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ABSTRACT Lightweight neural networks that employ depthwise convolution have a significant com-
putational advantage over those that use standard convolution because they involve fewer parameters;
however, they also require more time, even with graphics processing units (GPUs). We propose a Repetition-
Reduction Network (RRNet) in which the number of depthwise channels is large enough to reduce
computation time while simultaneously being small enough to reduce GPU latency. RRNet also reduces
power consumption and memory usage, not only in the encoder but also in the residual connections to
the decoder. We apply RRNet to the problem of resource-constrained depth estimation, where it proves
to be significantly more efficient than other methods in terms of energy consumption, memory usage, and
computation. It has two key modules: the Repetition-Reduction (RR) block, which is a set of repeated
lightweight convolutions that can be used for feature extraction in the encoder, and the Condensed Decoding
Connection (CDC), which can replace the skip connection, delivering features to the decoder while
significantly reducing the channel depth of the decoder layers. Experimental results on the KITTI dataset
show that RRNet consumes 3.84× less energy and 3.06× less memory than conventional schemes, and
that it is 2.21× faster on a commercial mobile GPU without increasing the demand on hardware resources
relative to the baseline network. Furthermore, RRNet outperforms state-of-the-art lightweight models such
as MobileNets, PyDNet, DiCENet, DABNet, and EfficientNet.

INDEX TERMS Computer vision, Deep neural network, Depth estimation, Encoder–decoder network,
Lightweight neural network, Machine learning, Mobile Graphical Processing Unit (GPU), Unsupervised
learning.

I. INTRODUCTION
Depth estimation is crucial for several computer vision ap-
plications. Many technological goals, including localization
in augmented reality (AR) or virtual reality (VR), advanced
robotics, the reliable operation of autonomous vehicles or
drones, and smart factories, cannot be realized without accu-
rate depth estimation. Furthermore, deep learning approaches
[1]–[9] convincingly outperform attempts to manually solve
this problem [10], [11]. Nevertheless, these approaches in-
volve resource-intensive computation. Consequently, their
use in mobile applications that involve a lightweight neural

network model and relatively low-end graphics processing
units (GPUs) remains limited. Moreover, in most cases,
they make use of the Compute Unified Device Architecture
(CUDA) parallel computing platform [12] and the related
neural-network library cuDNN [13]. As we will show in the
subsequent sections of this paper, this can strongly affect
performance.

The most intuitive method of designing a lightweight
model is to employ light layers with small sized kernels and
to suitably scale the number of channel parameters using
appropriate sub-sampling. However, performance can suffer
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FIGURE 1. Energy consumption against time for six models on NVIDIA TX2.

because trainable data are expensive and limited in volume.
Various compensation techniques for trainable data have
been implemented [14]–[17], but lightweight models such
as MobileNet [18], [19], SqueezeNet [14], ShuffleNet [20],
and EfficientNet [21] generally involve encoder-only net-
works with classification-type architectures and a narrow
output resolution. Current state-of-the-art lightweight models
cannot be applied to the decoder portion of an encoder–
decoder network: the differences in model design and data
flow offset the advantages of the reduced model with the
encoder structure.

Most recent lightweight networks make extensive use
of depthwise convolution layers to reduce computational
complexity. While the benefit of such an approach may be
considerable, there remain problems with latency which have
not been investigated heretofore.

In general, depth estimation methods require an encoder–
decoder network, which entails more computation and mem-
ory usage than a network of the kind used for classification or
detection. In addition, many feature channels in the encoder
network can lead to extensive computation in the decoder
because of direct layer-wise connections between the two
networks; although the deep network structures and over-
lapping information in both the encoder and decoder tend
to improve the performance, such tightly coupled networks
require significant hardware resources, increasing the model
complexity and hindering efficient deployment in a mobile
environment.

This study addresses the problem of designing an energy
efficient, lightweight encoder–decoder model for depth esti-
mation.

• We design a model that has the advantages of a light
weight and low latency by controlling the ratio of depth-
wise convolution to other convolutions.

• We propose Repetition-Reduction (RR) block, which is
an energy efficient encoder design module.

• We propose a Condensed Decoding Connection (CDC)
tied to the encoder’s special repetition structure that
delivers feature information to the decoder efficiently
with a high feature density while suppressing the rapid

growth of model complexity; the CDC’s efficiency is
maximized by the RR block.

• We propose a Repetition-Reduction Network (RRNet),
which is an energy efficient encoder–decoder model
based on RR blocks and CDCs that outperforms cur-
rent state-of-the-art complex and lightweight models in
terms of performance, run time, and energy consump-
tion using practical mobile GPU hardware.

The rest of the paper is organized as follows: Section II
introduces related works ranging from classical depth es-
timation approaches to state-of-the-art lightweight neural
network model designs. Our design modules, namely, the RR
block, CDC, and RRNet, are comprehensively discussed in
Section III. Then, Section IV discusses the implementation
of the proposed model and compares the experimental results
of RRNet with those of various models. Finally, in Section V,
we present our conclusions.

II. RELATED WORK
In this section, we briefly review some of the major ap-
proaches to supervised and unsupervised depth estimation
and lightweight neural network design.

Supervised Depth Estimation: Most depth estimation
methods [4]–[6], [9] use supervised approaches, which typ-
ically achieve better performance than unsupervised ones.
In particular, [6], [9] and [22] employ one or two spatial-
pyramid networks with Spatial Pyramid Pooling (SPP) [23],
which has been intensively used in encoder–decoder net-
works [22], [24], [25]. In [25], [26], the SPP module uses
adaptive average pooling to compress features into four
scales, followed by pointwise convolution to reduce feature
dimensions and the concatenation of different feature-map
levels to form the final SPP feature maps.

The good performance of supervised methods is due to the
presence of ground truth (GT) data. However, it is difficult
to prepare reliable depth GT datasets because humans have
limited depth-labeling capability and human-reported depth
datasets usually contain considerable noise. More accurate
GT depths can be obtained with the help of expensive depth
sensors such as LiDARs, radars, and laser scanners, but these
sensors also have limitations (apart from their cost): LiDAR
has shallow channels that hardly cover the full range of image
resolutions; active sensors such as Kinect and Time of Flight
(ToF) sensors have holes around the object boundaries and
are sensitive to strong visible light. Moreover, depth labeling
must cover multiple camera viewpoints and thus involves
elaborate camera calibrations. Therefore, more attention is
now being focused on unsupervised learning, which does not
require the manual labeling of datasets.

Unsupervised Depth Estimation: Unsupervised depth
learning [1]–[3], [7], [8] offers the benefit of not requiring
annotated GT depths. In [3], [7], unsupervised learning
removes the need for separate supervisory signals (depth or
ego-motion ground truth, or multi-view video) and achieves
good performance by introducing camera motion in the
learning process. Monodepth, presented at CVPR 2017 by
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Godard et al. [27], achieves good performance using a pair
of calibrated cameras (right and left) by generating the right
image from the left image via left–right consistency alone,
without the ground truth. Monodepth uses the VGG [28]
and ResNet [29] architectures and generates a decoder with
architectures similar but inverse to those of the encoder.

Lightweight Network Designs: Several methods have
been proposed for making deep neural networks lighter,
among them are deep compression [30], low-bit quantiza-
tion [31], low-rank approximation [32], matrix decompo-
sition [33], and sparse Winograd-based convolutions [34].
There are also various architectural engineering approaches
based on the bottleneck structure and layer factorization;
these are mainly introduced in state-of-the-art lightweight
networks such as SqueezeNet [14], MobileNet [18], [19],
ShuffleNet [20], and EfficientNet [21].

Depthwise Separable Convolution (DWconv) [35] is
a layer-factorization approach that is widely used in
lightweight models. DWconv factorizes one convolution
layer into a depthwise convolution and a pointwise convolu-
tion. The depthwise convolution has very light computation
requirements and few parameters, because each channel of
the input performs a convolution using a single unique depth
filter; this is an extreme case of group convolution. The point-
wise convolution forms a final output layer that interchanges
information to compensate for any performance degradation
caused by the depthwise convolution. Our design modules
also utilize DWconv, which is covered in detail in Section
III.

SqueezeNet [14] is a backbone network showing similar
performance to AlexNet [36]. It is composed of Fire modules,
each of which first factorizes one convolution layer into two
different kernels of sizes, 3×3 and 1×1, and then concate-
nates them into one output convolution layer. SqueezeNet has
the advantage of reduced weight parameters because of the
small kernel sizes and the division of one layer into two.

MobileNet [18], [19] uses a design block that is primarily
based on inverted residual connections, linear bottlenecks,
and DWconv [35]. The scaling parameters of a lightweight
backbone network of such modules could be used to change
the network channels or input feature size for various pur-
poses, such as accommodating specific target hardware plat-
forms.

ShuffleNet [20] utilizes a group convolution and adopts
channel shuffling, which allows active interchange of the
feature information. The effectiveness of channel shuffling,
which compensates information loss due to group convolu-
tion through a group scaling parameter along with a backbone
network, has been experimentally demonstrated.

Other recent efficient architectures such as ESPNetv2 [37],
DiCENet [38], and DABNet [39] also utilize DWconv. ESP-
Netv2 [37] applies DWconv with atrous convolution within
the dilation rate range of the number of branches, so that each
DWconv has a differently sized receptive field. DiCENet [38]
transposes one input to three so that each height, width, and
channel are at the input depth, processes them using DWconv,

and then transposes them back to the original shape in order
to concatenate those into one layer. DABNet [39] halves the
number of input channels by a 3×3 standard convolution
and then applies DWconv. The 3×3 receptive field is then
divided into two 3×1 paths. DWconv is performed again with
the opposite 1×3 receptive field, and passes through a 1×1
pointwise convolution that restores the number of channels
to the original.

On the basis of the above studies, it seems that the bot-
tleneck block is very efficient for model compression and
that it is well-utilized in lightweight networks. Enriched in-
formation in the upper layer is transmitted to the bottom layer
and is contracted by the pointwise convolution layer. Mo-
bileNetv2 [19] considers inverted residual blocks to account
for residual connections to the bottom layer. However, this
structure hardly handles the residual connections to multiple
connections in the bottom layer or skip connections to the
layers in the decoder. This drawback has inspired the method
proposed in this study.

III. METHODS
In our model, RRNet, we consider both GPU latency and
computation. We propose the RR block and CDC as building
components for an efficient encoder–decoder model. To de-
sign RRNet, we have studied lightweight convolutions such
as depthwise convolution and pointwise convolution from the
mobile GPU perspective. We have observed that although
depthwise convolution involves a small amount of computa-
tion, its GPU latency is higher than that of other convolution
operations such as the 3×3 standard convolution and the
pointwise convolution, which we have described in detail in
the Bottleneck Part in Section III A. Therefore, our approach
to designing the model architecture of the RR block is to form
an efficient structure of lightweight layers by keeping the
number of channels in the depthwise layer sufficiently large
to reduce computation, but also small enough to enhance
the latency. Despite the latency issue, depthwise convolution
offers substantial benefits in terms of computation and the
number of parameters. Therefore, we strive to maintain the
correct ratio between the depthwise convolution layers and
other kinds of convolutions. In addition, CDC, the other
building block, is designed to maintain the directionality
with which the computation is reduced, while passing rich
information from the encoder to the decoder.

Next, we briefly introduce the roles of the RR block and
the CDC. The RR block is designed for the encoder and
it extracts the feature information. To do this efficiently,
lightweight layers are used, which can be repeated according
to the repetition parameter value r; thus, the performance of
the encoder can be improved as the model scales up and the
number of parameters increases. The CDC is designed for
the decoder. The RR block increases the number of layers
while performing repetition through the lightweight layers;
the CDC collects some of these layers through a concatena-
tion operation. Thus, the CDC and RR block work closely
together through the cycle of repetitions. The output layer
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FIGURE 2. Proposed RR block (Bottleneck Part + Transition Part) and CDC Part. In the Bottleneck Part, the input channel is reduced to the value cr through
channel reduction by 1×1 pointwise convolution, and 3×3 depthwise convolution is processed with the same channel value. Then, the channel value is increased
to ce through channel expansion by 1×1 pointwise convolution. This process is repeated r times, as indicated by the orange arrows. During the repetition, small
pointwise convolution outputs that have the channel value cr are concatenated sequentially in the CDC Part. When the repetition ends, the Transition Part
reduces the channel of the Bottleneck Part output to cr through 1×1 pointwise convolution, increases the channel back to ce through 3×3 standard convolution,
and forwards it to the input of the next encoder layer. At this time, the CDC Part concatenates one last small pointwise convolution output (cr channel) and finally
performs a reduction process by 1×1 pointwise convolution to reduce the channel size of the concatenated output from cr × (r + 1) to cr through pointwise
convolution. The result is provided as a decoder input.
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that is concatenated by the CDC is called the layer chunk.
After all the concatenations, the channel of the layer chunk
will be as large as the number of repetitions r. Therefore,
the process of reducing this channel is performed through
pointwise convolution. The channel-reduced layer chunk is
then provided as an input to the decoder. Figure 2 illustrates
the main building blocks of the proposed model and their
operational flow in detail.

A. REPETITION AND REDUCTION (RR) BLOCK
The RR block can be used as a building block for the encoder.
It is divided functionally into two parts, the bottleneck part

and transition part, as shown in Figure 2. Each of these is
described in detail below.

Bottleneck Part: The bottleneck part consists of
lightweight convolution layers arranged in triplets, the first
and third convolutions in each triplet being pointwise and the
middle convolution being depthwise. The target amount of
computation or number of parameters can be scaled by ad-
justing the number of output channels from each of these lay-
ers. Such triplets are called bottleneck structures; they have
frequently been used in other lightweight model studies, e.g.,
the DeepVision workshop in CVPR [40], MobileNetv2 [19]
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and ShuffleNet [20]. However, the present study differs from
earlier ones in always keeping the number of output channels
of the depthwise convolution relatively small, because of the
critical latency issue in GPU processing.

Let a pointwise or depthwise convolution having an output
channel value K be called pointwise(K) or depthwise(K).
Let CE(Channel Expansion) denote a high channel value
such as 384 or 512, and CR(Channel Reduction) denote a
low channel value such as 16 or 32. Then, the structure we
propose is pointwise(CR)–depthwise(CR)–pointwise(CE),
and this sequence is always maintained. (Channel reduction
and channel expansion in the bottleneck part are illustrated
in Figure 2.) The purpose of this structure is to reduce
the usage of depthwise convolution while using lightweight
layers. Depthwise convolution has insufficient GPU-level
optimization; therefore, it has a significantly high inference
latency for its small amount of computation.

MobileNetv2 [19] is a typical bottleneck structure
with the layer sequence pointwise(CE)–depthwise(CE)–
pointwise(CR), i.e., with flow opposite to that in our struc-
ture. This CE–CE–CR sequence pattern means depthwise
convolution always has high output channels, thereby in-
creasing the depthwise convolution percentage.

To gain an intuition regarding the value of the latency and
the factors controlling it, we measured the latency of the
bottleneck structure of MobileNetv2 [19] layer by layer. The
results are indicated in green in Figure 4. As can be seen from
the Figure, depthwise convolution has approximately twice
the latency of the pointwise convolution, even though the
computation is only about one-seventh that of the pointwise
convolution before it. According to our detailed analysis of
this phenomenon, depthwise convolution is not supported
by the GPU-optimized library cuDNN; therefore, it is not
possible to perform high-speed computation in this layer as it
is in the others. Instead, a standard group convolution func-
tion is used to process depthwise convolution. However, this
function has not been sufficiently optimized at the GPU level
in most DNN frameworks, such as TensorFlow. In addition,
we also observed the same latency issue in experiments with
the recent CUDA 10 and cuDNN 7.

Figure 4 shows the reason for reducing the use
of depthwise convolution as the basic strategy of
the RR block. In this example, the expansion value
CE and reduction value CR are interchanged in the
corresponding bottleneck block of MobileNetv2 [19]
(from pointwise(CE)–depthwise(CE)–pointwise(CR) to
pointwise(CR)–depthwise(CR)–pointwise(CE)). In order to
match the amount of computation, the input channel of
the first pointwise(CR) convolution of the RR block was
increased from CR to CE (64 to 384). The measured latency
is shown in orange in Figure 4. This figure shows that the
unnecessary latency of the depthwise convolution can be
reduced.

Our approach avoids the undesirably high GPU latency
caused by the lack of depthwise-convolution support in the
optimization library. Any performance degradation caused

by depthwise convolution reduction can be compensated by
scaling up the pointwise convolution or by making use of the
Transition Part, which we will discuss later.

To observe the latency effect in an actual inference, we
also measured the latency of the entire encoder for three
models (MobileNetv2 [19], DiCENet [38], and the proposed
RRNet model) on NVIDIA TX2, scaling each model by
its scaling parameters to ensure similar computation. The
results, shown in Figure 5, clearly reveal the negative im-
pact of increasing the depthwise convolution usage on GPU
latency. The latency of DiCENet was more than twice that
of MobileNetv2; this is because DiCENet, despite its small
amount of computation, has more than twice the percentage
of depthwise convolutions. In addition, the figure shows that
RRNet effectively reduces the usage of depthwise convolu-
tion and has a positive effect on the actual GPU latency; it is
the fastest among the models utilizing lightweight layers.

We can mathematically demonstrate the reduced computa-
tional cost of using lightweight layers in the bottleneck part
in comparison with standard convolution. The output feature
maps of the standard convolution can be expressed as

OFMh,w,m =
∑
i,j,c

IFMh+i−1,w+j−1,c ·Wi,j,c,m, (1)

where h,w, c denote height, width, and channels of input
feature maps respectively, m denotes the number of ouptut
feature maps, W denotes the weight parameters, OFM
denotes the output feature maps, and IFM denotes the input
feature maps. Therefore, we can calculate the computational
cost Costconv of standard convolution as

Costconv = H ×W × C ×M ×K ×K, (2)

where H and W are the resolutions of the output feature
maps,K is the kernel size,C is the number of input channels,
and M is the number of output channels.

We can express the output feature maps of depthwise
convolution as

OFM ′h,w,c =
∑
i,j

IFM ′h+i−1,w+j−1,c ·W ′i,j,c. (3)

Then, we can calculate the computational cost Costdw of
depthwise convolution as

Costdw = H ×W × C ×K ×K. (4)

We can also calculate the computational cost Costpw of
pointwise convolution as

Costpw = H ×W × C ×M × 1× 1, (5)

where the kernel size is 1. Thus, we can calculate the re-
duction in the computational cost (CostReduction) of the
bottleneck part:

Costbottleneck = Costpw + Costdw + Costpw (6)

CostReduction =
Costbottleneck
Costconv

=
1

M
+

2

K2
. (7)
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Therefore, we limit the kernel size of the RR block to not
exceed 3. It is possible to reduce the amount of computation
or the number of parameters by a factor of approximately
nine by adopting the bottleneck structure.

Transition Part: The transition part consists of two layers:
pointwise convolution and 3×3 standard convolution. In the
bottleneck part, we aim to improve the latency efficiency
by reducing the depthwise convolution usage. However, this
may eventually be disadvantageous for performance, as it
decreases the total number of parameters. Therefore, we
have designed the transition part to carry out a performance
compensation for the encoder. In this part, we use only GPU-
optimized functions to reduce the unnecessary consump-
tion of latency caused by insufficient utilization of GPU.
Therefore, we select pointwise convolution and 3×3 standard
convolution, which are capable of GPU acceleration through
the cuDNN library.

The 3×3 standard convolution should be carefully placed,
because it introduces a large amount of computational load.
In the case of RRNet, we observed empirically that it is
possible to supplement the performance sufficiently by using
a single 3×3 standard convolution with each RR block.
Therefore, our proposed RRNet has one 3×3 standard convo-
lution for each RR block, and the number of output channels
of this layer is set to CE(Channel Expansion), which is the
maximum output channel value used in the bottleneck part.

Repetition in the Bottleneck Part: The CDC, which we
discuss later, receives feature information to be sent to the
decoder from the bottleneck part. Therefore, all three layers
of the bottleneck part (pointwise–depthwise–pointwise) are
defined as repetition targets, and these layers are repeated
according to the value r of the scaling parameter. Repeating
these layers not only improves the performance of the en-
coder, but also generates feature information to be sent to the
CDC in a lightweight manner. Moreover, because the amount
of feature information to be sent to the decoder via the CDC
is determined according to the r value, scaling r value plays
an important role in improving the performance.

In more detail, the bottleneck part reduces the dimension,
largely similar to principal component analysis (PCA) [41].
To leverage this critical reduction potential, the RR block
intensifies the bottleneck part by iterating the lightweight
layers and stacking each output per repetition. Therefore,
the scaling parameter r denotes the number of repetitions
in the bottleneck part of the RR block. The r-fold repetition
results in multiple connections to two paths. One path leads
to the next layer in the encoder, which includes the transition
part; the other leads to the decoder. In the decoder path, each
output layer per iteration is provided to the CDC. Therefore,
repetition in the RR block not only enriches the model
information, but also provides feature-intensive decoder con-
nections.

B. CONDENSED DECODING CONNECTION (CDC)
The CDC, which is represented by patterned light yellow
boxes with repetition flow in Figure 2, repeatedly stacks the
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MAdds 0.62B 0.53B 0.68B

FIGURE 5. Encoder latency results of MobileNetv2 [19], DiCENet [38], and
the proposed RRNet on NVIDIA TX2. The top circle charts show the
distribution of different types of convolution layers in each model. The other
circle charts show the corresponding percentage contributions to the latency
from each type of layer. For a fair comparison, we used the scaling parameters
of each model to scale the computation to a similar level.

pointwise convolution layers provided by the RR block (layer
chunk) in order. We deploy a pointwise convolution layer
with output channel scaling to handle the layer chunk; it can
also efficiently handle feature explosion, computations, and
model size before sending the features to the decoder. A CDC
is a module that can replace an existing skip connection, such
as the single layer concatenation structure in UNet [42]; its
intended use is not replacing or adjusting the decoder struc-
ture. However, with our empirically discovered backbone
RRNet using CDC, we have been able to reduce the channel
depth of the decoder significantly with little degradation of
the accuracy.

The preservation of a limited number of channels with a
linear bottleneck is the key to efficiency in MobileNetv2 [19].
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TABLE 1. Encoder ablation study on KITTI. With two exceptions, all models have the same skip connection [42] and UpConv decoder [27]). In the case of RRNet
with CDC (our final model, used for comparison with the other models), the skip connection is replaced with the CDC, and the UpConv decoder has a significantly
reduced depth channel, as shown in Figure 3 (b). PyDNet uses its own skip connection and decoder as well. Because these two models have different skip
connections and decoders, they are separated by a line at the bottom of the table. All models were trained with the do-stereo option, which provides stereo-pair
images as the ground truth. In all the tables, we chose the B0 case for EfficientNet, which is the lightest model presented in this paper. NOTATION: res = resolution
of the feature map; r = repetition parameter; d = depth multiplier; g = number of groups in the channel shuffling layer.

Encoder Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 MAdds Params
Monodepth [27] (baseline) 0.068 0.850 4.406 0.146 0.942 0.977 0.989 42.36B 31.6M
SqueezeNetv1.1 [14] 0.074 1.108 4.638 0.151 0.943 0.977 0.988 47.95B 15.3M
MobileNetv2 [19] (d = 1.0) 0.074 1.194 4.764 0.157 0.942 0.975 0.987 32.46B 17.5M
MobileNetv2 [19] (d = 0.06) 0.076 1.011 4.702 0.152 0.939 0.977 0.988 7.21B 5.1M
ShuffleNet [20] (g = 1) 0.120 1.144 5.348 0.206 0.869 0.953 0.978 11.72B 20.3M
ShuffleNet [20] (g = 8) 0.094 1.116 4.954 0.170 0.920 0.972 0.986 10.61B 17.2M
EfficientNet [21] 0.088 0.756 4.643 0.162 0.912 0.971 0.988 10.17B 10.4M
RRNet (r = 4, no CDC) 0.074 1.116 4.727 0.153 0.942 0.976 0.987 11.95B 7.8M
PyDNet [45] (res = full) 0.094 1.222 5.118 0.175 0.917 0.968 0.976 9.84B 1.9M
RRNet (r = 4, with CDC) 0.071 0.893 4.539 0.151 0.940 0.976 0.988 3.26B 1.1M

In this study, the linear bottleneck connects not only the
residual but also the decoder layers using CDC. The stacked
features are compressed by the pointwise reduction layer,
which is then delivered to the decoder in a non-activated form
that guarantees linearity. Because of repetition, the number
of stacked CDC channels is large; for example, 128 channels
repeated 6 times is equivalent to 768 channels. We reduce this
number by applying a pointwise reduction layer, resulting
in 128 output channels that are connected to the decoder
layer as seen in Figure 2. Owing to the pointwise convolu-
tion, the total output size becomes significantly smaller than
in conventional architectures. In short, by using a smaller
unit RR block, enriched CDC features, and a pointwise
linear reduction layer, we significantly reduce the number
of parameters and computational cost and obtain a level of
performance similar to the original one.

We will explain the CDC mathematically. The skip con-
nection can be represented by F (x) + x. The + makes
the shortest path from the top layer to the bottom layer in
the backward propagation process. It is an operation that
adds more edges to the computation graph, smoothing the
loss function and improving performance. Furthermore, a
greater number of nodes in computational graph can lead
to a more complex computation, but the additional edges
are relatively small increasing the computational complexity.
Therefore, CDCs add more edges with the same number of
nodes in the network. Assuming a network with L layers with
symmetric skip connections, we denote the convolution and
deconvolution in each layer with ReLU as Fc and Fd and
an RR block with input Xi as R(Xi). Write R2(R1(Xi)) as
R2(Xi) for simplicity. Then,

Ω(Xi)=[R1(Xi), R
2(Xi), ..., R

r(Xi), R
r+1(Xi)], (8)

where Ω denotes the CDCs. We assume that information
on the convolutional feature map Xi is to be passed to the
corresponding deconvolutional layers XL−i−1 and XL−i in
the decoder; then,

XL−i=Fd(XL−i−1⊕Fc1×1
(Ω(Xi))), (9)

where ⊕ denotes feature map concatenation or a similar
operation. For back-propagation, we consider the Lth layer,

XL=Fd(XL−1⊕Fc1×1
(Ω(X0))). (10)

We compute the derivative of the loss ` with respect to a
parameter θ as follows:

∇θ`(XL)=
∂`

∂XL−1

∂XL−1

∂θ
⊕ ∂`

∂Ω(X0)
. (11)

Therefore, CDCs carry larger gradients than skip connec-
tions, which are less likely to approach zero gradients.

C. MODEL FOR EFFICIENT ENCODER–DECODER
For the design of our backbone model RRNet, we use the
structure of the high-performance complex encoder–decoder
model from Monodepth [27] as a reference and set the
boundary values of the computation (up to 3.5 billion) and
model size (up to 1.5 million). We properly combine the RR
blocks, CDCs, standard convolution layers, pooling layers,
and other elements. Figure 3 (b) shows our RRNet structure
in detail.

1) RRNet Encoder
The RRNet encoder consists of three RR blocks. We use
a repetition parameter r = 4 for all RR blocks, having
discovered from Table 2 that this is the best tradeoff case
between performance, computational cost, and model size.
We place two successive 3 × 3 standard convolution layers
with maximum pooling to receive the input data; the three
RR blocks are placed thereafter. To reduce the feature map
resolution, maximum pooling is assigned after each of the
RR blocks.

We set the channel reduction in the RR block to 32 (RR
block 1) - 64 (RR block 2) - 128 (RR block 3), listed in
order from the input, and 128 - 256 - 512 in the same
order as that followed for channel expansion. We place an
average pooling layer at the end of the encoder. We have
compared the RRNet encoder with a variety of state-of-
the-art lightweight designs without CDC by replacing only
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TABLE 2. RR block ablation study of the repetition r on KITTI. (Each model has the same structure as the baseline RRNet architecture, including CDC and its own
decoder, as described in Figure 3 (b). All models are trained with the do-stereo option). Our RRNet architecture design shows the highest performance at r = 4. To
improve the performance beyond this point, it may be necessary to increase the number of RR blocks in the encoder along with the scaling r value. Alternatively,
increasing the complexity of the decoder design can be considered.

Model Repeats Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 MAdds Params
RRNet r = 1 0.082 1.117 4.941 0.160 0.931 0.974 0.987 2.80B 0.7M
RRNet r = 2 0.079 1.120 4.904 0.158 0.933 0.974 0.987 2.95B 0.8M
RRNet r = 3 0.077 1.086 4.797 0.157 0.935 0.975 0.987 3.11B 1.0M
RRNet r = 4 0.071 0.893 4.539 0.151 0.940 0.976 0.988 3.26B 1.1M
RRNet r = 32 0.074 0.922 4.523 0.154 0.938 0.976 0.988 7.64B 4.8M

TABLE 3. CDC ablation study on KITTI (all models are trained with do-stereo option). Skip is a skip connection originally proposed in the UNet structure [42]. Skip
and Upconv represent the baseline structure from Monodepth [27]. The UpConv decoder corresponds to Figure 3 (a) and consists of 6 decoding layers; the number
of channels in each layer is 512-512-256-128-64-32. The RRNet decoder corresponds to Figure 3 (b) and consists of 5 decoding layers; the number of channels in
each layer is 32-16-32-16-16. The notation (×k) means that all output channels are multiplied by k. For CDC, the output channel is from the final pointwise layer
which directly connects to the decoder layer. In this experiment, we observed the extent to which performance is maintained when the complexity of the decoder is
significantly reduced in the environment where the CDC is applied as a connection, under the same encoder and decoder condition. The encoder used is RRNet
that can utilize CDC. The basic performances of a baseline [27] encoder and the RRNet encoder were first compared. When CDC is used as a connection, the
performance is maintained even if the number of channels of all decoder layers is reduced from 16× to 32×.

Encoder Decoder Connection Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 MAdds Params
Monodepth [27] UpConv Skip 0.068 0.850 4.406 0.146 0.942 0.977 0.989 42.36B 31.6M
RRNet (r = 4) UpConv Skip 0.074 1.116 4.727 0.153 0.942 0.976 0.987 11.95B 7.8M
RRNet (r = 4) RRNet Decoder CDC 0.071 0.893 4.539 0.151 0.940 0.976 0.988 3.26B 1.1M
RRNet (r = 4) UpConv (×1/8) Skip 0.083 1.213 5.070 0.162 0.927 0.972 0.986 2.88B 1.2M
RRNet (r = 4) UpConv (×1/8) CDC 0.079 1.098 4.924 0.159 0.931 0.974 0.987 3.37B 1.7M
RRNet (r = 4) UpConv (×1/16) CDC 0.080 1.125 4.908 0.159 0.930 0.974 0.986 3.19B 1.3M
RRNet (r = 4) UpConv (×1/8) CDC (×1/8) 0.080 1.095 4.956 0.159 0.929 0.972 0.987 2.66B 1.1M
RRNet (r = 4) UpConv (×1/32) CDC (×1/32) 0.084 1.100 4.988 0.164 0.922 0.971 0.986 1.82B 0.7M

the encoder. The results, shown in Table 1, show that the
RRNet encoder is comparable to other lightweight designs in
terms of computation and model size, while having a special
stacking structure for the CDC.

2) CDC in RRNet

CDCs are assigned to the RR blocks one by one and the
channel reduction depth of the pointwise reduction layer is
set to the maximum depth of the channel expansion of its
corresponding RR block. Therefore, there are three CDCs in
total; the reduction depth values of the CDCs corresponding
to the RR blocks from one to three are 128 - 256 - 512,
respectively. Table 3 compares the skip connection with our
CDCs. Using the same RRNet encoder, we vary the connec-
tion type and the corresponding decoder size. In Table 3, the
notation ×1/n means that the number of channels of con-
catenated features is reduced by a factor of n. For example,
if the number of channels of a concatenated feature is 512
and the notation is×1/8, the final number of channels of this
feature is 64. In the case of the VGG ×1/8 decoder, the skip
connection has 1.2M parameters and the CDCs have 1.16M
parameters; however, the performance of the CDCs is better
than that of the skip connection. Moreover, CDC ×1/16 has
only 0.91M parameters; yet, it achieves higher accuracy than
the skip connection with 1.2M parameters. Owing to the
enriched information in the CDCs, the network can preserve
its performance with fewer parameters.

3) RRNet Decoder
The RRNet decoder consists of five upscaling layers. Each
layer is based on the UNet decoder structure [42]. The up-
scaling layer consists of three steps: (1) upscale convolution
through linear interpolation of feature maps, (2) concatena-
tion of encoder feature information, and (3) 3 × 3 decoding
convolution. The reduction layer from the RR block - CDC
is used here for the concatenation of the second step. As
mentioned above, we have been able to reduce the channel
depth of all decoder layers significantly, e.g., from 512 to 16.
Table 3 shows that our model can withstand 32 times lighter
decoders while maintaining performance. In the RRNet de-
coder, the channel depths of the five layers are 32-16-32-16-
16, from the input to the output.

IV. EXPERIMENTS
To evaluate the effectiveness of RRNet, we used unsuper-
vised depth estimation [27] as our baseline. Depth estimation
provides low-level information used by other higher-level
applications and is frequently executed as a background pro-
cess. Therefore, our objectives for this evaluation were high
performance and minimal runtime and power consumption
on mobile devices.

A. EXPERIMENTAL SETUP
Dataset: The KITTI dataset [43] was adopted for the eval-
uation; this dataset consists of 200 training image pairs
and 200 test image pairs. The baseline method [27] was
an unsupervised approach that did not use the ground truth
depth. KITTI 2015 contains 42,382 rectified stereo pairs
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TABLE 4. Comprehensive training results. Dataset K refers to the KITTI dataset and CS refers to the Cityscapes dataset.

Model Dataset Mode Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 Params
Monodepth [27] (baseline) K mono 0.148 1.344 5.927 0.247 0.803 0.922 0.964 31.6M
Eigen [49] K mono 0.204 1.548 6.307 0.283 0.702 0.891 0.959 54.2M
Liu [50] K mono 0.201 1.585 6.472 0.273 0.681 0.898 0.967 40.0M
Zhou [51] K mono 0.209 1.769 6.857 0.284 0.679 0.886 0.958 34.2M
SqueezeNetv1.1 [14] K mono 0.132 1.406 6.249 0.223 0.826 0.933 0.972 15.3M
MobileNetv2 [19] (d = 1.0) K mono 0.132 1.596 6.361 0.226 0.830 0.933 0.971 17.5M
MobileNetv2 [19] (d = 0.06) K mono 0.147 1.675 6.803 0.253 0.795 0.909 0.960 5.1M
PyDNet [45] K mono 0.153 1.363 6.030 0.252 0.789 0.918 0.963 1.9M
EfficientNet [21] K mono 0.132 1.488 6.343 0.228 0.823 0.930 0.972 10.4M
DiCENet [38] K mono 0.165 1.328 5.782 0.239 0.781 0.923 0.970 3.6M
DABNet [39] K mono 0.160 1.338 5.542 0.228 0.804 0.934 0.973 1.9M
RRNet K mono 0.130 1.547 6.341 0.222 0.834 0.937 0.973 1.1M
Monodepth [27] (baseline, cap 50m) K mono 0.140 0.976 4.471 0.232 0.818 0.931 0.969 31.6M
Garg [8] cap 50m K mono 0.169 1.080 5.104 0.273 0.740 0.904 0.962 16.8M
PyDNet [45] cap 50m K mono 0.145 1.014 4.608 0.227 0.813 0.934 0.972 1.9M
EfficientNet [21] cap 50m K mono 0.128 1.205 5.940 0.223 0.823 0.932 0.973 10.4M
RRNet cap 50m K mono 0.125 1.197 5.791 0.216 0.836 0.940 0.975 1.1M
Monodepth [27] (baseline) CS mono 0.101 1.319 4.732 0.169 0.928 0.972 0.986 31.6M
SqueezeNetv1.1 [14] CS mono 0.102 1.716 5.184 0.177 0.932 0.972 0.984 15.3M
MobileNetv2 [19] (d = 1.0) CS mono 0.105 1.514 5.139 0.171 0.926 0.973 0.987 17.5M
MobileNetv2 [19] (d = 0.06) CS mono 0.132 1.790 5.348 0.192 0.909 0.969 0.984 5.1M
PyDNet [45] CS mono 0.113 1.624 5.354 0.187 0.910 0.967 0.984 1.9M
EfficientNet [21] CS mono 0.159 2.862 6.104 0.224 0.891 0.956 0.976 10.4M
RRNet CS mono 0.095 1.532 5.201 0.170 0.933 0.973 0.986 1.1M
Monodepth [27] (baseline) CS + K mono 0.124 1.076 5.311 0.219 0.847 0.942 0.973 31.6M
Zhou [51] CS + K mono 0.198 1.836 6.565 0.275 0.718 0.901 0.960 34.2M
PyDNet [45] CS + K mono 0.146 1.291 5.907 0.245 0.801 0.926 0.967 1.9M
EfficientNet [21] CS + K mono 0.131 1.554 6.317 0.223 0.834 0.936 0.972 10.4M
RRNet CS + K mono 0.131 1.478 6.238 0.223 0.828 0.936 0.973 1.1M
Monodepth [27] (baseline) K do-stereo 0.068 0.850 4.406 0.146 0.942 0.977 0.989 31.6M
SqueezeNetv1.1 [14] K do-stereo 0.074 1.108 4.638 0.151 0.943 0.977 0.988 15.3M
MobileNetv2 [19] (d = 1.0) K do-stereo 0.074 1.194 4.764 0.157 0.942 0.975 0.987 17.5M
MobileNetv2 [19] (d = 0.06) K do-stereo 0.076 1.011 4.702 0.152 0.939 0.977 0.988 5.1M
EfficientNet [21] K do-stereo 0.088 0.756 4.643 0.162 0.912 0.971 0.988 10.4M
PyDNet [45] K do-stereo 0.094 1.222 5.118 0.175 0.917 0.968 0.976 1.9M
RRNet K do-stereo 0.071 0.893 4.539 0.151 0.940 0.976 0.988 1.1M
Monodepth [27] (baseline) CS + K do-stereo 0.071 0.980 4.542 0.150 0.943 0.976 0.987 31.6M
PyDNet [45] CS + K do-stereo 0.089 1.179 5.056 0.171 0.921 0.970 0.985 1.9M
EfficientNet [21] CS + K do-stereo 0.091 0.829 4.547 0.162 0.912 0.972 0.988 10.4M
RRNet CS + K do-stereo 0.078 1.070 4.859 0.157 0.934 0.974 0.987 1.1M

TABLE 5. Overall inference results with NVIDIA TX2. For fairness of
measurement, we measured only the inference time and set the TX2’s GPU to
the maximum performance mode. Each model was averaged by repeating 10
tests. Runtime refers to the execution time for 400 images from the KITTI
evaluation set. Energy consumption during runtime is measured in joules (J).

Model Memory Usage Runtime Energy
Monodepth [27] (baseline) 3926MB 96s 415.36J
SqueezeNetv1.1 [14] 4238MB 110s 531.32J
MobileNetv2 [19] (d = 1.0) 2658MB 106s 435.30J
MobileNetv2 [19] (d = 0.06) 4211MB 74s 201.24J
ShuffleNet [20] (g = 1) 4072MB 87s 245.45J
ShuffleNet [20] (g = 8) 3890MB 82s 242.52J
PyDNet [45] (res = full) 3431MB 62s 132.96J
EfficientNet [21] 4524MB 65s 210.97J
RRNet 1281MB 54s 128.84J

from 61 scenes, with 1242 × 375 pixels. We evaluated 200
high-quality disparity images in the training set, covering 28
scenes. The remaining 33 scenes contained 29,000 images for
training and 1,159 images for validation. For convenience,
we used left and right images together as a single input.

Training details: RRNet was trained using TensorFlow
1.4.0 [44] with CUDA 8.0 and cuDNN 7.0 as the back-ends.
We assessed the performance of RRNet with respect to the

TABLE 6. Overall inference results obtained using Xeon E3-2620, NVIDIA
Titan X, and NVIDIA TX2. TDP stands for Thermal Design Power. The results
obtained for each model were averaged after performing 4000 (400 images ×
10) tests. All results refer to the execution time for one image from the KITTI
evaluation set.

Power (TDP) 250W 95W 15W
Model Titan X Xeon E3-2620v3 TX2
Monodepth [27] (baseline) 0.044 s 0.448 s 0.240 s
SqueezeNetv1.1 [14] 0.045 s 0.511 s 0.275 s
MobileNetv2 [19] (d = 1.0) 0.048 s 0.350 s 0.265 s
MobileNetv2 [19] (d = 0.06) 0.028 s 0.221 s 0.185 s
ShuffleNet [20] (g = 1) 0.058 s 0.268 s 0.218 s
ShuffleNet [20] (g = 8) 0.063 s 0.288 s 0.205 s
PyDNet [45] (res = full) 0.030 s 0.124 s 0.155 s
EfficientNet [21] 0.053 s 0.242 s 0.163 s
RRNet 0.026 s 0.125 s 0.135 s

results reported for Monodepth [27] and PyDNet [45]. Our
baseline for all evaluations was a Monodepth model based
on the VGG structure. For a fair comparison, we trained our
network with the same protocol as that used in [27], [45]:
batches of eight images resized to 256 × 512 × 3, and 300
epochs executed on 29,000 images. Our loss function and
hyperparameters also matched those in [27], [45].
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FIGURE 6. TX2 inference results on KITTI. Here res = resolution of the feature map; r = repetition parameter; d = depth multiplier; g = number of groups in the
channel shuffling layer.

There were two training modes, namely mono and do-
stereo. These modes were selected according to the number
of inputs: mono mode for a single input and do-stereo mode
for concatenated image inputs. In general, stereo approaches
outperform monocular approaches via information enrich-
ment. However, a stereo approach can significantly increase
memory usage, runtime, and energy consumption. To show
the effectiveness of RRNet, we adopted both mono and do-
stereo modes for evaluation. Table 1 compares RRNet with
state-of-the-art lightweight models. For the best case, our
proposed method decreased the amount of computation by
factors of 4.16 ∼ 13.9 and the number of parameters by
factors of 4.53 ∼ 16.6 relative to other methods.

For evaluation on another dataset, we adopted the
Cityscapes [46] dataset, which contains 22,973 training
stereo pairs that comprise street scenes recorded across
Germany. This dataset has a higher image resolution and
quality than KITTI. The results are summarized in Table 4.
Training on the Cityscapes dataset was performed for the
initial 10 epochs using the same schedule as the baseline
method [27]. We expected that the performance would be
improved in this case in comparison with KITTI. However,
the performance was in fact similar or even slightly reduced
for all models, and training itself was not stable, as mentioned
for Monodepth [27].

B. EVALUATION OF RRNET ON NVIDIA TX2

Model size, runtime, and energy consumption are the key
considerations for resource-constrained mobile applications.
We evaluated all models on the NVIDIA TX2 Development
Kit [47] by using depth estimation based on an ARM-A57
CPU with 8 GB of main memory running on a Linux op-
erating system. TX2 is a mobile GPU processor based on
the Pascal architecture; it has 1.5 TFLOPS and 15 W of
thermal design power (TDP). We rebuilt a common worksta-
tion environment using TensorFlow 1.4.0 [44], CUDA 8.0,
and cuDNN 7.0, as in our training setup, the only difference
being that we customized TensorFlow to run on the ARM

architecture.
We emphasize energy consumption because it is affected

by the runtime factor. In real environments, the main bottle-
necks of depth estimation in mobile applications are energy
consumption, runtime, and memory usage. The results of
executing the models on TX2 are summarized in Figure 1 and
Table 5. Here, runtime refers to the actual model execution
time without considering the preparation time for iterative
execution, such as model initialization or data preparation,
which needs to be performed only one time during the
entire process. To ensure fair measurements, we enabled the
maximum performance mode via the jetson_clocks.sh script
provided for TX2. This mode prevents the OS from adjusting
the GPU’s power consumption by itself, so that there is no
unnecessary impact on runtime measurement. The result is
the average of the results of a total of 10 tests with 400 images
each, which is a total of 4000.

RRNet had a total energy consumption of 128.84 J, the
lowest of all the models; moreover, it required approximately
3.84× less power and was 2.21× faster than the others. Thus,
RRNet outperformed the other models in terms of energy
consumption, memory usage, and computation, as shown in
Figure 1 and Table 5.

In addition to the previous tests, we conducted inference
tests in a high-performance workstation environment and
explored whether real-time processing is possible (i.e, takes
less than 0.03 s per image). The hardware used for this test
consisted of a Xeon E3-2620v3 (which had a 6 cores and
operated at 2.4 Ghz with 95 W of TDP) and a Titan X (which
was based on the Maxwell architecture and had 11 TFLOPS
with 250 W of TDP). The results are summarized in Table 6,
which presents the runtime to process one image. The cases
where real-time processing was possible were MobileNetv2
(d = 0.06) [19], PyDNet [45], and RRNet, all tested with
Titan X. RRNet showed the best speed, taking about 0.026
s per image (38.46 FPS). For the test with Xeon E3-2620v3,
PyDNet [45] and RRNet showed the best speeds, which were
similar to their results obtained using the TX2 GPU.
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We also analyzed the depth estimation results, as shown in
Table 1. RRNet with r = 4 showed the best performance in
terms of most evaluation metrics, except for δ < 1.25, with a
0.003 difference, and for δ < 1.252, which was degraded by
0.001, in comparison with PyDNet. Moreover, the last row
in Figure 6 suggests that a close-range traffic sign was well-
recognized using our method. This result is similar to that of
baseline Monodepth [27], which is a highly complex model.

V. CONCLUSIONS
We proposed RR block and CDC as the fundamental com-
ponents of a lightweight encoder–decoder network. The RR
block and CDC proposed herein are efficient in terms of
computation and parameter size, facilitating an improved
design for encoder–decoder architectures. In addition, we
show that such a scheme results in lightweight and high-
performance network designs. The RR block forms repetitive
feature connections to the CDC, which can deliver feature
maps to the decoder efficiently without a rapid increase in
the information or model complexity by using suppressing
convolutions, as shown in Figure 2.

We also introduced our backbone network, RRNet, which
is an encoder–decoder model that is very lightweight owing
to the aforementioned RR block and CDC. Because RR-
Net’s architecture is designed by considering GPU latency,
it is advantageous with regard to energy efficiency as well
as with regard to computation time. The proposed model
is sufficiently lightweight to be applied to mobile devices
and differs from previous encoder–decoder enhancement ap-
proaches [19], [48].

On a commercial mobile GPU, RRNet outperforms pre-
vious state-of-the-art models, reducing the runtime by ap-
proximately 2.21× while providing energy savings of up to
3.84× and memory savings of up to 3.06× with optimal
performance. In our future work, we plan to evaluate the gen-
eralization capability of the RR block and CDC by applying
them to semantic segmentation, object detection, and other
significant problems.
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