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Abstract: To evaluate the feasibility of ZnO nanorod-based surface enhanced Raman scattering
(SERS) diagnostics for disease models, particularly for interstitial cystitis/bladder pain syndrome
(IC/BPS), ZnO-based SERS sensing chips were developed and applied to an animal disease model.
ZnO nanorods were grown to form nano-sized porous structures and coated with gold to facilitate
size-selective biomarker detection. Raman spectra were acquired on a surface enhanced Raman
substrate from the urine in a rat model of IC/BPS and analyzed using a statistical analysis method
called principal component analysis (PCA). The nanorods grown after the ZnO seed deposition
were 30 to 50 nm in diameter and 500 to 600 nm in length. A volume of gold corresponding to a
thin film thickness of 100 nm was deposited on the grown nanorod structure. Raman spectroscopic
signals were measured in the scattered region for nanometer biomarker detection to indicate IC/BPS.
The Raman peaks for the control group and IC/BPS group are observed at 641, 683, 723, 873, 1002,
1030, and 1355 cm−1, which corresponded to various bonding types and compounds. The PCA results
are plotted in 2D and 3D. The Raman signals and statistical analyses obtained from the nano-sized
biomarkers of intractable inflammatory diseases demonstrate the possibility of an early diagnosis.

Keywords: interstitial cystitis/bladder pain syndrome (IC/BPS); ZnO nanorods; surface enhancement
Raman spectroscopy (SERS); principal component analysis (PCA)

1. Introduction

Raman spectroscopy is useful for verifying the characteristics of biological samples ranging
from nanoscale to millimeter size, such as tissue [1,2], cells [3–5], bacteria [6,7], exosomes [8,9],
and proteins [10,11]. In the Raman spectroscopy of biological samples, the detection of high-performance
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nanometer-sized biomarkers is attracting much research interest due to its application for the early
diagnosis of diseases. For highly sensitive liquid and optical biopsies, in this work, an approach to
Raman signal enhancement on biosensing chips based on surface enhancement Raman spectroscopy
(SERS) diagnostics was utilized. Previously, a significant signal enhancement has been realized by
using a porous ZnO nanostructure for the bio-liquid sample. The clustering of Au nanoparticles on
ZnO nanorods was the main factor affecting the enhancement of local surface plasmon resonance
(LSPR), as demonstrated by a finite element method (FEM) analysis [12]. It is possible to utilize surface
enhanced Raman chips based on such porous nanostructures to ensure advantages in applications such
as measuring liquid samples, including aqueous humors [13], eliminating the effect of coffee rings,
and studying living cells [12]. Furthermore, by using the property that Raman signals are enhanced at
the side of the Au coated ZnO nanorods [12], and by controlling the porosity through the modification
of parameters such as the length, diameter and density of ZnO nanorods [14,15], nanometer sized
targets can be measured selectively.

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a refractory disease that causes pelvic pain
when urine enters the bladder, and also causes frequent urination [16]. It is a chronic inflammatory
state of the submucosal and muscular layer of the bladder, which is characterized by urothelium
denudation, mast-cell activation, and sensory nerve hyperactivation, and it is often associated with
sexual dysfunction, sleep dysfunction, depression, anxiety, and chronic stress [17,18]. There are various
treatments for this affliction based on oral agents [19–21], but they are unsatisfactory, with frequent
recurrences of symptoms and of Hunner lesions [17]. Currently, other solutions, such as mesenchymal
stem cell therapy, are being developed to alleviate interstitial cystitis. However, along with the
development of therapeutic technology, the early diagnosis of IC/BPS can be beneficial to quality of
life. Further, the detection of the disease before its development into the chronic stages can minimize
the patient’s pain and increase the effectiveness of the treatment.

Compared to standard Raman spectroscopy, SERS enables an early detection by exhibiting a
signal enhancement of 8–10 orders of magnitude, which is formed at the nanometer gap between
Au/ZnO nanorods [22,23]; therefore, selecting and targeting nanometer-sized biomarkers is key to
applying SERS technology for an early diagnosis. If we develop a technique to detect nano-level
biomarkers of inflammatory diseases in urine or other fluids, a noninvasive diagnosis can be realized,
preventing pain and discomfort for the patient. As shown in Figure 1, in this paper, we manufactured
a ZnO-based nanorod analysis chip to acquire Raman signals from the obtained urine in the IC/BPS
pre-clinical animal model. Raman signals and statistical analyses obtained from nano-sized biomarkers
of intractable inflammatory diseases that cause pain in patients demonstrate the possibility of an
early diagnosis.

Figure 1. Schematic showing the production process, measurement, and analysis process of the ZnO
nanorod-based SERS sensing chip.
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2. Materials and Methods

2.1. Urine Sampling of IC/BPS Rat Model

2.1.1. IC/BPS Rat Model

Previous research has shown that an intravesical injection of hydrochloric acid (HCl) induces
IC/BPS symptoms in rats [24,25]. IC/BPS animal models and comparative groups (n = 4 each) were
derived using 10-week-old female Sprague–Dawley rats, as in a previous paper [26]. The rats were
injected with 0.2 M HCl for 10 min using a 26-gauge angiocatheter in the bladders, followed by
neutralization and a saline wash. Four rats in the comparison group were used as vehicles, and were
not subject to an HCl injection.

2.1.2. Urine Extraction and Analysis of Voiding Pattern

Rat urine was collected in a 50 mL tube using a metabolic cage. As in a previous paper [26],
the voiding pattern measured a week after the HCl injection was examined, and the collected urine
was used as a sample for the Raman measurement. Twenty-four hours of natural voiding patterns in
the metabolic cage were recorded and analyzed using Acq Knowledge 3.8.1 software and an MP150
data acquisition system (Biopac Systems, Goleta, CA, USA), at a sampling rate of 50 Hz. The change in
the urine volume for the model group, as obtained from raw data, was estimated at 0.5 mL.

2.2. Surface Enhanced Raman Measurements

2.2.1. ZnO Nanorod Based SERS Chip

As shown on the left side of Figure 1, to amplify the Raman signal using the SERS substrates,
the Si wafer was initially scribed and broken into pieces with a 1 × 1 cm2 size to form substrates for
ZnO nanorods. It was cleaned in ethanol and de-ionized (DI) water for 5 min. The 30 nm ZnO seed
layer was deposited on the surface of the as-prepared samples by using RF magnetron sputtering
for 5 min under 100 W power, to grow the vertically aligned ZnO nanorods through a hydrothermal
synthesis. The ZnO growth solution was prepared by dissolving 10 mM zinc nitrate hexahydrate
(Sigma Aldrich Co., St. Louis, MO, USA) and 0.9 mL of ammonium hydroxide (Sigma Aldrich Co.,
St. Louis, MO, USA) in 30 mL of DI water. To create a homogeneous aqueous solution, it was mildly
stirred using a vortexer for 5 min at room temperature. Then, the as-prepared samples were immersed
in the aqueous solution in an oven at 90 ◦C for 50 min. After ZnO growth, the substrates were cleaned
with DI water and then dried using nitrogen gas. Finally, the ZnO nanorods were coated with Au
using a thermal evaporator (Alpha Plus Co., Ltd., Asan, Korea), and the coating was stopped when
a thin film thickness monitor showed an equivalent thickness of 100 nm. The morphological and
structural properties of the Raman measured samples were observed using a field-emission scanning
electron microscope (FE-SEM) (S-4700, HITACHI, Tokyo, Japan) with a 10 kV beam voltage.

2.2.2. Raman Spectra Acquisition and Analysis

A drop of the 5 µL sample was applied to the substrate; the sample had a spreading time of
60 min during which it diffused into the nanometer-scale pores between the nanorods, and was
filtered as a result, before drying on the substrate. After confirming that the droplets were dry
and diffused, they were loaded onto a Raman spectroscopy system attached to a microscope (IX-73,
Olympus, Tokyo, Japan) and measured. Raman spectra were collected using a customized spectrometer
(FEX-INV, NOST, Seongnam, Korea) with a 785 nm diode laser as the excitation source. The 1 mW of
excitation light was focused on the sample through a 40×/0.6 NA objective with a measured spot size
of approximately 2.4 µm, as imaged through the microscope. The spectrum of each irradiation point
on the substrate from which Raman spectra were gathered was measured 8 times in the range of 550 to
1500 cm−1, with a spectral resolution of 1 cm−1 and an integration time of 40 s at room temperature.
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The Raman spectrum was calibrated by measuring a silicon sample before the Raman measurements.
After the Raman measurements, the spectrum was postprocessed by 3rd-order polynomial fitting to
remove the auto-fluorescence background and by Savitzky–Golay smoothing. To evaluate the spectral
differences between the control and IC/BPS rat urine, a principal component analysis (PCA) was used.
PCA reduces the number of variables in multivariate systems, so all of the spectral range was used as
variables. All analyses were conducted using the XLSTAT 2018 software.

3. Results

3.1. IC/BPS Rat Models and Sample Preparation

3.1.1. Voiding Frequency and Sample Drop

To confirm the implementation of interstitial cystitis, the voiding pattern after a week for the
control group and HCl treated rats was measured. As shown in Figure 2a, an irregular voiding
frequency is observed in the HCl-treated rats, which indicates the urinary dysfunction caused by
bladder inflammation, and matches that of a previous animal model experiment [17,26]. In the graph,
one step and a terrace represent the volume increase and the duration between voiding, respectively.
The total amount of the control group and the IC/BPS animal model for about 10 h is 11 and 13 mL,
while the frequency is 4 and 11 times, respectively.

Figure 2. (a) Measurement of voiding function in the control group and the IC/BPS animal group at
7 days after HCl treatment. Optical microscope images of a Raman measurement region diffused from
a sample droplet into a nanoporous area, indicated by red arrows: (b) 10× and (c) 40× objective.

When the urine that has an abnormal voiding status is dropped on the SERS substrate, as shown
in the inset on the right upper side of Figure 1, a droplet is formed due to surface tension and is dried.
When the edge of the droplet is observed with an optical microscope, the band region, as shown in
Figure 2b,c, is formed. A sample was soaked in this region where the nanometer gap was formed from
the gold-coated ZnO nanorods. Since the urine contained a few micrometer-sized bacteria, red blood
cells approximately 7 µm in diameter, epithelial cells of several tens of microns in diameter, and so on,
the measurement of urine by non-SERS Raman spectroscopy from a number of microbeam irraditation
spots results in a significant variation in the results. Therefore, filtering by the nano-level porosity of
the nanorods facilitates the spectroscopic measurement, by eliminating micron-scale noise sources.

3.1.2. Analysis of Measurement Area

On the electron microscope image for the Raman measurement, the validity of the points for
spectral acquisition of the nanometer target was next investigated. In the electron microscope,
the droplet area of the specimen is darkened, and the bare SERS area is brightly contrasted.
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The thickness of the urine-diffused band region, shown in Figure 2b, under an optical microscope
is 60 µm, which is in agreement with the thickness of the band region indicated by the red arrow in
Figure 3a. As shown in Figure 3b, the interface between the diffuse region and the bare SERS region of
the urine droplet has a brightness contrast, but the magnitude of the interface contrast seems to be the
same as that in Figure 3c. The difference in the boundaries shown in Figure 3b appears to be due to
the difference in the secondary electron emission characteristics, whereas the resolution in Figure 3c
appears to exhibit no difference in morphology. The Figure 3 images show secondary electrons emitted
by the scanning electron beam and display them, and these emitted electrons are orientated on the
surface. Thus, the contrast of the diffused region is different from that of the bare SERS; this is the
difference in the emission electron characteristics produced by the addition of different materials to
the gold, which is well below the scale of tens of nanometers.

Figure 3. FE-SEM images of urine dropped on a SERS substrate: (a) 250 times magnification, containing
a dried droplet, diffused area, and bare SERS area; (b) 5k and (c) 50k magnification showing the interface
between the diffused and bare area; (d) cross-sectional image showing Au-coated ZnO nanorods.

In the SERS substrate deposition, the nanorods grown after the ZnO seed deposition were
30–50 nm in diameter and 500–600 nm in length. The image of gold deposited on the nanorod structure
with a thickness of 100 nm is shown in Figure 3d. The deposited gold forms clusters at the ends of
the ZnO nanorods, and these clusters have diameters in the range of 80 to 100 nanometers. A finite
element method (FEM) analysis of the thickness and length of the ZnO rod and the diameter of the
head was conducted in a previous study [12], and it was confirmed from the FEM results that the
local surface plasmon resonance (LSPR) is formed on the side of the rod and on the head. The electric
field formation of the incident electromagnetic waves is formed in a direction perpendicular to the
traveling direction, which constitutes the same result as the expectation that the surface enhancement
between gold-coated nanorods can occur well. Thus, the Raman signal obtained in the urine-diffused
region becomes an enhanced signal of the biomarkers located within the nano-sized pores of the
SERS substrate.

3.2. Raman Measurement and Statistical Analysis

3.2.1. Surface Enhancement Raman Measurement of Nanometric Biomarker

The Raman spectroscopic signals were measured in the diffused region for nanometer biomarker
detection, to indicate IC/BPS. By plotting the mean spectral lines and standard deviations together,
overall peak position, which are the elements to identify, could be shown (Figure 4). The bands are
indicated on the peak, which is the main factor above the graph drawn as the average of the total data.
The shaded area with standard deviation means reproducibility, and the area of the painted part will
appear in high compression when the deviation of each signal in control and IC/BPS is small and
ideally reproducible. The main peaks for the control and IC/BPS samples were observed at 641, 683,
723, 873, 1002, 1030, and 1355 cm−1, which corresponded to the C-C twisting mode of tyrosine [27,28],
ring breathing of nucleic acids for G [28,29] and A [29,30], C-C stretch of hydroxyproline [27,31],
symmetric ring breathing mode [27–31] and C-H in-plane bending mode of phenylalanine [27,31],
and CH3CH2 wagging mode of collagen [27,31], respectively. The peak at 1002 cm−1 has a considerably
high intensity compared to the rest of the data, which is a notable observation in relation to the literature
on other peaks, as these relate to other fields of biology.
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Figure 4. Averaged Raman spectra for all samples (black line), for IC/BPS (blue line), and control
(red line) of rat’s urine. Standard deviations are painted around the spectra, and the main peaks marked
by bands are due to nanometer-scale bio-markers.

3.2.2. Principal Component Analysis

A principal component analysis (PCA) is a standard algorithm which allows the capture of data
variability into orthogonal components in highly multivariate data, and is applied in biotechnology
such as diagnosis and classification [2–4,27–29]. As the difference between the IC/BPS and control
sample Raman signals seems to be due more to the relative intensities of the peaks than to the peak
position shift or peak generation, a clearer separation of the data may be obtained in this application
by graphing the data along their principal components. As shown in Figure 5, a clear discrimination
and reliable separation between sample groups were observed in the PCA score plot. Although there is
a significant amount of random noise, comparing the intensities along the spectral axis, as in Figure 4,
shows a variance in the peaks that nearly exceeds the noise threshold. PCA, the correlated change in
intensities between comparison groups, can be extracted for a more meaningful signal. Raman shift
values were used as the multidimensional variables for PCA, and 67 unique principal components
(PCs) were identified from an initial 1024 variables. The first principal component (PC1) explained
39.23% of the variability, the second component (PC2) explained 17.09%, and the third component
(PC3) explained 9.49% (Figure 5a–c). Since IC/BPS and control urine were identifiable from voiding
patterns, they were marked red and blue in the PCs space and plane, respectively. As shown in
Figure 5c, the distribution of data in the PC2 and PC3 planes may be differentiated based on the green
dotted line. By plotting PC1, PC2 and PC3 in 3-dimensional space, a clear separation may be seen
between the clusters of IC/BPS urine and of the control samples (Figure 5d).

Based on the Raman spectrum measurement and PCA analysis results, it has been experimentally
confirmed that it is possible to distinguish between the disease group and normal group using
gold-coated ZnO nanorods substrates, which could be applicable in early disease diagnostic
sensing chips.
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Figure 5. Principal component analysis results for urine of IC/BPS and control sample: (a) PC1 (39.23%)
vs. PC2 (17.09%); (b) PC1 vs. PC3 (9.49%); (c) PC2 vs. PC3; (d) 3D plot of PC1, PC2, and PC3.

4. Conclusions

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a refractory disease accompanied by great
pain and discomfort. It can undermine a patient’s quality of life, unless it is detected in the early
stages. There are various factors, including red blood cells, epithelial cells, and bacteria, in IC/BPS
and in normal urine; finding biomarkers for an early diagnosis among these factors is a major issue.
In order to model the urinary disease using an early diagnosis, an IC/BPS animal model was prepared
by injecting HCl into the bladder of a rat, and urine was collected a week later. Raman spectroscopy
experiments were conducted after growing gold-coated ZnO-nanorods to facilitate size-selective SERS
detection. An enhanced Raman measuring approach and PCA analysis confirmed that nano-level
biomarkers could distinguish between IC/BPS and normal urine. Nanometer biomarkers are not
localized compared to the same volume in urine or blood, unlike cells or bacteria. Further, Raman
spectroscopy could provide specific biological information based on their biochemical, physical,
and optical responses. Thus, we can confirm that ZnO nanorod-based SERS has ample potential for
early disease diagnoses.
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