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Among the potential biological signals for human-machine interactions (brain, nerve, and

muscle signals), electromyography (EMG) widely used in clinical setting can be obtained

non-invasively as motor commands to control movements. The aim of this study was to

develop a model for continuous and simultaneous decoding of multi-joint dynamic arm

movements based on multi-channel surface EMG signals crossing the joints, leading to

application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation.

Twenty subjects were recruited for this study including 10 stroke subjects and 10

able-bodied subjects. The subjects performed free arm reaching movements in the

horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements

and surface EMG signals from six muscles crossing the three joints were recorded.

A non-linear autoregressive exogenous (NARX) model was developed to continuously

decode the shoulder, elbow and wrist movements based solely on the EMG signals.

The shoulder, elbow and wrist movements were decoded accurately based only on the

EMG inputs in all the subjects, with the variance accounted for (VAF) > 98% for all three

joints. The proposed approach is capable of simultaneously and continuously decoding

multi-joint movements of the human arm by taking into account the non-linear mappings

between the muscle EMGs and joint movements, which may provide less effortful control

of robotic exoskeletons for rehabilitation training of individuals with neurological disorders

and arm impairment.

Keywords: electromyogram (EMG), non-linear autoregressive exogenous model, continuous decoding,

exoskeleton robot, computational neuroscience

INTRODUCTION

Rehabilitation robots have been developing rapidly and used for therapeutic training of patients
with neurological disorders, including stroke, cerebral palsy, and spinal cord injury (Dipietro
et al., 2005; Krebs et al., 2008; Song et al., 2008; Marchal-Crespo and Reinkensmeyer, 2009; Pons,
2010; Frisoli et al., 2012; Heo et al., 2012; Reinkensmeyer and Boninger, 2012; Zariffa et al., 2012;
Ren et al., 2013). Advances have been made to build more practical and functional upper-limb
powered robotic exoskeleton devices (Nef et al., 2007; Perry et al., 2007; Gupta et al., 2008; Kim
et al., 2012; Mao and Agrawal, 2012; Ren et al., 2013; Shao et al., 2014). The advances in powered
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exoskeletons imply great promise to allow neurologically
impaired patients to perform versatile activities, therefore
helping restore strength and flexibility of their limbs. In contrast,
relatively less attention has been given to providing less effortful
control of exoskeleton robots. Previous studies have shown
that motor commands are generated by the combination of a
small number of muscle synergies, which allows the coordinated
recruitment of groups of muscles with specific amplitude
balances (Jiang et al., 2010; Overduin et al., 2015; d’Avella,
2016). Muscle synergies can be used to predict the movement
of multiple degrees of freedom (DOFs; Ison and Artemiadis,
2014; Jiang et al., 2014a). Controlling a multiple DOFs robotic
device requires sophisticated techniques for identification of
various movements from recorded electromyography (EMG)
signals (Fleischer and Hommel, 2008; Lo et al., 2010; Peerdeman
et al., 2011; Scheme and Englehart, 2011; Fougner et al., 2012). A
neural control interface is crucial to providing accurate, natural
and less effortful control of powered exoskeletons (Kiguchi and
Hayashi, 2012; Lenzi et al., 2012).

Among the potential biological signals for human-machine
interaction (brain, nerve, and muscle signals), EMG, the
ensemble electrical activity of a muscle may be the only
experimentally non-invasive record of the motor commands
to the muscles that enables routine clinical applications. EMG
is generated by the neural activation from the brain and
spinal cord and therefore contains substantial movement-
related information. It is worth noting that EMG signals do
not necessarily reflect the overall computations carried on by
the motor system. In fact, they are unlikely to catch neural
signals related to a key executive function for shaping motor
behavior, i.e., the ability of cancelling pending movements
(Mirabella, 2014; Mirabella and Lebedev, 2017). However, in
practice EMG signals could enable efficient control of robotic
exoskeletons by extracting those motor commands that reach
the muscles. Inhibitory control is fundamental for achieving a
proper behavioral flexibility due to the fact events cannot be
fully predicted practically. In many instances, preplanned actions
must be aborted to avoid catastrophic consequences. Often
suppression of a planned action occurs within the central nervous
system, and thus the related neural activity does not reach
the muscles. It is not by chance that brain–machine interfaces
enacting inhibitory control have proposed to reproduce goal-
directed behaviors in a more naturalistic way recently (Mirabella,
2012; Mirabella and Lebedev, 2017).

Use of EMG in decoding motor commands is one of the most
robust and accurate interfaces for controlling robotic devices
(Farina and Aszmann, 2014). As a non-invasive measurement
containing rich motor control information, surface EMG is an
important input for the control of powered robotic devices
(Parker et al., 2006; Pons, 2010). As a result, surface EMG is
increasingly recognized as one of the important control signals
for assistive or rehabilitative devices in robot-aided therapy (Song
et al., 2008; Hincapie and Kirsch, 2009; Marchal-Crespo and
Reinkensmeyer, 2009; Jiang et al., 2010; Smith and Brown, 2011).
Myoelectric control is a promising approach for controlling
the multiple DOFs of multifunctional dexterous exoskeletons
(Fleischer and Hommel, 2008). However, a major challenge in

myoelectric control is to provide simultaneous and proportional
control signals for robotic devices with multiple DOFs (Jiang
et al., 2010; Fougner et al., 2012). To facilitate a less effortful
myoelectric control paradigm, myoelectric controllers should
provide proportional control of multiple DOFs simultaneously.
This has been addressed in a few recent studies (Ameri et al.,
2014a; Farmer et al., 2014; Fougner et al., 2014; Hahne et al.,
2014; Ngeo et al., 2014). To provide simultaneous, independent
and proportional control of multiple DOFs, various linear and
non-linear estimators have been used, including artificial neural
networks (Koike and Kawato, 1995; Cheron et al., 1996; Au and
Kirsch, 2000; Shrirao et al., 2009; Pulliam et al., 2011; Jiang
et al., 2012; Zhang et al., 2012; Ameri et al., 2014b; Farmer
et al., 2014; Ngeo et al., 2014), regression techniques (Chen et al.,
2013; Ameri et al., 2014a; Hahne et al., 2014), and state-space
models (Artemiadis and Kyriakopoulos, 2010, 2011; Pan et al.,
2014). Recent research has shown that continuous decoding plays
increasingly important role in myoelectric control (Ameri et al.,
2014a; Farmer et al., 2014; Fougner et al., 2014; Hahne et al., 2014;
Ngeo et al., 2014).

Previous studies have shown that artificial neural networks,
being a widely used supervised non-linear approach,
outperformed linear regression (a supervised linear approach)
and non-negative matrix factorization (a linear unsupervised
method) in the EMG decoding paradigm (Hahne et al., 2014;
Jiang et al., 2014b). It was possible to predict wrist joint angle
instead of forces from EMGs with artificial neural networks
when the subject was performing free dynamic movements
(Jiang et al., 2012). In particular, a non-linear autoregressive
exogenous (NARX) model was utilized to continuously map
the kinematics of a transtibial prosthesis and EMG activity to
estimate the prosthetic ankle angle in transtibial amputees in a
recent study (Farmer et al., 2014). However, few investigators
have been able to draw on any systematic research into decoding
dynamic multi-joint arm movements. Most studies on EMG
decoding have only focused on the estimation of kinematics of
the leg and fingers. The purpose of this study was to develop
a novel multi-input multi-output decoding method based
on the NARX neural network model and predict dynamic
multi-joint armmovements simultaneously based only on multi-
channel EMG inputs, which can potentially be used to achieve
user-friendly, less effortful myoelectric control of robot-aided
multi-joint movements.

METHODS

Subjects
Twenty subjects were recruited for this study including 10
stroke subjects (Table 1) and 10 with no neurological disorder
(5 males and 5 females, age: 46.1 ± 14.6 year). All subjects
gave written informed consent, which was approved by the
Institutional Review Board of Northwestern University. A
screening examination and clinical assessment to determine the
eligibility for each stroke subject were performed by a physical
therapist. Inclusion criteria for participation of the study include:
(a) age between 21 and 65 years old; (b) experience of stroke,
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TABLE 1 | Physical Characteristics of Subjects.

Subject no. Age Sex Duration Paretic F-M (UE) MSS

1 56 M 6 R 36 49.02

2 58 M 1 R 38 54.01

3 59 M 9 R 22 23.00

4 59 M 26 L 16 14.67

5 59 M 11 R 46 60.67

6 63 F 2 L 48 66.02

7 54 F 2 R 21 28.66

8 47 F 4 L 22 19.35

9 45 M 10 L 30 43.33

10 55 F 6 R 50 50.69

Duration: years since the onset of stroke. Paretic: the side of hemiparesis. F-M (UE):

the Fugl-Meyer assessment scale of the paretic upper extremity (total score: 66). MSS:

the motor status scale measures shoulder, elbow (maximum score = 40), wrist, hand,

and finger movements (maximum score = 42).

initial onset > 6 months; (c) medically stable with clearance to
participate.

Experimental Procedure
An upper limb exoskeleton robot, called IntelliArm and capable
of controlling the shoulder, elbow and wrist individually or
simultaneously in the horizontal plane (Ren et al., 2013), was
used in the study to conduct supported free arm reaching and
movement, as commonly used in stroke rehabilitation (Lo et al.,
2010). The subject was seated with the upper arm, forearm,
and hand strapped to the IntelliArm through the corresponding
braces (Figure 1). The subject’s shoulder horizontal adduction-
abduction, elbow flexion-extension and wrist flexion-extension
axes were aligned with the corresponding mechanical axes
of the IntelliArm robot (Ren et al., 2013). The IntelliArm
robot was made back-drivable under the internal model based
impedance control (IMBIC; Kang et al., 2009), thus the subject
could move the arm voluntarily with little resistance from
the robot. Six wireless pre-amplified, single differential surface
EMG electrodes (Trigno, Delsys Inc; Boston, Massachusetts)
were used to record EMG signals from the anterior deltoid,
posterior deltoid, biceps brachii, long head of the triceps brachii,
flexor carpi radialis, and extensor carpi radialis muscles. The
subject was instructed to move their arm voluntarily in the
horizontal plane with large concurrent movements across the
shoulder, elbow, and wrist joints at the subject’s self-selected
comfortable speeds (<70 degrees/second), as the speed and
movement duration are more likely to vary in real-world settings.
The motors used to control the motion of the robot in other
planes were locked in this study. The movement range of
each of the joints was about 90◦. Relative long single trial
instead of a few short time trials were used for data recording
when movements are freely repeated several times in order to
capture both the commonality and the variability of the EMG
and motion properties. Thus, the subject performed a single
movement trial over a span of about 3 min in this study.
Previous studies have used a similar approach for modeling
functional relationships between EMG and limb kinematics

(Cheron et al., 1996, 2003). The reliability of an experimental
study could be affected by several factors such as motivation
or boredom. For example, during series of trials, the second
one is likely better than the first because subjects intend to
improve their performance or because they may benefit from
the learning experience of the first one. By contrast, a decreased
performance between the first trial and the following trial could
possibly be explained by lack of motivation or fatigue (Hopkins,
2000).

Data Collection and Signal Processing
The surface EMG signals were sampled at 1,000 Hz by using
the Trigno EMG system, rectified, and then low-pass filtered
with a six-order Butterworth filter (cutoff frequency = 4 Hz)
to obtain the linear envelope (LE). Multi-joint position signals
from the IntelliArm robot were sampled at 1,000 Hz and
synchronized to the EMG data through a trigger signal sent
to the aforementioned IntelliArm and EMG data acquisition
systems simultaneously. The trigger was implemented as a
push button switch. The resultant EMG LE and position
signals were then down sampled to 20 Hz for subsequent
data analysis. Figure 2 illustrates the representative EMG
and kinematic data recorded during a typical experimental
trial.

NARX Model
The multi-joint dynamic relationship between the six arm
muscles and the shoulder, elbow and wrist movements
was characterized by an AutoRegressive with eXogeneous
inputs (NARX) model for discrete-time non-linear systems
(Leontaritis and Billings, 1985; Billings, 2013) and is represented
as

y (t) = f
[

y (t − 1) , . . . , y
(

t − ny
)

, x (t − 1) , . . . , x (t − nx)
]

+ e(t) (t) (t − 1) t − nx (1)

where x(t) and y(t) are the input and output of the model at
discrete time step t, respectively. While the input order n_x
≥ 1, the output order n_y ≥ 1, and n_x ≤ n_y (Leontaritis
and Billings, 1985; Billings, 2013). f(·) is a non-linear function,
which can be approximated by a standard multilayer perceptron
(MLP) neural network. The resulting connectionist architecture
is called a NARX recurrent neural network, which has been used
in modeling non-linear dynamic systems (Chen et al., 1990; Lin
et al., 1996, 1997; Menezes and Barreto, 2008; Farmer et al.,
2014).

Assuming that e(t) has zero mean and finite variance, the
minimized mean-square error (MSE) predictor for the NARX
model is approximated by

ŷ (t) = y (t) − e (t) = f
[

y (t − 1) , . . . , y
(

t − ny
)

, x (t − 1) ,

. . . , x (t − nx)] (2)

The NARX model has a delay structure, creating embedded
memory within the neural network. The MSE one-step predictor
is a non-linear function of a finite number of past outputs and
past inputs.
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FIGURE 1 | Experimental setup with the subject performing self-paced multi-joint movements with the upper limb exoskeleton robot. The dashed—line arrows mark

the axis shoulder horizontal adduction-abduction, elbow flexion-extension, and wrist flexion-extension axes. The double—headed arrows indicate the arm adjustment

of the robot. The other degrees of freedom of the robot have been omitted from the figure for clarity. EMG electrodes 1 to 6 were used to record muscle EMGs from

the anterior deltoid, posterior deltoid, biceps brachii, triceps long head, flexor carpi radialis, and extensor carpi radialis muscles of the dominant arm of the subject,

respectively.

In contrast to other recurrent networks, NARX neural
networks have feedback from the outputs rather than
from the hidden states (Siegelmann et al., 1997). As a
result, NARX neural networks are able to learn more
effectively, converge faster and exhibit better generalizations
(Lin et al., 1996, 1997). In addition, the NARX neural
networks are computationally as powerful as Turing
machines (Siegelmann and Sontag, 1991, 1995), which
means that theoretically any problem can be modeled
and solved using a NARX neural network. Thus, we
used a NARX neural network to predict dynamic
arm movements by modeling the non-linear dynamic
relationship between the multiple muscle activities and arm
kinematics.

NARX Neural Network Structure
The NARX network model used in this study was developed
by using the Neural Network Toolbox in Matlab (Mathworks,
Natick,MA), which consisted of an input layer containing the six-
channel EMG LE signals recorded from the arm, a hidden layer
containing three neurons, and a linear output layer containing
three outputs corresponding to the shoulder, elbow, and wrist
angular positions (Figure 3).

To continuously decode the multi-joint positions
simultaneously from the EMG LE signals, the following

NARX network model was used:

Un (t) = f1

(

∑Nx

i= 1

∑nx

k= 0
Ani

(

k
)

Xi

(

t −m− k
)

−
∑Ny

j= 1

∑ny

k= 0
Bnj

(

k
)

Yj

(

t −m− k
)

+ b1n

)

,

n = 1, 2, 3 (3)

Yj (t) = f2

(

∑3

n= 1
Cjn (t)Un (t) + b2j

)

, j = 1, 2, 3 (4)

where Un (t) represents output of one of the non-linear nodes
of the hidden layer, Yj (t) is the shoulder, elbow or wrist angular
position predicted by the NARX network model at time t; Nx

(=6) is the number of EMG LE signals; nx (=2) is the number
of past input time lags used in the NARX model; Ny (= 3) is the
number of joint angles, ny (=2) is the number of past output time
lags used in the NARXmodel;m (=2) is the number of time lags,
which specifies the embedding delay (τ = m1t) and correspond
to the prediction interval; Xi

(

t −m− k
)

is the ith EMG LE at
time lag m + k; Yj

(

t −m− k
)

is a joint angle predicted by the
NARX model at time lag m + k; Ani, Bnj and Cjn are the weight
vectors. b1n and b2j are the bias weights. f1 and f2 are the sigmoid
function and linear function, respectively.

The NARX neural network model has 51 parameters in total,
which are estimated in training the neural network offline by
using a supervised learning procedure to minimize the errors
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FIGURE 2 | Representative shoulder, elbow, and wrist movements and the corresponding surface EMG signals (raw signals are in black and the corresponding linear

envelope profiles are in gray) recorded in a movement trial on one subject.

between the NARX network model outputs and experimentally
measured angles.

Performance Measure
For each subject, a five-fold cross-validation procedure was
used to evaluate the performance. The EMG and arm joint
kinematic data were divided into five segments with equal
length. Each time, four out of five segments of data were
used as the training set and the remaining segment was
used as the validation set (training: 80%, validation: 20%).
The procedure was repeated with each of five segments used
as the validation set once. To evaluate the performance of
the trained decoder, the variance accounted for (VAF) was
calculated between the measured and decoded joint angles based
on the fresh data (Kearney and Hunter, 1990; Fagg et al.,
2009).

One-way ANOVA with repeated measures was utilized to
compare the decoding performance across the multiple joints.
The group factor had three levels, corresponding to the shoulder,

elbow, and wrist joints. The null hypothesis was that there was
no difference between the decoding performance of the shoulder,
elbow and wrist joints. Multiple comparisons with Bonferroni
correction were conducted to compare pairwise differences
between the joints.

EXPERIMENTAL RESULTS

Decoding Performance and the Effect of
Prediction Interval
The effect of the length of prediction interval on the decoding
performance was evaluated as suggested by previous research
(Farmer et al., 2014). The relationship between decoding
accuracy and the prediction interval was plotted for the
shoulder, elbow, and wrist joint angles predicted based on
only six muscle EMG signals, which shows that the decoding
performance varies with the length of prediction interval
(Figure 4). An increase of window length from 50 to 100
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FIGURE 3 | Schematic of the NARX neural network. Measured EMG LE signals and past estimates of the shoulder, elbow, and wrist angles were weighted and fed

back via tapped delay lines to the hidden layer consisted of three nodes. Outputs of the hidden layer were weighted and linearly combined to provide continuous

estimates of the outputs (shoulder, elbow, and wrist joint angles) over time.

ms led to consistent improvement in decoding performance
across the joints, as indicated by the higher VAF. A further
increase of the prediction interval to 300 ms was accompanied
with a slight decrease in the decoding performance. For each
prediction interval, no significant differences were observed
between different joints [One-way repeated measures ANOVA,
F(2, 15) = 0.16, P = 0.85, partial eta squared ηp

2 = 0.02].
Averaged across all the able-bodied subjects, the prediction
interval of 100 ms yielded the best performance with the highest
average VAF, which was used in the subsequent analysis for
decoding.

Position Decoding Results
The offline decoding performance of NARX neural network was
assessed in terms of its performance to decode the shoulder,
elbow and wrist joint positions during active movements using
only the six muscle EMG LEs as inputs. High performance
in position decoding was achieved for all subjects by using
the NARX model, which has a hidden layer containing three
neurons, and a linear output layer containing the shoulder, elbow
and wrist angle outputs with the prediction interval of 100 ms.
Joint angle predictions made using the NARX neural network

model based on only the multiple EMG inputs matched very
closely with the measured shoulder, elbow, and wrist positions
(Figure 5).

Very close matches between the decoded and measured joint
angles were achieved for all 10 able-bodied subjects, as shown in
Figure 6. The ANOVA showed a significant difference among the
decoding performances for the shoulder, elbow and wrist joints
[One-way ANOVA, F(2, 18) = 5.61, P= 0.0092, partial eta squared
ηp

2 = 0.29]. The decoding accuracy for the wrist was lower than
that achieved for the shoulder and elbow (Bonferroni test, P <

0.05).
Similarly, we have further tested the feasibility of the NARX

decoder in 10 stroke subjects showing that the decoded and
measured joint angles were close for all 10 stroke subjects who
had various levels of functional impairment (Motor status scale
14.67–66.02, Fugl-Meyer score 16–50), as shown in Figure 7. The
ANOVA showed a significant difference among the decoding
performances for the shoulder, elbow and wrist joints [One-
way ANOVA, F(2, 18) = 7.31, P = 0.0029, partial eta squared
ηp

2 = 0.35]. The decoding accuracy for the wrist was lower
than that achieved for the shoulder and elbow (Bonferroni test,
P < 0.05).
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FIGURE 4 | The decoding performance demonstrated by the VAF as a

function of prediction interval. The VAF between measured and decoded

shoulder, elbow and wrist joint angles over the tested prediction intervals were

averaged across all subjects. The vertical bars gave the corresponding

standard deviations.

DISCUSSION AND CONCLUSION

The study investigated decoding multi-joint dynamic arm
movements based solely on surface EMG signals from muscles
crossing the joints by extracting those motor commands
that reach the muscles. This study contributes to rapidly
growing research on myoelectric control of limb movements
by demonstrating continuous decoding of arm kinematics using
surface EMG signals based on the NARX model. In the current
study, taking into account the non-linear dynamical relationship
between the muscle EMGs and arm movements, we successfully
estimated shoulder, elbow and wrist joint movements using only
the six EMG signals by adopting time delays and feedback stream
into an artificial neural network. These results are consistent with
recent studies (Jiang et al., 2012; Farmer et al., 2014; Hahne et al.,
2014; Ngeo et al., 2014) in which proportional and simultaneous
estimation of limb kinematics was achieved toward myoelectric
control, and suggest the use of EMG as a robust and accurate
interface for robot control (Farina and Aszmann, 2014). These
findings further support the approach to decoding dynamic limb
movements using surface EMG signals by taking advantage of
artificial neural networks.

Motivated by the fact that NARX neural networks have a
recurrent dynamic nature and are computationally equivalent
to Turing machines (Siegelmann and Sontag, 1991, 1995),
we assessed the NARX networks for continuous decoding
of multi-joint dynamic arm movements using surface EMG
signals. The performance of the decoder was evaluated by
offline analysis using EMG signals from the six muscles and
kinematic data measured by the robot during dynamic multi-
joint arm movements in the horizontal plane. The decoding
accuracies in terms of VAF, were above 98% for the shoulder,
elbow and the wrist joints possibly due to the fact that the

FIGURE 5 | Decoded and measured shoulder (A), elbow (B), and wrist (C)

joint angles from a representative subject. The NARX neural network

accurately predicted actual kinematics with the prediction interval of 100 ms.

The VAF of the predicted shoulder, elbow and wrist position calculated from

fresh validation data (50 s long) were 0.9999, 0.999, and 0.9977, respectively.

noise of EMG recordings was suppressed by low-pass filtering
the EMG signals with a six-order Butterworth filter (cutoff
frequency = 4 Hz). The decoding performance of the wrist was
slightly inferior to that obtained for the shoulder and elbow,
possibly because the kinematic data collected from the wrist
joint were noisy due to the relatively large noise caused by
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FIGURE 6 | Cross-validated position decoding performance characterized by the VAF over all able-bodied subjects.

FIGURE 7 | Cross-validated position decoding performance characterized by the VAF over all subjects post stroke.

the Harmonic Drive gear compared to the torque generated by
subjects during the voluntary wrist movement under impedance
control. This finding is in agreement with that reported by
Farmer et al. who showed a NARX model could continuously
estimate the prosthetic ankle angle in transtibial amputees using
the EMGs recorded from the residual lower limb (Farmer et al.,
2014). Furthermore, the method is able to continuously decode
movements of multiple joint simultaneously instead of a single
joint movement.

Previous studies with able-bodied individuals showed
promising results, which need to be interpreted with caution, as
the findings might not be directly transferable to neurologically
impaired patients, because voluntary surface EMG signals
might be contaminated by spontaneous motor activity in
studies involving neurological impairments. For instance,
when recording EMG signals from paretic muscles of stroke
or spinal cord injury patients, abnormal hyper-excitable

motor unit discharges may induce spontaneous spurious
spikes, compromising the voluntary EMG signals (McKay
et al., 2011). Previous studies with incomplete spinal cord
injury have shown that the resulting involuntary background
spikes can contaminate surface EMG recordings thus result in
inappropriate interpretation of the signals (Liu et al., 2014a,b).
Therefore, we have further tested the feasibility of the NARX
decoder in 10 stroke subjects to evaluate the current method
on neurologically impaired patients, we observed that the
high decoding accuracy (VAF > 98% for all three joints) was
consistent across different stroke subjects who had various
levels of functional impairment (Motor status scale 14.67–66.02,
Fugl-Meyer score 16–50). It was observed that the stroke subjects
have more variable decoding results compared to the healthy
subjects with respect to the wrist joint angle, In contrast, the
healthy subjects have more variable decoding results for the
shoulder and elbow joints, This result may be explained by

Frontiers in Neuroscience | www.frontiersin.org 8 August 2017 | Volume 11 | Article 480

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Liu et al. NARX-Based Decoding

the fact that the healthy subjects have bigger motion ranges,
high speeds and velocity changes. These stroke subjects might
have different clinical features, because they are very likely of
having undergone very different degree of brain plasticity. We
observed that nothing would change by removing patients with
more than 10 years since the onset of stroke. However, with
a small sample size, caution must be applied, as the findings
might not be extrapolated to all patients with different clinical
features.

Note that unlike the time delay neural network (TDNN)
approach for predicting joint-angle trajectories based on EMG
signals during arm movements (Au and Kirsch, 2000; Pulliam
et al., 2011; Smith and Brown, 2011), the NARX network
makes full use of the model output feedback and has powerful
modeling, learning and generalization capacities (Chen et al.,
1990; Lin et al., 1996, 1997; Menezes and Barreto, 2008;
Farmer et al., 2014). The presence of direct feedback from the
output gives strong decoding power to the NARX model. More
specifically, the NARX model makes use of the AR model’s
implicit characterization of the limb kinematics vis-à-vis the
feedback. In contrast, the absence of such a feedback in the
TDNN model makes it less powerful in decoding. Thus, the
NARX network outperforms conventional neural network based
decoders, such as the TDNN network (Menezes and Barreto,
2008) qualitatively. Despite this, we acknowledge that future
systematic comparison studies on different decodingmethods are
needed.

EMG signals have been used to control joint angular
velocity indirectly by commanding the stiffness equilibrium
angle (Ha et al., 2011). However, from a practical point
of view, models characterizing multiple muscles controlling
human joints are rather complex even for a single joint
due to the complex nature of neuromusculoskeletal systems,
and usually they require exhaustive, time-consuming offline
analysis of neuromusculoskeletal system identification problem
(Koo and Mak, 2005). Thus, using such models for real-time
decoding is difficult and their real-time application remains to
be demonstrated, especially for applications to neurologically
impaired cases.

Despite these promising results, questions remain. A
limitation is that the high accuracy may be based on the fact that
the subjects was training in performing a simple and repetitive
arm movement and the arm movements were restricted to a
horizontal plane with arm-weight-supported, as opposed to 3-D
arm movement. Horizontal plane arm movements have been
widely studied and commonly used in rehabilitation of patients
post stroke (Hollerbach and Flash, 1982; Lo et al., 2010). It could
be argued that the positive results were due to the repeated

simplified movements in 2-D space. Still, further research
should be done to investigate different arm movements in 3-D
space without arm-weight-support. Furthermore, although the
IntelliArm robot was controlled to be backdrivable, it might still
induce some external loading to the subject’s arm during the
multi-joint arm movements, which might affect the EMG signals
and the myoelectric control behavior of human arm movement.
Everyday tasks involve behaviors uncertainty originating from
a large variety of sources, which in some circumstances might

require to suppress preplanned actions (Mirabella, 2014).
However, in this study the presence of behaviors uncertainty
was very limited if not completely absent. Therefore, it was not
possible to examine the EMG signal variability in the presence
of unpredictable changes. This is an important issue for future
research.

In summary, the proposed approach is capable of
continuously decoding multiple joint movements of the human
arm simultaneously by taking into account the non-linear
mappings between the multi-joint arm kinematics and multiple
muscle EMGs, which may help improve myoelectric control
of robotic exoskeletons and robot-guided arm rehabilitation in
neurological disorders.
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