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Two-dimensional amine and hydroxy functionalized
fused aromatic covalent organic framework
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Young Hyun Kim', Hyung-Joon Shin® 2* & Jong-Beom Baek® 1™

Ordered two-dimensional covalent organic frameworks (COFs) have generally been syn-
thesized using reversible reactions. It has been difficult to synthesize a similar degree of
ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring
system via an irreversible reaction is highly desirable but has remained a significant chal-
lenge. Here we demonstrate a COF that can be synthesized from organic building blocks
via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF
(F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling
microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the
F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable
weak covalent bonds.
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talline macromolecular structures whose periodically

linked building units extend into a framework with uni-
form topology and pores'=%. Unlike other more widely studied
crystalline materials (e.g., graphene® and boron nitride®), the
COFs have a unique aspect in that their skeletons and pores can
be precisely engineered, like those of metal organic frameworks
(MOFs)17-%. Two-dimensional (2D) COFs can be divergently
expanded into a m-conjugated structure by periodically integrat-
ing the building blocks®~12. Because of their ordered nature and
2D topology, COFs are seen as a dynamic and robust platform for
the design of advanced functional materials, including a wide
range of semiconductors!!, and proton conductors!®1# for gas
adsorption!>-17, catalysis'8-2! and energy conversion and storage
applications??-2>, The ability to generate crystalline organic
materials with precise control of the framework at a molecular-
level has been one of the most important recent developments in
chemistry and materials sciencel>3°.

In order to achieve high crystallinity in COFs, current methods
typically rely on unstable bond formation using a reversible reaction
to link monomer units by thermodynamic equilibria®2®. However,
this beneficial intrinsic reversibility limits the COFs practical
applications, because it leads to physiochemical instability*2’. COFs
with boroxine or boronate linkages are prone to amorphization or
disintegration in water or protic solvents®27:28,

The prevailing class of COFs with relatively stable linkages,
such as imine (-C=-) based COFs, exhibit enhanced hydro-
thermal stability?®. Because of their reversible nature, however,
under vigorous acidic conditions the chemical stability of most
imine based COFs against hydrolysis is far from satisfactory3(. To
address the stability issue, and enable the fabrication of physio-
chemically robust COFs, a number of methodologies have been
explored3!-3>, However, further exploration of new reticular
chemistry is needed to synthesize stable COFs as reliable func-
tional materials, and crucial to widen their practical applications.

The intrinsically important feature of COFs is their ability to
form covalently linked stable aromatic ring systems, which are the
basis of their exceptional electronic and magnetic properties®®. In
COFs, n-7 interactions form porous layered frameworks>27-37.
However, typical COFs lack m-m interlayer interactions, and
chemical stability, which limits their applications. Imine and
boroxine based COFs, for example, are inferior when it comes to
promoting 7 electron delocalization between the connecting
units3®. Despite a few examples of n-conjugated COFs, obtained
using surface or interface-assisted synthesis! -3940, the design and
synthesis of fused aromatic ring-based n-conjugated COFs, which
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produces high crystallinity and structural stability in corrosive
environments, remains a crucial challenge®!.

To tackle this issue, a physiochemically robust yet fully con-
jugated fused aromatic COFs is highly desired, particularly to
address long-standing challenges in semiconductor technology!1:42,

Here, we report a fully conjugated fused aromatic 2D COF with
aromatic amine (—NH,) and hydroxyl (—OH) functionalities in
the pores. The fused aromatic COF allows inherently periodic
ordering with extended m-electron delocalization and thus phy-
siochemical stability. The process relies on the powerful poly-
condensation (aromatization) of pentaaminophenol (PAP) and
hexaketocyclohexane (HKH) in trifluoromethanesulfonic acid
(TFMSA) to yield fused aromatic phenazine-linked 2D COF
(denoted F-COF, where F stands for fused, indicating the for-
mation of fused aromatic pyrazine rings after the reaction
between the ortho-diketone and ortho-diamine moieties).

Results and discussion
Synthesis and characterization of the F-COF. Figure 1
demonstrates the physiochemically stable structure of the entirely
aromatic m-conjugated COF. PAP (Supplementary Methods) was
chosen as a pseudo-C,-symmetric monomer, and HKH was
chosen as a Cs;-symmetric monomer. Due to the formation of
fused pyrazine rings in the network-forming reaction, crystalline
F-COF was produced in quantitative yield even in solution,
without surface and/or interfacial assistance (Fig. 1). The mixing
of the monomers was carried out in TFMSA at —40 °C (melting
temperature) to slow down the reaction kinetics between PAP
and HKH to increase crystallinity. Thus far, a number of
pyrazine-based crystalline COF structures have been reported by
solution and solvothermal processes!!42-46, The F-COF was
systematically characterized using various analytical techniques.
Elemental analysis (EA) confirmed the formation of structure and
exhibited experimental values that were very close to the theo-
retical values (Supplementary Table 1). Thermogravimetric ana-
lysis (TGA) indicated that the F-COF has good thermal stability
in both nitrogen and air environments (Supplementary Fig. 1).
The qualitative bonding nature in F-COF was analyzed using
X-ray photoelectron spectroscopy (XPS). The XPS survey spectra
revealed the presence of only three peaks, related to carbon
(C 1s), nitrogen (N 1s), and oxygen (O 1s) (Supplementary
Fig. 2a). The deconvoluted C 1s spectrum gave three peaks at
284.08, 285.31, and 286.74 eV, which are assignable to sp2 C-C,
sp2 C-N, and C-OH/C-NH,, matching the structure well
(Supplementary Fig. 2b). The high-resolution N 1s has two peaks
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Fig. 1 Schematic illustration of the synthesis and structure of F-COF. a The formation of F-COF from the reaction between pentaaminophenol (PAP)
trihydrochloride and hexaketocyclohexane (HKH) in freshly distilled trifluoromethanesulfonic acid (TFMSA). Extended energy minimized eclipsed
structures of F-COF: b top view; ¢ side view. Color codes: C, gray; H, white; N, blue; O, red.
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at 398.55 and 399.97 eV corresponding to pyrazine-like nitrogen
(sp2 N-C) and C-NH, (Supplementary Fig. 2c). The deconvo-
luted oxygen (O 1s) in the structure is assigned to residual C=0
(531.49 eV) at the edges and the phenolic C-OH (532.96 V) in
the structure (Supplementary Fig. 2d).

The formation of the F-COF was also detected by Fourier-
transform infrared (FT-IR) spectroscopy, which revealed the
aromatic C=N, C=C stretching vibration at 1627 cm~!. Further-
more, the band at 1465cm~! is related to aromatic ring
stretching vibration. The bands at 1387 and 1254 cm~! can be
attributed to C—N and C—O stretching vibrations. The band
from 3129 to 3427 cm~! is associated with the stretching
vibration of the O-H and N-H bonds in the structure
(Supplementary Fig. 3). The solid-state carbon 13 cross-
polarization-magic angle spinning nuclear magnetic resonance
(13C CP-MAS NMR) spectroscopy was exploited to investigate
the chemical structure of the F-COF. Two intense peaks centered
at 138.50 and 176.40 ppm are, respectively, related to the carbon
atoms attached to nitrogen and edge ketonic groups (Supple-
mentary Fig. 4). The bulk microstructure of the F-COF was
studied with field-emission scanning microscopy (FE-SEM). SEM
image showed the 2D layered morphology with a grain size of few
tens of micrometers (Supplementary Fig. 5). High-resolution
transmission electron microscopy (HR-TEM) image also dis-
played sheet like texture (Supplementary Fig. 6). However, due to
multi-layer stacking and beam damage, resolving structure was
not possible!1:43-45,

The crystalline nature of F-COF was resolved by powder X-ray
diffraction (PXRD) analyses in combination with theoretical XRD
simulations. The peak at 6.42° (20) can be assigned to the (100)
plane of a crystalline hexagonal arrangement. The relatively
strong peak at 27.05° is assignable to the (001) plane, which is
related to the interlayer m—m stacking. The relatively broad PXRD
peaks of the F-COF are associated with the less-ordered edges and
extremely large molecular size of the F-COF along with poor
stacking due to irreversibility of the reaction®!1:47:48 (Supple-
mentary Note 1). The crystalline structure of F-COF was
determined using XRD simulation and Pawley refinement in
combination with experimental PXRD patterns (Fig. 2a).

Structure based on a hexagonal lattice in the space group P3
was selected for F-COF.

The unit cell parameters and simulated PXRD patterns were
acquired (a=b=16.6A, ¢c=330A) using the geometrical
energy minimization of the structure by a universal force field.
The PXRD pattern of the F-COF coincided well with the AA-
stacking model (Fig. 2b), while the AB-stacking model deviated
from the experimentally obtained profile (Fig. 2c). Figure 2a
displays a comparison of the Pawley-refined XRD curve with the
experimental one, which has small differences (R, = 3.48%,
R, = 5.44%). These results demonstrate the hexagonal ordering of
the extended 2D structure along the x and y directions with
3.30 A layer to layer distance in the z-axis.

Scanning tunneling microscopy imaging of the F-COF struc-
ture. A scanning tunneling microscopy (STM) study was per-
formed to visualize the atomic structure of the F-COF. A single
sheet of F-COF was prepared on a Cu(l1l) substrate under
ultrahigh vacuum (UHV) by thermal evaporation at 600 K. The
STM measurements were performed in UHV at a low tempera-
ture (77 K). Figure 3a is a high-resolution STM image of the
F-COF on the Cu(111) substrate, showing the precise holey
structure of the hexagonal array (Supplementary Note 2). The
hole-to-hole distance, determined from the height profiles, was
approximately 15.10 +0.15 A, which matched well with the the-
oretical hole-to-hole distance.

The electronic structure of the F-COF was examined with
scanning tunneling spectroscopy (STS) using lock-in detection
mode. Two broad peaks appeared at —1.41 and 0.59 eV in the
valence band and conduction band zones, respectively (Fig. 3c).
The direct bandgap of the F-COF was empirically determined by
Tauc plot from ultraviolet-visible (UV) spectroscopy (Supple-
mentary Fig. 7). The value was found to be 2.00 eV, agreeing well
with the STS result.

As the solution synthesized materials by polymerization have a
wide range of molecular weight distribution from small to very
large flakes sizes. It is almost impossible to synthesize macro-
molecular materjals with the same molecular size and uniform
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Fig. 2 Powder X-ray diffraction study of F-COF. a Experimental (red line), Pawley-refined pattern (black dash line), Bragg position (orange line), the
difference plot (blue line), simulated AA-stacking model (pink line) and AB-stacking model (green line). b Crystallographic unit cells of F-COF with eclipsed
AA-stacking model. ¢ Staggered AB-stacking model. Color codes: C, gray; H, white; N, blue; O, red.
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Fig. 3 Scanning tunneling microscopy analysis and theoretical calculations. a An atomic-resolution scanning tunneling microscopy (STM) topographic
structure of F-COF on Cu(111) substrate. The STM image (5.4 x 5.4 nm2) was acquired at a sample bias of -0.2V and a tunneling current of 20 pA.
b Topographic height profile along the cyan blue dotted line, indicating a hole-to-hole distance of 1.51 nm. ¢ Differential conductance (dl/dV) spectrum of

F-COF.

Fig. 4 STM images showing different sizes of F-COF flakes. a STM image (36 x 36 nm2) acquired at a sample bias of -1.0 V and a tunneling current of
50 pA. b Image (9 x 9 nm?2) acquired at a sample bias of -1.5V and a tunneling current of 50 pA. Scale bar: a 7nm; b 3 nm.

molecular weight distribution. Thus, under UHV condition, it is
possible to sublimate relatively smaller size flakes onto the
cleaned Cu(111) substrate. From the STM we were able to
observe different sizes of flake (Fig. 4) on Cu(111) substrate.
During the STM characterization, we managed to see a small
piece consisting of just two holes of the F-COF structure
(Supplementary Fig. 8).

The stability of the F-COF was investigated by soaking the
sample for 24 h in concentrated hydrochloric acid (HCI) and 6 M
sodium hydroxide (NaOH). The PXRD results clearly indicate
stability of the structure, showing no changes in the peak position
before and after acid and base treatment (Supplementary Fig. 9).

In summary, we designed and synthesized one of the few
pyrazine-based stable COFs!142 reported to date via a wet-
organic reaction. This physiochemically stable F-COF consists of
all aromatic rings with a m-conjugated network structure and
tunable functional groups. In contrast, the previously reported
pyrazine-based COFs have no available functional groups!l42.
The structure of the F-COF is visualized at atomic level by STM
study, which reveals there are the same number of two different
kinds of functional groups (—NH, and —OH) in each hole. This
suggests there is further modification potential (Supplementary
Fig. 10) for numerous specific applications. The design and
synthesis of F-COF may help in the synthesis of other tunable

COFs with fully n-conjugated stable aromatic systems. We firmly
anticipate these kinds of functionalized COFs can expedite
further innovations and applications in the COF field, from wet-
chemistry to device applications, such as organic electronics,
energy conversion, and storage.

Methods

Synthesis of functionalized two-dimensional framework (F-COF). PAP (2 g,
7.17 mmol) was charged in a three-necked round bottom flask under argon
atmosphere and placed in a cold bath at —40°C, and freshly distilled tri-
fluoromethanesulfonic acid (TFMSA, 40 ml) was added. Then, HKH (1.49 g,

4.78 mmol) was slowly added while stirring at —40 °C for 4 h. The reaction flask
was slowly allowed to warm up to room temperature for 3 h. The ice bath was
replaced with oil bath and heated to 175 °C for 8 h. Then, the flask was cooled to
room temperature and poured into water. The solid product that precipitated was
collected by suction filtration using a polytetrafluoroethylene (PTFE, 0.5 um)
membrane. The resultant dark solid was further Soxhlet extracted with methanol
and water, respectively, for 3 days each and freeze-dried at —120 °C under reduced
pressure (0.05 mm Hg) for 3 days.

STM experiments. The STM experiments were performed in low-temperature HV
at 77 K (SPECS JT-STM). The cleaned single crystal Cu(111) surface was prepared
with a few cycles of Ar" sputtering and annealing. After obtaining a cleaned
Cu(111) substrate, an F-COF monolayer was deposited on the precleaned Cu(111)
substrate by in situ thermal evaporation under UHV condition. The temperature of
the Cu(111) was kept at room temperature and the F-COF evaporation tempera-
ture was about 600 K.
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Characterization. All the chemicals, reagents, and solvents were purchased from
Aldrich Chemical Inc., unless otherwise stated. Solvents were degassed with
nitrogen purging prior to use. All reactions were accomplished under nitrogen
atmosphere using oven dried glassware.

EA was performed with a Thermo Scientific Flash 2000 Analyzer. Proton (!H)
and carbon thirteen (13C) nuclear magnetic resonance (NMR) spectra were
recorded on an AVANCE III HD 400 MHz FT-NMR (Bruker) spectrometer for the
monomer characterization. Solid-state NMR spectrum of F-COF was measured
using powder sample on 600 MHz VARIAN FT-NMR (Agilent) at a spinning rate
of 20 kHz. NMR spectra can be found in Supplementary Figs. 11-17. Melting
points were measured on a KSPIN automatic melting point meter (A. Kriiss
Optronic GmbH, Germany). High-resolution mass spectra (HRMS) were measured
using JEOL/JMS-700. XPS was performed on an X-ray Photoelectron Spectrometer
Thermo Fisher K-alpha (UK). X-ray diffraction (XRD) studies were taken on a
High-Power X-Ray Diffractometer D/MAZX 2500 V/PC (Cu-Ka radiation, 35kV,
20 mA, A = 1.5418 A) Rigaku, Japan at 40 kV and 200 mA at room temperature.
Scanning electron microscope (SEM) images were obtained with Pt- coated
samples on carbon tape by a Field Emission Scanning Electron Microscope
Nanonova 230 (FEI Inc., USA). HR-TEM images were taken by a JEM-2100F
microscope (JEOL inc., Japan) under an operating voltage of 200 keV. The samples
were prepared by drop casting of dispersed ethanol on holey carbon TEM grid and
dried in oven at 50 °C under vacuum. The TGA was carried using a
Thermogravimetric Analyzer Q200 (TA Instrument, USA) at a heating rate of
10° min~! in nitrogen and dry air atmosphere. Fourier-transform infrared (FT-IR)
spectra were conducted on a Spectrum 100 (Perkin-Elmer, USA) with KBr pellet.
XRD simulation and Pawley refinement were carried out using Materials studio
modeling V. 7.0 (Accelrys, 2013). Pawley refinement was carried out to optimize
the lattice parameter iteratively. The pseudo-Voigt function was exploited for
whole profile fitting and the Berrar-Baldinozzi function was employed for to
correct asymmetry during the refinement processes, until the R, and R, values
converged.

Data availability

All principal data with detailed experimental procedure and characterization of this work
are included in this article and its Supplementary Information or are available from the
corresponding author upon reasonable request.
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