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ABSTRACT In this article, a real-time dynamic finger gesture recognition using a soft sensor embedded data
glove is presented, which measures the metacarpophalangeal (MCP) and proximal interphalangeal (PIP)
joint angles of five fingers. In the gesture recognition field, a challenging problem is that of separating
meaningful dynamic gestures from a continuous data stream. Unconscious hand motions or sudden tremors,
which can easily lead to segmentation ambiguity, makes this problem difficult. Furthermore, the hand shapes
and speeds of users differ when performing the same dynamic gesture, and even those made by one user often
vary. To solve the problem of separating meaningful dynamic gestures, we propose a deep learning-based
gesture spotting algorithm that detects the start/end of a gesture sequence in a continuous data stream. The
gesture spotting algorithm takes window data and estimates a scalar value named gesture progress sequence
(GPS). GPS is a quantity that represents gesture progress. Moreover, to solve the gesture variation problem,
we propose a sequence simplification algorithm and a deep learning-based gesture recognition algorithm.
The proposed three algorithms (gesture spotting algorithm, sequence simplification algorithm, and gesture
recognition algorithm) are unified into the real-time gesture recognition system and the system was tested
with 11 dynamic finger gestures in real-time. The proposed system took only 6 ms to estimate a GPS and
no more than 12 ms to recognize the completed gesture in real-time.

INDEX TERMS Artificial neural network, data glove, data compression, dynamic gesture recognition,

human-computer interaction, pattern recognition, real time system, recurrent neural network.

I. INTRODUCTION
Devices and techniques that facilitate human-computer inter-
action (HCI) have attracted a great deal of interest. Hand
gesture recognition is accepted as an effective natural inter-
face, and both static and dynamic gesture recognition have
been studied. Hand gesture recognition can be achieved via
vision-based and data glove-based approaches. To date, most
work on hand gesture recognition has employed vision sen-
sors because few data gloves are commercially available, and
most are expensive and hinder natural hand motion [1]-[3].
Hand gestures can be divided into static and dynamic
hand gestures. A static hand gesture is a particular hand
configuration and pose without hand movement, whereas
a dynamic hand gesture is a moving gesture that includes
movements of the fingers or hand. Since the two types
of gestures have different characteristics, different types of
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algorithms are required to recognize each type of gesture.
Static hand gesture recognition can be achieved by apply-
ing standard pattern recognition techniques such as template
matching [4], whereas dynamic hand gesture recognition
requires time-series pattern recognition algorithms such as
hidden Markov models (HMMs) or dynamic time warp-
ing (DTW) algorithms [5]. Recently, there have been some
studies that focused on recognition of dynamic hand gestures
by applying recurrent neural networks (RNNs) [6].

Unlike static hand gesture recognition, dynamic hand ges-
ture recognition must overcome a gesture spotting prob-
lem [7]. Gesture spotting segments meaningful gestures from
the continuous data stream. In other words, a dynamic hand
gesture recognition system must detect the start and end
of gestures in a continuous data stream. One of the easiest
ways to solve the gesture spotting problem is to define a
certain static gesture that indicates the start or end of dynamic
gestures [8]. However, this approach disturbs the natural flow
of an intended sequence of gestures. Thus, other approaches
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have been studied that naturally detect the start and end of
dynamic gestures in continuous sequence of hand motion.

One of the most common approaches to gesture spotting is
to detect a moment when the hands are stationary [9]-[12].
Simao et al. proposed a gesture segmentation method that
involves analyzing velocity and acceleration and does not
require previous training or knowledge of the gestures or
the sequence in which they are made [9]. Molchanov et al.
assumed that a true gesture occurred only when a radar
sensor detected significant motion with a velocity above
a configurable threshold (0.05 m/s) [10]. Neverova et al.
introduced a binary classifier to distinguish resting moments
from periods of activity [11]. Li et al. proposed a dynamic
gesture spotting algorithm based on evidence theory after
analyzing changes in the speed of hand movements during
dynamic gestures [12]. A limitation of these approaches is a
false-positive problem: when the hands are stationary and in
a meaningless posture, these techniques may interpret this as
the start or end of known dynamic gestures. Thus, analyzing
the data patterns in a given window using only ‘engineered
features’ such as velocity or acceleration cannot provide a
perfect solution for gesture spotting. Recently, there have
been studies of gesture spotting using convolutional neural
networks (CNNs) [13], [14]. A CNN is a well-known feature
extraction method that has been widely used in computer
vision. The role of the CNN in gesture spotting is to extract
spatio-temporal features that cannot be defined physically,
such as hand shape or finger configuration. However, using
CNNs requires a graphics processing unit (GPU), the size of
which makes it difficult to use the gesture recognition system
as a portable application.

In this article, we introduce real-time dynamic gesture
recognition using a soft sensor embedded data glove. The data
glove measures the angles of metacarpophalangeal (MCP)
and proximal interphalangeal (PIP) joints of each finger
directly; thus, there is no need to apply any further feature
extraction methods to obtain information about finger con-
figuration. Furthermore, we developed three algorithms to
achieve real-time dynamic gesture recognition.

Contributions of this article are as follows; First, a gesture
spotting algorithm was developed which estimates a gesture
progress sequence (GPS). A GPS is a scalar value between
0 and 1 that indicates the extent of gesture progress. For
instance, a small GPS value indicates when a gesture is about
to start, and a value close to one indicates when a gesture
is about to end. The gesture spotting algorithm takes a short
data sequence and estimates the current GPS value using
a deep learning architecture consisting of long-short term
memory (LSTM) and fully connected layers. The deep learn-
ing architecture learns features for the gesture spotting by
itself and the number of features can be adjusted by changing
the number of hidden units in each network layers. Thus,
it is possible to detect start/end of dynamic gestures based
on more various features compared to previous methods
which use limited number of engineered features that cannot
cover all aspects of start/end of gestures. From the estimated
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GPS, a complete data sequence of the current gesture is
made.

Second, a sequence simplification algorithm was devel-
oped. After a gesture sequence is separated from a continuous
data stream, the sequence simplification algorithm removes
data in the gesture sequence that do not has notable changes.
Thus, the output of the sequence simplification algorithm is
not a continuous time series data anymore. It helps to reduce
variation resulting from the speed of performing gestures.
Furthermore, the sequence simplification enables gesture
recognition more faster and more accurately.

Third, a gesture recognition algorithm was developed. The
gesture recognition algorithm uses a deep learning archi-
tecture to recognize the gesture class from the output of
the sequence simplification algorithm. The deep learning
architecture was applied to the gesture recognition to cover
other types of variation of dynamic gestures which cannot be
removed by the sequence simplification. 10 dynamic hand
gestures used in American Sign Language (ASL) and one
pinching gesture were selected to verify the performance of
the proposed three algorithms.

The remainder of this article is organized as follows.
Section II introduces previous studies related to our work.
Section IIT describes a data collection process of 11 gestures
using the data glove. In Section IV, the gesture spotting
algorithm, the sequence simplification algorithm, and the
gesture recognition algorithms are introduced. In Section V,
off-line and real-time experimental results are presented.
In Section VI, limitations of this study are discussed, and
Section VII presents our conclusions regarding this study.

Il. RELATED WORKS

Our work is related to two research areas: 1) data glove-based
gesture recognition, and 2) gesture spotting for continuous
dynamic gesture recognition.

Over the few decades, various types of data glove-based
gesture recognition system have been developed [15]-[18].
Recently, Pawel et al. proposed a system for quick and effec-
tive recognition of gestures of hand body language based on
data from a glove equipped with ten sensors [19]. They used
22 hand gestures including shifting and rotation of hand and
movement of fingers. The data glove consists of five finger
flexion sensors, three accelerometers, and two gyroscopes.
However, there was no consideration on real-time recogni-
tion or continuous gesture recognition that is the challenging
problem on real world applications. Jakub et al. presented an
accelerometer glove-based sign language gesture recognition
system. They used seven accelerometers in total, five on the
each fingers, one on the wrist, and one on the arm. For the sign
language recognition, they adopted Parallel Hidden Markov
Model (PaHMM) which was firstly used in a Automatic
Speech Recognition (ASR) systems. Although their recog-
nition system can classify 40 gestures, the system was only
verified on offline experiments. Chaithanya et al. developed
a data glove embedding a gesture classifier which detects
22 static hand gestures taken from the French sign language
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alphabet [20]. They used five IMU sensors on each finger-
tips and applied the complementary filter to obtain angular
positions of each fingers. For the classification algorithms,
several machine learning approaches such as the support
vector machine, the naive Bayes, the multi layer perceptrons,
and the random forest were examined.

In terms of the gesture spotting for continuous dynamic
gesture recognition, most studies have been done on the
vision sensor based gesture recognition. Nguyen et al. pro-
posed a continuous dynamic hand gesture recognition for
RGB video input [21]. The recognition system contains the
gesture spotting module and the gesture classification mod-
ule. The gesture spotting module that consists of bidirectional
long short-term memory (Bi-LSTM) receives the motion
of the hand palm and finger movements and determines
whether the current frame is a gesture frame or a transition
frame. Although the approach for continuous dynamic ges-
ture recognition of [21] is similar to ours in the view of using
different deep learning architectures on gesture spotting and
gesture recognition, the gesture spotting method is different
from our method. While the gesture spotting module pro-
posed in [21] requires to use a whole data stream containing
continuous dynamic gestures because of using Bi-LSTM, our
gesture spotting algorithm takes a short sequence of past data.
Thus, our recognition system works in real-time, whereas the
system proposed in [21] can only be used in offline. Recently,
Gibran et al. proposed a continuous finger gesture spotting
and recognition setup which considers the driving distrac-
tions [22]. In [22], the author addressed three challenging
tasks of recognition of finger gestures, i) similarities between
gesture and non-gesture frame, ii) the difficulty in identifying
the temporal boundaries of continuous gestures, and iii) the
intraclass variability of gestures’ duration. To overcome the
tasks 1) and ii), the author in [22] proposed gesture spot-
ting method where continuous gestures are segmented by
detecting boundary frames and evaluating hand similarities
between the start and end boundaries of each gesture. For the
task iii), a gesture recognition based on a temporal normal-
ization of features extracted from the set of spotted frames
was developed. The main idea of gesture spotting method
in [22] is to detect a certain boundary posture enclosing
each dynamic gesture. Thus, there is a limitation to selecting
recognizable gestures because each gestures must have same
postures at the start and the end.

Regarding the gesture spotting method, Becattini et al.
introduced a concept of action progress prediction [23].
Action progress prediction is quantitatively defined into two
ways, 1) a linear interpretation which is versatile and can
be applied to any sequence annotated for action detection,
and ii) a phase-based interpretation where actions are pre-
cisely split into sub-events and manually annotated to obtain
a richer representation that captures non-linear dynamics.
Among these two definitions, i) is similar to the concept of
GPS proposed in our work. Moreover, to predict the action
progress prediction, [23] used LSTM layers as well. How-
ever, the prediction system proposed in [23] was applied to
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computer images and the target actions were not gestures, but
the human activities such as diving, golf swing, or surfing.

IIl. GESTURE DATA COLLECTION

A. HARDWARE DESCRIPTION

Fig. 1(a) shows how the gesture data were collected with the
data glove. Ten soft sensors were embedded in the data glove
to measure the MCP and PIP joint angles of the five fingers
(Fig. 1(b)). The sensors were made via direct writing of eutec-
tic Gallium Indium (eGaln); the detailed fabrication process
is well described in [24]. As a finger flexes, the resistance
of the corresponding sensor, which is linearly fitted from
the clenched fist (90° flexion) to flat position (0°), increases
(Fig. 1(c)). The changes in resistance are collected and ampli-
fied by a customized circuit and the data are transmitted to a
computer via Bluetooth. MATLAB was used for collecting
gesture data and developing the proposed algorithms. The
sampling frequency was 100 Hz.

| Data acquisition program

Nl
i

G1, I-PIP

20 40 60 80 100 120 140 160 180

©)

(:::I : Sensor location
(b)

FIGURE 1. (a) The data collection process: the subject manually
determines start/end of each gesture from a continuous data stream.
(b) The data glove used in this study. (c) An example of collected data
obtained from the sensor located at PIP joint of the index finger when
performing G1.

B. DATASET GENERATION

Figure 2 shows the 11 dynamic finger gestures used in this
study. Except for gesture G6, the gestures were selected
from ASL. Notice that the data glove measures only fin-
ger joint angles, not three-dimensional hand movements.
Thus, the dynamic finger gestures were selected by consider-
ing existence of movements of finger flexion/extension and
whether a gesture is distinguishable from other gestures only
using finger movements.
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G1 G2 G3 G4 G5
Just kidding Like

Best Nobody No

\ 4

Pinch

G6 G7 G8 G9
Sister Understand Want

G10
Who

G11
Why

FIGURE 2. Eleven dynamic hand gestures. G6 was defined intuitively and the other 10 gestures were selected from American Sign Language (ASL).

We made training and test dataset from several sets of
experiment for a few days. For each set of experiment, a sub-
ject put on the data glove and took a calibration process
before collecting gesture data. During the calibration process,
10 resistance signals of a flat (0°) and fist (90°) hand positions
were stored. Then, we linearly fitted resistance data into
finger joint angle data using the stored resistance data of both
hand positions.

As described in Fig. 1(a), a subject performed dynamic
finger gestures using his left hand and manually determined
start/end of each gesture by clicking a graphical user inter-
face (GUI) button on a monitor using his right hand during
the experiment. Before starting a gesture and after finishing a
gesture, the subject did not move his fingers for a short time to
ensure the start/end of each gesture. In one set of experiment,
11 gestures were performed in an order and each gesture
was performed five times repetitively. Thus, we obtained
55 gesture data (11 gesturesx5 repetition=55 gesture data)
after finishing a set of experiment. Each gesture samples was
saved by separating it from the continuous data stream using
the start/end marking determined by the subject. In total,
sixteen sets of gesture data were used as a training dataset
(80 samples per each gesture) and four sets of gesture data
were used as a test dataset (20 samples per each gesture).
Note that the training and test dataset consist of isolated
gesture samples with corresponding gesture labels. Addition-
ally, to test the gesture spotting performance from continuous
data stream, another test data consisting of 11 gestures per-
formed successively including gesture transition was made.
Both training and test dataset were used for the gesture
spotting algorithm and the gesture recognition algorithm.
Although the gesture spotting algorithm and the gesture
recognition algorithm share the same dataset, they used the
dataset in a different way. Detail explanation is addressed in
Section III.A and III.C.

Uncontrolled variation of each gesture samples, such as
a moment that the gesture was started/ended, speed of joint
angle changes, or the duration of maintaining the start/end
pose are contained in the collected dataset. Due to the
variation, three problems are arisen. First, quantitative def-
initions of start/end of each gesture samples are required.
Second, there is an imbalance of duration of gesture stages
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(start/middle/end of each gesture) in the dataset. Third, dif-
ferent patterns of a same gesture caused by a speed variation
makes difficult to train the gesture recognition algorithm.
First and second problems are addressed in Section III.A, and
third problem is discussed in Section III.B.

Section III.C

Gesture detection

Step 3. Gesture recognition algorithm

[ Sequence encoder ] |j‘> [ Gesture classiﬁcation]
X o s
Xk )
[ Step 2. Sequence simplification algorithm ]

L *w

Xy |

Section IIL.B

GPS

1 e
0.9 e

0l

Section IILA

Step 1. Gesture spotting algorithm

Spatio-temporal features

GPS decoder

] Xit—n:t)

moving window
IOVISWIN OV

Sequence encoder

Sensor output
X, X5

‘x X ..xt‘ eee X

t—n Ni-n+1° T

FIGURE 3. Proposed real-time gesture recognition algorithm.

IV. ALGORITHMS FOR REAL-TIME GESTURE
RECOGNITION

Figure 3 shows the proposed real-time gesture recognition
algorithm. As shown in the figure, the recognition system
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consists of three different algorithms, the gesture spotting
algorithm, the sequence simplification algorithm, and the
gesture recognition algorithm. The gesture spotting algo-
rithm is operated in real-time to estimate GPS for every
time step. Estimated GPS enables to determine start/end of
a current gesture, thus a complete gesture sequence can be
separated in the continuous data stream. The gesture sequence
is pre-processed by passing through the sequence simplifica-
tion algorithm, and the gesture recognition algorithm takes
the pre-processed gesture sequence to detect the gesture class.
In Section III, each algorithm is introduced in detail at each
subsection.

A. GESTURE SPOTTING ALGORITHM

The gesture spotting algorithm detects the start and end
points of gestures in a continuous data stream. To achieve
gesture spotting, most previous studies have proposed cer-
tain features applying physical quantities such as a velocity,
an acceleration, or a frequency. However, only using such
‘engineered features’ for gesture spotting has a limitation
because the number of features is not enough to distinguish
start/end of true gestures from natural hand motions including
non-gestures or unconscious hand motions. Thus, we propose
the new gesture spotting algorithm to find more features
by employing a deep learning architecture which can find
features on its own during training.

GPS

Retraction

FIGURE 4. A conceptual illustration of the Gesture Progress Sequence
(GPS).

The proposed deep learning based gesture spotting algo-
rithm estimates the gesture progress sequence (GPS) which
is a new concept defined in this study. The GPS is a scalar
value between 0 and 1. This is used to demarcate the start and
end point of gestures. For instance, when a gesture is about
to start, the GPS value is close to zero. In contrast, when the
gesture is about to end, the GPS value is close to one. Figure 4
shows the concept of the GPS. Basically, the GPS is defined
as the cumulative sum of the velocity norms for each time
step. The mathematical expression for the GPS is as follows.

v(t) = pt) —pet—D|,¢=2,3,...,T,v(1) =0)
t
Vaun(1) =Y v(i)
i=1

Vsum 1
GPS = {3 ((T)) =

Vsum(2)
Vsum(T) o

Vaun(T)
Vsum(T) N

1y M

’ L)
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In (1), p(t) € R!9 is a finger joint angle vector at time
step t, v(t) € R is the second norm of the difference
between the finger joint angle vector at time steps ¢ and
t — 1. Please note that the GPS only expresses an amount of
gesture progress regardless of gesture classes. As can be seen
in Fig. 4, the gesture can be divided into three different stages
based on the change in the slope of the GPS: ‘preparation’,
‘nucleus’, and ‘retraction’. Li ef al. stated that each stage
can be distinguished by the change in the speed of the hand
motion [12]. This supports the definition of the gesture stages
using the GPS that is related to the speed of the finger joint
angle vector. As described in Fig. 4, we decided to define
the three gesture stages using the GPS thresholds 0.1 and
0.9 based on our experiments. A gesture sequence can be
obtained in continuous data stream based on these two GPS
thresholds.

The gesture spotting algorithm uses a window of finger
joint angle vectors to estimate the GPS. Figure 5 illustrates
the architecture of the gesture spotting algorithm consisting
of two long-short term memory (LSTM) layers, six fully
connected layers, and one output layer. x represents the finger
joint angle vector, n represents the window size, ¢ represents
the current time step, & represents the hidden unit, and r rep-
resents the concatenation of the hidden unit and the last finger
joint angle vector of a given window. For both LSTM layers,
the number of hidden units was 128. Thus, the dimension of
r was 138 because of the concatenation. The concatenation
was applied to represent both spatial and temporal features
simultaneously. Thus it can be said that r contains the spa-
tiotemporal features of a current finger movement and the
GPS is determined based on the spatiotemporal features. For
the fully connected layers, a rectified linear unit (ReLU) was
used as an activation function. The number of hidden units
for all fully connected layers was 128. Finally, for the output
layer, a sigmoid function was used as an activation function
because the GPS is defined between 0 and 1.

To train the gesture spotting algorithm, the window size
which is specified as n in Fig. 5 must be determined appro-
priately. However, it is not a good approach to set the window
size as a fixed length because there is an imbalance among
gesture stages for every gesture samples. This is caused by
uncontrollable gesture speed and duration of preparation and
retraction stages. As shown in Fig. 6, there are variations
between gesture stages and even within each gesture stage.
This implies that it is inappropriate to set a fixed length
window for all gesture data when training the gesture spotting
algorithm.

To construct a balanced training dataset, we gathered train-
ing data for each gesture stage respectively. For each gesture
stages of each gesture samples, the window size was set to be
half of the data length of each gesture stage. Then, we set the
number of training data that we wanted to generate for each
stages to 10. Finally, depending on the amount of training
data that we wanted to generate, the window size, and the
duration of each stage, a space length between adjacent win-
dows was determined as d = LHJ, where L represents the
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FIGURE 5. The proposed gesture spotting algorithm. For each time step, GPS is
estimated from the moving window having a length of n.
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FIGURE 6. Distribution of data length for each gesture stages in training
dataset. Note that the maximum data length of gesture stages contained
in the training dataset does not exceed 70 because half of this sequence
length is used as a fixed window size of the gesture spotting algorithm in
the real-time test.

total length of each gesture stages, w represents the window
size, and N represents the number of training data that we
wanted to generate for each stage. Although a window size
of training dataset is adaptively set depending on duration of
each gesture stages, it is impossible to adaptively change the
window size when we test the algorithm in real-time because
a length of gesture stages cannot be known in a continuous
data stream. Thus, the window size is fixed as 35 (half of 70)
when we test the gesture spotting algorithm because any data
lengths of gesture stages in training dataset do not exceed 70.

After generating the training data, the gesture spot-
ting algorithm was trained with Adam optimization algo-
rithm [25], and the learning rate was 0.001. As the cost
function, mean square error (MSE) loss was used. The num-
ber of epochs for training was 10, and the batch size was 2640.

B. SEQUENCE SIMPLIFICATION ALGORITHM

In this section, we introduce the sequence simplification
algorithm which takes a role to remove speed variation of
a gesture sequence. The sequence simplification algorithm
is a simple feature extractor that finds notable changes in
the gesture sequence. The sequence simplification algorithm
operates as follows. First, the algorithm finds one sensor out
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of ten sensors which has the largest difference between the
maximum and minimum points of the given gesture pattern
measured by the sensors. The mathematical expression of this
step is as follows:

* = argmax(max Sit) — min Si(r)) )
i

In (2), i is the sensor index, which ranges from 1 to 10, and
S is a set of sensor measurements in the gesture sequence,
so Si(¢) is the sensor output at time step ¢ measured by
sensor i. Second, as described in Fig. 7(a), a line passing
through the start and end points of S” is defined. Third,
as shown in Fig. 7(b), the location of the data point that has
the maximum distance from the line is searched. This can be
expressed mathematically as follows:

k) = argmax d(S” (), ST (1)SF(T)) 3)
1<k<T

In (3), T represents the end of the sensor measurement, and
the function d(a, b) calculates the distance between point a
and line b. Fourth, two lines S*(1)S™ (k) and S* (k1)S™(T)
are drawn and (3) is applied to both lines to find k> and k3
(Fig. 7(c)). This procedure is repeated until dy,, (k,,) reaches
a pre-defined tolerance. The set K = {k{,k5,....k;} =
sort({k1, ka, ..., kn}, ascending) is the notable locations of
the gesture sequence and the set is applied to other sensor
measurements to complete the sequence simplification for
the 10-dimensional vector sequence. Figure 7(d) shows an
example of the performance of the sequence simplification
algorithm, comparing the original sensor output with the
simplified result. The data length of the original sensor output
is larger than 200, but that of the simplified output is less
than 25, with a pre-defined tolerance of 2. If the tolerance
is increased, then fewer data points remain, and vice versa.
Thus, by changing the tolerance, the simplification scale can
be controlled.

The proposed sequence simplification method has two
advantages for real-time gesture recognition. First, a length
of a given pattern is decreased after processing the sequence
simplification, thus computational cost for analyzing gesture
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FIGURE 7. (a)~(c) Process of the sequence simplification. (d) An example
of applying the sequence simplification algorithm to real sensor output.

patterns is reduced. Second, the sequence simplification only
leaves inflection, convex, and concave points and removes the
others. Thus, it is possible to effectively diminish variation
caused by gesture speed. This is the difference between down-
sampling and the proposed sequence simplification method.

C. GESTURE RECOGNITION ALGORITHM

The gesture recognition algorithm takes a simplified pattern
obtained by the sequence simplification algorithm and clas-
sifies the gesture. A deep learning architecture was adopted
to the gesture recognition algorithm to make the gesture
recognition more robust to variation of a same gesture which
cannot be filtered after sequence simplification. The gesture
recognition algorithm consists of two LSTM layers with
64 hidden units for each layer, three fully connected layers
with 64 hidden units for each layer, and one output layer
that has an output dimension of 11 (Fig. 8). The activation
function of the three fully connected layers is ReLU, and
a softmax activation function is used for the output layer.
One of the differences from the gesture spotting algorithm
is that there is no concatenation in the LSTM layer. For the
gesture recognition algorithm, it is important to analyze the
context of the gesture sequence. Thus, there is no need to
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concatenate the current hand shape. Notice that the gesture
recognition algorithm does not consider the entire gesture
sequence. Instead, it considers the gesture sequence from ini-
tiation to the moment that the GPS value reaches 0.9 because
there is no further changes of hand shapes after GPS passes
over 0.9.

The gesture recognition algorithm was trained indepen-
dently to the gesture spotting algorithm. Both algorithms
were trained separately, but shared the same training dataset.
When training the gesture recognition algorithm, the GPS
was computed for each gesture samples and we removed
data that GPS exceeds 0.9. Then, the sequence simplification
algorithm was applied for each gesture samples. The output
of the sequence simplification was used as the input of the
gesture recognition algorithm during training. In training,
a cross-entropy loss function was used as the loss function,
Adam optimization algorithm was used with a learning rate
of 0.001 [25], the number of epochs was 10, and k-fold cross
validation was applied with k& = 5. The cross validation
result showed 100% accuracy for the training set and 98.5%
accuracy for the validation set.

V. EXPERIMENTAL RESULTS

A. GPS RECOGNITION

Two types of test dataset were used to test the gesture spotting
algorithm. First, a test dataset consisting of isolated gestures
was applied to the algorithm. The window size was set as
35 and it moves one time step forward for each gesture
samples. The algorithm took 6ms in average for calculating
the GPS from one window. Examples of the GPS recogni-
tion result is shown on Fig. 9(a). In Fig. 9(a), G1, G2, G5,
and G7 are selected among 11 gestures because they have
different finger poses at preparation and retraction stages.
As shown in the figure, the GPS is below 0.1 during the
preparation stage and higher than 0.9 during the retraction
stage.

Second, a test dataset which contains successively per-
formed 11 gestures was applied. Figure 9(b) shows the exper-
imental result of this test. The ground truth of start/end of
each gestures was set by the subject when he decided to
start/end each gestures. Note that the GPS exceeds 0.9 before
the gesture is completely finished. Thus, it is possible to save
some time to operate the sequence simplification algorithm
because the sequence simplification is operated right after
the estimated GPS reaches to 0.9. Furthermore, although we
never trained the algorithm with the data collected during
gesture transition, such as changing a gesture from G1 to G2,
the algorithm estimated the GPS lying in between 0.1 and
0.9 at the gesture transition. This was possible because the
algorithm was trained with the data of the nucleus stage which
includes joint angle changes and various hand shapes not
included in the preparation and retraction stages. Thus, it can
be interpreted that training the GPS recognition algorithm
with more dynamic gestures can prevent false-positive prob-
lem caused by non-gestures or gesture transition.
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FIGURE 9. (a) GPS recognition for each gesture. Red line indicates the
threshold distinguishing three gesture stages and others indicate gesture
samples. It is possible to know when each gesture samples is
started/ended by observing each GPS graphs passing over the two
thresholds. (b) GPS recognition using successively performed 11 gestures.
The red line indicates true start/end of each gestures, and the blue line
indicates the estimated GPS. Note that the GPS never reaches to higher
than 0.9 or lower than 0.1 during gesture transition.

B. GESTURE RECOGNITION

The performance of the gesture recognition algorithm was
verified using the test dataset consisting of isolated ges-
tures. To construct same conditions as training, the test
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FIGURE 10. Confusion matrix of the gesture recognition algorithm. Note
that the trained gesture recognition algorithm takes inputs that are
processed the sequence simplification.

dataset was pre-processed by calculating the GPS and cut-
ting each gesture sequence at the GPS value 0.9. After that,
the sequence simplification was also applied. The recognition
result showed 100% accuracy (Fig. 10) and each gesture
sample took 3 ms in average during processing the sequence
simplification and the gesture recognition. The sequence sim-
plification algorithm dramatically reduced a length of each
gestures as shown in Fig. 11, thus it was possible to achieve
fast recognition.

To verify a performance of the sequence simplifica-
tion algorithm at the gesture recognition step, we tested
the gesture recognition algorithm without the sequence
simplification process. The sequence simplification process
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FIGURE 11. Sequence length comparison of before and after applying the
sequence simplification algorithm to the test dataset. Blue line indicates
a mean sequence length of each gesture classes before applying the
sequence simplification. Red line indicates a mean sequence length of
each gesture class after applying the sequence simplification. Note that
mean sequence lengths of all gesture classes are dramatically reduced
(about 4%) and deviations of the sequence lengths are also reduced. The
sequence simplification procedure makes the gesture recognition
algorithm focus only on features related to a shape of a given sequence,
not a length of the sequence.

was removed from both training and testing the gesture
recognition algorithm. The test result showed a decrease of
recognition accuracy of 55% (G4), 95% (G5) and 75% (G8).
Among the three gestures, G4 showed dramatic decrease of
recognition accuracy and it was misclassified to G8 mostly.
G4 and G8 have similar finger motions, but they are clearly
distinguished at the preparation stage. However, if a sequence
of G4 or G8 becomes longer than a certain amount, then
features at the preparation stage can be faded out at the end
of the sequence when applying the LSTM model. As shown
in Fig. 11, G4 has a long sequence length in average and
large deviation comparing with other gestures. Thus, it can
be summarized that the sequence simplification algorithm
removes data which have no meaning except connecting a
given sequence and improves the gesture recognition perfor-
mance.

C. REAL-TIME GESTURE RECOGNITION

After verifying the performance of the three algorithms sepa-
rately, we combined them into a real-time gesture recognition
system. For each time step, a joint angle vector is measured
by the data glove and the vector is stored in a fixed size
window. The window can keep its size to 35 because old data
isremoved if new data is entered. The window is passed to the
gesture spotting algorithm for every time step and a gesture
sequence is generated if the estimated GPS is changed from
lower than 0.1 to upper than 0.9 in an order. After a com-
plete gesture sequence is generated, the gesture sequence is
transmitted to the sequence simplification algorithm. Finally,
the gesture recognition algorithm takes the simplified gesture
sequence and the current gesture is classified.

Figure 12 shows images of real-time gesture recognition.
In Fig. 12, when the hand was in the start pose of GS,
the GPS value is lower than 0.1. Then, if the hand completed
G35, the GPS value increased to above 0.9 and the gesture
recognition result was shown on the right side. Figure 12 also
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FIGURE 12. Real-time gesture recognition test. The GPS graph changes in
real-time and the gesture recognition result is shown on the right side
when the gesture is completed.

shows a clean gesture transition from G5 to G2. This implies
that there is no problem of gesture transition if gestures are
performed in an random order. During real-time test, GPS
estimation took only 6 ms on average and gesture recognition
took no more than 12 ms; thus, the proposed gesture recog-
nition system can be characterized as a real-time recognition
system.

Figure 13 shows examples of GPS output at random hand
poses. As shown in the figure, the estimated GPS does not
change in between 0.1 and 0.9 because the finger configura-
tions are not included in the preparation or retraction stages
of known gestures and the hand is in static. If start/end of
a gesture is determined only by engineered features such as
velocity, acceleration or frequency related quantities, then all
static hand shapes would be regarded as start/end of gestures.
On the other hand, the proposed gesture spotting algorithm
determines start/end of gestures with more features that can-
not be described physically, thus the false-positive problem
of the gesture spotting can be prevented.
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FIGURE 13. Examples of non-gestures. Note that the GPS does not
change in between 0.1 and 0.9.

VI. DISCUSSION

In the gesture recognition field, there are two types
of approaches: vision-based gesture recognition and data
glove-based gesture recognition. To date, the vision-based
gesture recognition has been studied widely than the data
glove-based gesture recognition because vision sensors are
easily available in markets. Most studies of the vision-based
gesture recognition commonly use specific types of data
such as depth, color or stereo-IR data [26], [27]. Although
each data types represents different physical quantities, they
are all image data which have 2D or 3D data structures.
Thus, there are various public dynamic gesture datasets for
developing gesture recognition algorithms and comparing
performance of the algorithms. On the other hand, most stud-
ies of the data glove-based gesture recognition have devel-
oped their own data gloves or have customized data gloves
using commercial sensors such as IMUs, optical sensors,
tactile sensors, magnetic sensors or flex sensors [18]. Thus,
data types obtained from data gloves are varied depend-
ing on sensors that composing the data gloves. Since the
recognition algorithms and types of recognizable gestures
(static/dynamic, finger gesture/hand gesture) highly depend
on the input data that data gloves measure, most studies of
data glove-based recognition have been selected gesture types
and collected gesture data by themselves. Moreover, studies
of data glove-based gesture recognition have been focused on
classifying static gestures mostly because the classification
of static hand gestures is easier than that of dynamic hand
gestures [18]. On the other hand, recently, the studies of
vision-based gesture recognition have concentrated on recog-
nition of continuous dynamic gestures for the application of
sign language translation [28]. Thus, there are public datasets
of dynamic gestures for vision based gesture recognition,
whereas there is no public dynamic gesture dataset for data
glove-based gesture recognition [26], [29]. Lack of large size
of public datasets for training and verifying gesture recog-
nition models is a crucial problem for data glove-based ges-
ture recognition research field. Furthermore, public datasets
containing continuous dynamic gestures that the start and the
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end boundaries of each gestures are annotated are required
for verifying the performance of the gesture spotting model.
In this study, we proposed two machine learning algo-
rithms for gesture spotting and gesture recognition, respec-
tively. During the real-time operation, the gesture spotting
model extracts a complete gesture sequence from a contin-
uous data stream and the gesture recognition model classifies
the gesture by receiving the simplified version of the gesture
data. Since the gesture spotting model stores a gesture data
until the gesture is finished, the gesture recognition model has
no choice but to output the recognition result after the gesture
is finished. We determined to show the recognition result right
after the gesture was finished because we assumed that finger
or hand movements can be regarded as a gesture if and only
if the starting and the ending postures of a gesture is clear.
However, most of state-of-the-art real-time dynamic gesture
recognition algorithms have been developed as an end-to-end
deep learning model to predict a gesture class for every time
step [29], [30]. This means that the recognition result is shown
for every time step. Therefore, since the proposed gesture
spotting strategy is different from other methods, it is hard
to compare the performance of the proposed gesture spotting
algorithm with other gesture spotting methods in a fair way.

VIl. CONCLUSION
In this study, we proposed a real-time gesture recognition
system that uses a data glove. In the gesture recognition
research field, the gesture spotting problem has been one of
the biggest challenges to real-time recognition. To overcome
the problem, we proposed a deep learning based gesture
spotting algorithm that estimates a new concept, the ges-
ture progress sequence (GPS). The GPS is a scalar quantity
between 0 and 1 that is defined by a cumulative sum of
velocity norm for the 10-dimensional finger joint angle vec-
tor. Depending on the estimated GPS, it is possible to detect
start/end of a current dynamic gesture in a continuous data
stream. Next, the sequence simplification algorithm was pro-
posed to compress a gesture sequence into a short sequence
by selecting data from the sequence that change notably.
This process helps to reduce variation of gestures caused
by gesture speed. Finally, the gesture recognition algorithm,
which also employed a deep learning architecture, was devel-
oped to classify 11 gestures. The three algorithms are unified
into one real-time gesture recognition system. The real-time
test showed that the proposed method segments a gesture
sequence in a continuous data stream that non-gestures are
included and detects the known gestures fast and accurate.
Performance of the GPS based gesture spotting approach
will be verified with more dynamic gestures including repet-
itive gestures as a future work. Furthermore, additional sen-
sors will be added such as motion trackers or IMUs to use
hand movement information for gesture recognition.
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