molecules are well recog-
nized in other ECM-related disorders such as arthritis (72). The 
pathogenic function of fragmented CSPGs certainly needs to 
be studied further in neuroinflammation.



 Extracellular matrixes and neuroinflammation
Dong Gil Jang, et al.

495http://bmbreports.org BMB Reports

Fig. 4. Structure of Tenascins. (A) The domain structure of major tenascin, Tenascin-C and Tenascin-R. (B) Tenascins form oligomers and 
the N-terminus of tenascin meditates oligomerization.

HYALURONAN (HYALURONIC ACID; HA)

Hyaluronic acid (HA) is the most abundant GAG in CNS 
ECMs. Compared to the CSPGs, HA is not sulfated and is not 
attached to the core proteins (Fig. 2). In normal conditions, HA 
exist as high-molecular weight polymers of repeating disaccha-
ride, D-glucuronic acid, and N-acetyl-D-glucosamine, in neuro-
nal ECM. The average molecular weight of HA is above 1000 
kDa in normal conditions. 

HA polymer is synthesized by HA synthase (HAS1, HAS2, 
HAS3) (73) and HASs are mainly expressed in the astrocytes in 
the brain (74). The HA chains serve as scaffolds for other 
CSPGs to bind and form meshwork of ECMs.

HYALURONAN AND NEUROINFLAMMATION

Beside the structural functions as a major ECM component, 
HA plays various roles in regulation of neuroinflammation. In 
normal conditions, high molecular weight HA (HMW-HA) binds 
to CD44 and reduces TLR mediated inflammatory signals in 
microglia (75). However, HA functions as a proinflammatory 
signal in inflammatory situations (76). During the inflammatory 
responses after injury, HMW-HA is fragmented into low mole-
cular weight-HA (LMW-HA) and this fragmented LMW-HA is 
released from the damaged ECM (76). 

The LMW-HA functions a universal DAMP to induce innate 
immunity and proinflammatory factors. LMW-HA exerts a pro-
inflammatory role by binding to the CD44 on microglia and 
astrocytes upon neuronal injury. Furthermore, LMW-HA induces 
NF-B signaling and increases the expression of TNF- and 
IL-1 in cultured neurons (77). Recent studies also suggested 
that HA concentration in cerebrospinal fluid is corelated to 
increased blood-brain barrier permeability (78).

TENASCINS

There are six family members of tenascins in mammals: tenas-
cin-C, tenascin-R, tenascin-W. tenascin-X, tenascin-Y, and tenas-
cin-N. Tenascin-R is exclusively expressed in the CNS while 
the others are expressed in a variety of tissues (79).

The structures of tenascins are very similar among the family 
members. Each tenascin member possesses a cysteine-rich N- 
terminus domain which mediates the oligomerization of tenas-
cins to functions as a structural component of ECMs (80). Te-
nascins form oligomers by disulfide bond via this N-terminus 
oligomerization domain (Fig. 4). The central region of tenascin 
is composed of EGF like repeats and the C-terminus region is 
composed of fibrinogen III (FNIII) repeats. The C-terminus 
FNIII repeat domains are known to mediate bindings to other 
ECMs such as CSPGs. 

Beside the structural functions, tenascins influence neuronal 
differentiation and regulate axonal guidance and neurite out-
growth during brain development (81, 82). Furthermore, tenas-
cins are known to regulate voltage-gated sodium channels and 
synaptic plasticity (83).

TENASCINS AND NEUROINFLAMMATION

Tenascin-C and tenascin-R have been reported to be upregu-
lated after brain injury or spinal cord injury. Reactive astro-
cytes, along with oligodendrocyte and neurons, are major sour-
ces of tenascins expression upon CNS injury (84).

The molecular mechanism by which tenascins regulate im-
mune systems and inflammatory responses are well-studied in 
non-neural tissues. Tenascin-C expression is increased in res-
ponse to the inflammatory cytokines such as INF-, IL1-, and 
TNF- in various tissues (85, 86). The pattern recognition re-
ceptor TLR-4 is a major interaction partner of tenascin-C (87) 
and the expression of TLR-4 is increased after brain injury. The 
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interaction of tenascin-C with TLR-4 promotes the expression 
of proinflammatory cytokines (88). Consistent with these obser-
vations, tenascin-C mutant mice displayed better recovery after 
experimental brain injury partly by suppressed apoptosis and 
TLR-mediated proinflammatory responses (89). 

In addition to the acute inflammatory responses, tenascin-C 
was shown to be involve in chronic inflammatory neurodege-
neration such as multiple sclerosis (MS) and Alzheimer’s disease 
(AD). MS is an autoimmune disorder in CNS developed by 
progressive loss of myelination. One of the direct causes of 
demyelination in MS is the integrin-91-mediated autoimmune 
response. The c-terminus FNIII domain of tenascin-C contains 
integrin- 9 binding motif AEIDGIEL (90), and promotes inte-
grin-91-mediated cytokine expression in experimental auto-
immune encephalomyelitis (EAE) models (91). EAE is a widely 
used experimental model for MS study. Furthermore, an inte-
grin-91 specific tenascin-C mutant promoted proinflammatory 
cytokines and this induction was abolished by treating inte-
grin-91 neutralizing antibody (91).

Chronic inflammation may also be responsible for AD and 
recent studies showed significant correlation in tenascin-C stai-
ning to A plaques in human AD brain samples.

Compared to tenascin-C, tenascin-R function in neuroinflam-
mation is not well understood. However, it was reported that 
tenascin-R is also upregulated after CNS injury. Further study 
needs to be performed to elucidate tenascin-R function in neuro-
inflammation. 

CONCLUSION

The functions of ECM in inflammation have long been studied 
in human disorders such as fibrosis, cancers, and rheumatoid 
arthritis. Recent studies provide a substantial amount of experi-
mental and clinical data indicating that ECM is critically in-
volved in both acute and chronic inflammatory responses in 
the CNS. However, the complexity of ECM composition and 
diverse modifications in disease conditions hinder clear under-
standing of the molecular functions of neuronal ECM in neuro-
inflammation. Also, the functions of ECM in neuroinflamma-
tion change dramatically upon its modification such as frag-
mentation and alternative splicing. However, several experi-
mental data targeting to modulate ECM to promote CNS injury 
suggested that neuronal ECM is a promising target to develop 
therapeutics. Among the most immediate challenges is to eluci-
date the molecular mechanism of each ECM component and 
its variants regulating neuroinflammation in CNS. The molecular 
interactions among ECM and inflammatory signals are under 
intensive investigation currently. Especially, the clinical data 
on the efficacy of ECM modifying enzymes and chemicals 
treating neuroinflammation must be accumulated.
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