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A B S T R A C T

Contingent convertible bonds (CoCos) are hybrid instruments characterized by both debt and equity. CoCos are
automatically converted into equity or written down when a predefined trigger event occurs. The present study
quantifies the issuing bank's default risk that only manifests in the post-conversion period for pricing CoCos
depending on a loss-absorbing method. This work aims to reflect the distinct features of equity-conversion CoCos
- in contrast to a write-down CoCos - in a valuation framework. Accordingly, we propose a model to compute the
ratio of common equity Tier 1 (CET1), which is composed of core capital and risky assets, by employing a
geometric Brownian motion and a random variable. Then, we formulate the post-conversion risk premium by
measuring the probability with which the bank's CET1 ratio breaches a regulatory default threshold after con-
version. Finally, we empirically examine a positive value of the post-conversion risk premium embedded in the
market prices of equity-conversion CoCos.

1. Introduction

During the global financial crisis of 2007–2008, many financial in-
stitutions were left severely under-capitalized. Some major banks were
bailed out by taxpayers rather than bailed in by creditors because the
old-style subordinated debts had failed to act as a buffer against losses
during times of distress. Substantial government intervention and fi-
nancial support were necessary to prevent many banks from becoming
insolvent, resulting in a need for stronger regulation of the banking
system. As a part of the revised banking regulation, Basel III has im-
plemented strict capital requirements to enhance banks' financial sta-
bility and reduce systemic risk (Basel Committee on Banking
Supervision, 2011). The major changes in Basel III place more weight
on core capital, i.e. common equity Tier 1 (CET1). The minimum re-
quirement level for CET1 capital, a newly established category for
banks' capital structure, was gradually phased in up to 4.5% of total
risk-weighted assets (RWA) until 2015.

One remarkable evolution in the capitalization of banks under this
new regulation is the emergence of a new hybrid asset class called
contingent convertible bonds or CoCos for short. CoCos are a type of bond
that is automatically converted into equity or written down when the
issuer's capital-ratio falls below a specified level. This automatic con-
version characteristic means that CoCos are expected to reduce the
economic costs of bankruptcy for the benefit of all debt and equity

holders. According to Basel III, CoCos are eligible capital instruments
for meeting buffers (see European Banking Authority, 2011) because
they may help reduce bank vulnerability and provide greater counter-
cyclical resilience. The combination of the regulatory environment and
the pressure on banks to recapitalize has led rapid growth of the CoCo
market over the past decade. The global issuance of CoCos was esti-
mated to be USD 360 billion until 2015 since the first issue by the
Lloyds Banking Group in 2009 (Fig. A.4).

Despite high demand for CoCos in the financial industry, modelling
and pricing CoCos are still challenging issues because the equity and
credit risk are incorporated into a single product. For the design of
CoCos, Flannery (2005, 2009) and Pennacchi, Vermaelen, and Wolff
(2014) introduce ‘reverse convertible debentures' and ‘call option en-
hanced reverse convertibles', respectively, as examples of the structure
of early CoCo proposals. McDonald (2013) suggests that CoCos with a
dual-trigger that depends on the situation of both the individual firm
and the whole banking system. Sundaresan and Wang (2015) discuss on
stock price trigger CoCos and the nonexistence of a unique equilibrium
in their prices.

On the valuation of CoCos, one strand of the literature is based on
structural bond pricing models (e.g. Leland, 1994). The value of CoCos
can be derived as an optimal level when firms' capital structure is
composed of equity, subordinated debt, and CoCos (Pennacchi, 2011;
Glasserman & Nouri, 2012; Brigo, Carcia, & Pede, 2015; Albul, Jaffee, &
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Tchistyi, 2015; Yang & Zhao, 2015; Chen, Glasserman, Nouri, & Pelger,
2017). The other strand of literature on the valuation of CoCos uses the
pricing techniques of financial derivatives from two viewpoints, that of
equity and fixed-income derivatives, as proposed by De Spiegeleer and
Schoutens (2010, 2012). Cheridito and Xu (2015) apply a reduced-form
approach, and Corcuera et al. (2013) employ a Lévy process to model
CoCos. Chung and Kwok (2016) evaluate capital-ratio trigger CoCos
including a discretionary conversion based on two-dimensional sto-
chastic processes. Corcuera et al. (2014) derive a closed-form formula
of coupon-cancellable CoCos, a new type of CoCo where coupon can be
cancelled during the contract. Among empirical approaches, De
Spiegeleer, Hocht, Marquet, and Schoutens (2017) estimate the implied
volatility of the CET1 ratio by using the market prices of issued CoCos,
and Wilkens and Bethke (2014) conduct a comparative analysis via a
hedging simulation to assess the best-fitting model in practice.

In this study, we propose a novel model of the CET1 ratio, which is
defined as the ratio of a bank's equity value to its RWA value for an in-
depth analysis in CoCos by building a hidden random threshold. In our
setup, we assume that the equity price follows a geometric Brownian
motion and that bank's RWA is unknown on the evaluation date, but
only its distribution is given. Although the true value of a bank's RWA is
revealed at the time of conversion, it can be progressively estimated by
using available balance sheet information at issuance. Under this
model, we then derive the theoretical prices of CoCos with a CET1 ratio
trigger and their expected recovery rates in an analytic form.

In addition, we develop a valuation framework to examine the
difference between CoCos with two loss-absorbing mechanisms: equity-
conversion (EC) and write-down (WD). To address distinctive risk that
can exist only in EC CoCos, we introduce two new concepts: regulatory
default and post-conversion risk. We define regulatory default as the
likelihood that an issuing bank fails to retain the minimum capital re-
quirement set by regulators and post-conversion risk as the likelihood
that regulatory default occurs in the ex-post conversion situation. We
derive the premium caused by post-conversion risk that only manifests
after conversion by computing the price difference between two CoCos
with/without post-conversion risk.

The main contributions of this study are twofold. First, we introduce
a methodology for pricing EC CoCos that are distinguished from the WD
type by using a new CET1 ratio model. Many studies discuss whether
issuing CoCos can improve financial stability and, if so, the extent to
which this can reduce systemic risk in the entire banking system (see
Jaworski, Liberadzki, & Liberadzki, 2017; Hilscher & Raviv, 2014).
However, studies of the difference between the loss-absorbing methods
of CoCos are scant - in the context of banks' incentive to issue (or in-
vestors' risk to take) EC CoCos in contrast to WD CoCos. Among this
limited literature, Avdjiev, Bolton, Jiang, Kartasheva, and Bogdanova
(2015) empirically examine how the issue announcement affects each
type of CoCo, while Martynova and Perotti (2018) present a theoretical
approach for different risk-taking incentives in a discrete time setup.
Meanwhile, the present study provides theoretical and empirical fra-
meworks that differentiate between the method of valuation for EC and
WD CoCos over a continuous time period by quantifying post-conver-
sion risk. Second, we present empirical evidence that the post-conver-
sion risk premium is constantly reflected in the real market prices of EC
CoCos. By adopting a rigorous procedure for our empirical tests, we
estimate a post-conversion risk premium of around 2% charged on the
EC CoCos issued by Credit Suisse. This result bridges the gap between
our theoretical proposal and the ongoing market perception of the loss-
absorbing functions of CoCos.

The rest of the paper is organized as follows. Section 2 proposes a
model for CoCos with a CET1 ratio trigger with several types of con-
version and loss-absorbing methods in a single formula. Section 3 de-
rives the closed-form formulae of CoCos with a CET1 ratio trigger and
their expected recovery rates. Section 4 presents a model for post-
conversion risk and shows a method of quantifying the post-conversion
risk premium by employing a compound barrier option pricing idea.

Section 5 estimates the post-conversion risk premium from the real
market prices of CoCos. Section 6 concludes. The appendix includes the
technical proofs, additional numerical tests, and figures and tables.

2. Model for contingent convertibles

The CoCo conversion process is activated when a certain identifier
breaches a specified level. CoCos have two defining characteristics: (i) a
trigger that activates conversion and (ii) a loss-absorbing mechanism
that specifies how losses are absorbed at conversion.

Two types of triggers are mainly employed in practice: the capital-
ratio trigger and regulatory trigger. The capital-ratio trigger is set based
on accounting values in balance sheets such as equities and liabilities
which makes it easy to show the overall capital sufficiency of banks
with the one drawback that information on capital-ratios is not con-
tinuously available because of infrequent updates. The regulatory
trigger is implemented based on a regulator's judgement on the sol-
vency prospects of issuing banks. This trigger is controlled by autho-
rities, which makes it difficult to quantify the probability of conversion.
Once conversion is activated under the defined trigger, a loss-absorbing
process is automatically enforced in two directions: a bond principal is
either converted into common equity (EC-type) or written off (WD-
type).

In this study, we focus on a CET1 ratio trigger. Let �(Ω, , )F be a
probability space, and ≥( )t t 0F be a natural filtration generated by a
Brownian motion (Wt)t≥0. Assume that an equity price process St, under
an equivalent risk-neutral martingale measure ℚ, satisfies

= + ∼dS rS dt σS dW ,t t t t (1)

where∼Wt is a ℚ-Brownian motion, r is the risk-free interest rate, and σ is
the volatility of equity price St.

The CET1 ratio is formulated to a ratio of the bank's CET1 capital to
its total RWA amount. Under Basel III, a bank's capital is categorized
into three levels: CET1, Additional Tier 1, and Tier 2 capital. Among
them, CET1 capital includes common shares issued by a bank, stock
surplus, and retained earnings.1 Meanwhile, total RWA is calculated as
the weighted sum of the risk exposures of credit, market, and opera-
tional risky assets. To assess each risk position, either a linear weighting
scheme or a value-at-risk approach is used. A linear weighting scheme
assigns different weights depending on the level of risk. A value-at-risk
approach computes the expected losses within a time horizon under a
certain confidence level.2 According to Le Leslé and Avramova (2012),
credit risk is the largest component of total RWA, representing 86% on
average, while market and operational risks account for 6.5% and
7.5%, respectively.

By the definition of each portion, the CET1 ratio is set as follows:

= ≈ × =S M S
M

CET1 ratio
CET1 capital
Total RWA Total RWA Total RWA/

,t t

(2)

where M is the total number of shares issued by a bank and St is the
share price at time t, as defined in Eq. (1).

Let us define L as the RWA-per-share value of a CoCo-issuing bank,
which is the total RWA amount divided by the number of shares that a
bank issued, i.e. Total RWA/M. We assume that L is a non-negative
random variable with distribution F, which is independent of filtration

≥( )t t 0F , and ≥( )t t 0G is an enlarged filtration, defined by = ∨ σ L( )t tG F .
According to the definition of the CET1 ratio, conversion time τB can

be represented as the first time when St/L falls below a threshold value
α0:

1 Additional Tier 1 capital consists of non-cumulative preferred stock, and
Tier 2 capital includes debt subordinated to depositors with an original ma-
turity of five years.
2 A one-year 99.9% confidence interval is given for credit risk and a 10-day

99% confidence interval is given for market risk.
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= ≥ ≤{ }τ t S
L

αinf 0: .B
t

0 (3)

Hence, this is the first hitting time when equity price St reaches
random barrier α0L. The random barrier is hidden and only its dis-
tribution is known; a single value is revealed at the time of conversion.
We extend the equity derivative approach (De Spiegeleer & Schoutens,
2010) by adding a random barrier for the conversion time. τB is the
stopping time with respect to an enlarged filtration tG but not tF . The
exact value L is unobservable during time 0 ≤ t< τB and is only re-
vealed at conversion time t= τB.

Fig. 1 describes the proposed idea. This model captures the un-
certainty of a CET1 ratio by letting L be a random variable. The true
level of L does not evolve over time and its exact value cannot be ob-
served on a daily-basis. Random trigger barrier α0L can be hit un-
expectedly by equity price St, resulting in a jump-like event.

At conversion time τB, a proportion of the CoCo's principal N is
absorbed into the capital layer of the issuing bank, and the rest is paid
to the CoCo holder. For EC-type CoCos, the number of converted
equities is called the conversion ratio Cr, and this is determined by
conversion price Cp. Cp is set in a CoCo contract and specified at the
issuing date as

=C S βS S( ) max( , *),p τ τB B (4)

with constants 0 ≤ β ≤ 1 and S*≥ 0. Two types of conversion prices
are mainly used when designing CoCos: (i) Fixed conversion price: If
β=0, then = =C S S γS( ) *p τ 0B , which is specified at the issue date for
constant γ, (ii) Floor conversion price: If β=1 and S*= SF>0, then

=C S S S( ) max( , )p τ τ FB B . For WD-type CoCos, a CoCo's principal is wiped
out and is only recovered with a proportion δ specified in the issuance.
The payment amount of WD CoCos is δN.

Consider a zero-coupon CoCos with face value N and maturity T.
The contractual payment upon the trigger can be formulated as follows.
Let w be the proportion of N for EC, 0 ≤ w ≤ 1, and (1−w) be the
proportion of N for WD with a recovery rate of 0 ≤ δ ≤ 1.3 If a trigger
occurs before maturity T, the amount K S( )τB is paid at conversion τB:

= + − = × + −K S wN
S

C S
w δN C S S w δN( )

( )
(1 ) ( ) (1 ) ,τ

τ

p τ
r τ τB

B

B
B B

(5)

where Cr(⋅) is given by wN/Cp(⋅); otherwise, the full face value N is paid
at maturity T. Hereafter, we call K S( )τB the ‘contractual payoff’.

3. Valuation of CoCos

In this section, we present a formula for calculating the theoretical
price of CoCos with a CET1 ratio trigger in the model proposed in
Section 2. Finding CoCo prices determining the extent to which a
coupon is enhanced to reflect the likelihood of conversion compared
with a conventional bond. The main idea for pricing is based on a risk-
neutral valuation framework.

The following result shows the probability distribution of the first
passage of time reaching a fixed barrier for a geometric Brownian
motion.
Remark 1 (Shreve, 2004). Let St satisfy Eq. (1). Define stopping time τ
as the first time at which St reaches a fixed barrier B< S0. Then, the
distribution H of τ, � ≤τ t[1( )], is given by

⎜ ⎟

=
⎛

⎝
⎜⎜

− − ⎞

⎠
⎟⎟
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⎛

⎝
⎜⎜

+ − ⎞

⎠
⎟⎟

−

( )

( )

H t B S
r σ t

σ t

B
S

r σ t

σ t

( ; , ) Φ
ln( )

Φ
ln( )

,

B
S

r
σ

B
S

0

1
2

2

0

2 1 1
2

2

0

2 0

(6)

where Φ is the cumulative distribution function of the standard normal
variable.Furthermore, the probability density function h of stopping
time τ is given by

= −
⎛

⎝

⎜
⎜⎜
−

⎡
⎣

− − ⎤
⎦

⎞

⎠

⎟
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( ) ( ) ( )
h t B S

πσ t
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σ t
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ln

2
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2
.

B
S

B
S
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1
2

2
2

2
0 0

Eq. (3) implies that the equity price at trigger time, namely
=S α Lτ 0B , is given by a random variable that depends on RWA-per-

share level L.
Definition 2. Let tF be the filtration generated by a stock price up to
time t. (i) A random variable → ∞τ : Ω [0, ]B

x is conversion time τB when
RWA-per-share level L is set to x ≥ 0, i.e.

= ≤τ t S α xinf{ : }B
x

t 0

with a CET1 threshold α0.
(ii) Functions Gt(⋅;x) and gt(⋅;x) are defined as the conditional dis-

tribution and the conditional probability density of τB
x , seen from time t,

respectively, i.e.

� �= ≤ = ∈ +G s x τ s g s x τ s s ds( ; ) ( | ), ( ; ) ( [ , )| ),t B
x

t t B
x

tF F

where ℚ is a risk neutral martingale measure for s ≥ t.
(iii) A function Gt(⋅) is defined as the conditional distribution of

conversion time τB defined in Eq. (3), as seen at time t, i.e. for s ≥ t,

� �∫= ≤ = ≤
∞

G s τ s τ s dF x( ) ( | ) ( | ) ( ),t B t B
x

t0
F F

where F is the cumulative distribution of L.

The next lemma shows the formula of the conditional distribution of
conversion time τB

x .
Lemma 3. For s ≥ t, the conditional distribution Gt(s;x) of conversion
timeτB

x and Gt(s) of conversion time τB are given by

= ≤ + > −G s x τ t τ t H s t α x S( ; ) 1( ) 1( ) ( ; , ),t B
x

B
x

t0

where H(t;⋅,⋅) is given in Eq. (6), and

∫⎜ ⎟= − ⎛
⎝

⎞
⎠

+ −G s F m
α

H s t α x S dF x( ) 1 ( ; , ) ( ),t
t

m
α

t
0 0 0

t
0

(7)

where mt=min0≤v≤tSv is a running minimum.Gt(s) represents the
probability with which a CET1 ratio reaches α0 to time s when stock
price Su has been investigated for time 0 ≤ u ≤ t. If a current stock

Fig. 1. Description of the proposed CET1 ratio model and conversion time τB
under the model.

3We assume that the recovered amount is paid out in cash.

H.J. Jang et al. International Review of Financial Analysis 59 (2018) 77–93

79



price St is greater than barrier B= α0x, then the probability density of
τB

x is well defined. If St is equal to or less than this barrier, the
probability density of τB

x is concentrated on a single point, t.
The following theorem shows the formula for zero-coupon CoCos

that pay the contractual payoff in Eq. (5) at conversion.
Theorem 4 (Zero-coupon CoCos). Suppose that a zero-coupon CoCo has a
unit face value and maturity T. Let ⋅K ( ) be the contractual payoff in Eq. (5)
with N=1, and D(t,s) be a discount factor with a constant risk-free rate r.
Then, the value of the zero-coupon CoCo at time 0 ≤ t ≤ T is given by

∫

∫ ∫

⎜ ⎟= + ⎧
⎨⎩

− ⎛
⎝

⎞
⎠
⎫
⎬⎭

+ −

+ −

P t T K α x D t τ F x K S
D t

F S
α

K α x D t s h s t α x S s F x

D t T G T

( , ) ( ) ( , )d ( ) ( )
(0, )

1

( ) ( , ) ( ; , )d d ( )

( , ){1 ( )},

ZC
m
α

S
α

B
x

m
α

t

T
t

t

0
0 0

0

0 0 0

t

t

0

0
0

0

where Gt(T) is given in Eq. (7) and mt=min0≤v≤tSv is the running
minimum.

CoCo investors can receive coupons only if conversion does not
occur, which is identical to a conventional bond bearing coupons.
Corollary 5 (Coupon-bearing CoCos). Suppose that a CoCo pays n coupons
of amount ci at each coupon date ti based on a unit face value N=1. Each
coupon ci is paid until when conversion τB does not occur before maturity
T= tn. The discounted payoff of the coupon-bearing CoCo at time t is given
by

∑

∑

≤ ⎡

⎣
⎢ > + ⎤

⎦
⎥

+ > ⎡

⎣
⎢

⎤

⎦
⎥

=

=

τ T c D t t τ t K S D t τ

τ T c D t t

1( ) ( , )1( ) ( ) ( , )

1( ) ( , ) .

B
i

n

i i B i τ B

B
i

n

i i

1

1

B

Therefore, the value of a coupon-bearing bond is represented as the sum of
zero-coupon CoCos with maturity ti and principal ci for 1 ≤ i ≤ n, and a
zero-coupon CoCo with maturity T= tn and principal N= 1. The value of
coupon-bearing CoCos is given by

∑= +
=

P t T c P t t P t T( , ) ( , ) ( , ),CB

i

n

i
ZC

i
ZC

1

whereP t t( , )ZC
i is given in Theorem 4.

The recovery rates of WD CoCos are fixed at issuance, RWD= δ.
However, the recovery rates of EC CoCos are uncertain at issuance,
which can be specified as a form of expectation, =R E S C[ / ]τ pEC B . In the
following corollary, we formulate the expected recovery rates of EC
CoCos (only when w=1) at conversion with respect to the types of
conversion prices in our framework. We assume that the initial RWA-
per-share amount can be approximated from the CoCo market prices of
each issuing bank.
Corollary 6 (Expected recovery rates of CoCos). Suppose that RWA-per-
share L follows distribution F with initial valueL . Then, for fixed conversion
price Cp= S*, the expected recovery rate of CoCos with CET1 trigger α0 is
given by

=R α
S

L
*

.EC
0

(8)

For floor conversion price =C S Smax( , )p τ FB , the expected recovery rate of
the CoCo is given by

∫= −R α
S

F x dx1 ( ) .
F

S
α

EC
0

0

F
0

(9)

As for a special case, we assume that the distribution of L is given as log-
normal with standard deviation σL, i.e.

= ⎛
⎝

− ⎞
⎠

L L σ Z σexp 1
2

,L L
2

(10)

where Z is standard normal. Then, the expected recovery rate has the

following analytical form:

= ⎛
⎝

+ ⎞
⎠

+ −R α
S

m d dexp 1
2

Σ Φ( ) Φ( ),
F

EC
0 2

1 2 (11)

where m and Σ2 are the corresponding normal mean and variance,
respectively, i.e. ∼L mln( ) ( , Σ )2N , and

⎜ ⎟= ⎡
⎣⎢

⎛
⎝

⎞
⎠

− + ⎤
⎦⎥

= +d S
α

m d d1
Σ

ln ( Σ ) and Σ.F
1

0

2
2 1

Using a transformation formula between (m,Σ2) and L σ( , )L
2

= + =m L σ σln( ) 1
2

and Σ ,L L
2 2 2

Eq. (11) can be expressed by the available parameters L σ( , )L
2 at the

evaluation date.4

4. Model for post-conversion risk

In this section, we propose a way to address the distinctive risk in EC
CoCos. By assessing the propensity to issue CoCos with respect to the
loss-absorbing methods (Fig. A.4) and CET1 trigger levels (Table A.2),
we can investigate that (i) the proportion of EC CoCos issued gradually
decreases, whereas that of WD CoCos increases5 and (ii) for the high-
trigger (i.e. greater than or equal to 5%), EC CoCos account for 61.5%
of the all CoCos issued; whereas for the low-trigger (i.e. less than 5%),
WD CoCos account for 88.1%. This market share implies that the EC
method is preferred for middle- and high-level trigger CoCos, whereas
the WD method is preferred for low-trigger CoCos.

Suppose that all other conditions for EC and WD CoCos are the same
including expected recovery rates. Then, we consider two situations: ex-
ante and ex-post conversion. In ex-ante conversion, all the risk factors
to which EC and WD CoCos are exposed are identical, since the ex-
pected recovery rates are the same. In ex-post conversion, however,
different processes are activated in EC and WD CoCos. At conversion,
EC CoCos turn into equities of the issuing bank, which can then be
either liquidated or owned by shareholders. However, WD CoCos are
terminated immediately at conversion. This fact indicates that some
additional risk can be realized only in EC CoCos, not WD CoCos.

This additional risk primarily relies on the possibility that the is-
suing bank defaults or its equity is seriously impaired in the post-con-
version period. Equity holders might be unable to sell their shares im-
mediately at price SτB because the conversion event can cause severe
liquidity problems in the stock market. They may then be eventually
exposed to the default risk of the CoCo-issuing bank if holding shares
after conversion.

From this perspective, we define the post-conversion risk of CoCos as
additional risk due to the likelihood of default (including a compre-
hensive default-like event such as the impairment or illiquidity of
equity) of the issuing bank in the post-conversion period (τB,T].

4.1. Post-conversion risk model

When conversion occurs, the CET1 ratio of the CoCo issuer is up-
dated under the pre-defined loss-absorbing method. The conversion of
EC CoCos raises to increase the number of shares with the given con-
version ratio, which automatically enhances the earlier CET1 ratio. To
model the new CET1 ratio in the post-conversion period by using Eq.
(2) we define the adjusted CET1 ratio as follows:

4 The expected value of L is equal to L and the standard deviation of L is
equal to −L σexp( ) 1L

2 .
5 EC CoCos account for 46% and WD CoCos for 54% of the total market share

of CoCos.
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≈ × + =
+

S M C S
M C

Adjusted CET1 ratio ( )
Total RWA Total RWA/( )

,t r t

r (12)

whereM is the number of existing shares before conversion and Cr is the
conversion ratio. The conversion of CoCos does not change the amount
of total RWA because CoCos are originally counted as either Additional
Tier 1 or Tier 2 capital in calculation of RWA. Meanwhile, the con-
version of WD CoCos does not improve the CET1 ratio as Cr=0 in Eq.
(12).

We denote L′ as the value of each RWA-per-share diluted by EC, i.e.

′ =
+

=
+

L
M C

M
C M

Total RWA
( )

Total RWA/
(1 / )

.
r r

Here, L′ is a non-negative random variable that depends on the
variables of RWA-per-share L and conversion ratio Cr specified at
issuance. Further, denote by

=
+

ψ x x
C x M

( )
1 ( )/

.
r (13)

Then, ψ(L) represents the diluted RWA-per-share variable in the
post-conversion period. For the distribution F of L, the distribution of
L′= ψ(L),

� �′ ≤ = ≤ = −L y ψ L y F ψ y( ) ( ( ) ) ( ( ))1 (14)

is well-defined since ψ−1(⋅) always exists. The following lemma proves
this.
Lemma 7. A real-valued function ψ(x) defined as Eq. (13) is increasing, for
all x> 0.

To build a model of post-conversion risk, we define another stop-
ping time τD as the first passage time when the adjusted CET1 ratio
reaches barrier α1 after conversion τB,

= ≥
′

≤ = ≥ ≤{ }τ t τ S
L

α t τ S α ψ Linf : inf { : ( )},D B
t

B t1 1 (15)

where α1 is set below α0L/ψ(L), i.e. α1ψ(L)< α0L. ℚ(τB ≤ τD)= 1 by
definition. The barrier α1 indicates the minimum threshold for the ad-
justed CET1 ratio required for which CoCo-issuing banks to continue
operations (not default) in the post-conversion period under its reg-
ulatory environment. This can be interpreted as the minimum capital
requirement that all banks must meet. For instance, α1 can be set to
4.5% under Basel III for CET1 ratios.

In this context, we call stopping time τD the regulatory default time.
This is different from the true default because the value of equity is zero
when banks legally default or become insolvent. Upon regulatory de-
fault, however, banks may have a non-zero enterprise value although
the CET1 ratio reaches regulatory threshold α1 or equity price reaches
α1ψ(L), as illustrated in Fig. 2.

The probability that a CoCo-issuing bank enters regulatory default
after conversion τB is given in the following lemma.
Lemma 8. Suppose conversion occurs at time t= τB< T. For s ≥ t, the
probability of regulatory default τD until time s, seen at time t is given by
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where F is the cumulative distribution of L before conversion and
mt=min0≤v≤tSv.

4.2. Quantifying post-conversion risk

Now, we propose a way to measure post-conversion risk by using
the notion of regulatory default τD. We carry out the idea in barrier
option pricing to assess the equity value at conversion τB. This approach
suits the situation because if the issuing bank does not default until T,
the final value of its equity would be ST; otherwise, the bank's equity

would plunge to zero upon default.
Remark 9 (Rubinstein & Reiner, 1991). (i) A down-and-out asset-or-
nothing call option pays ST if Su does not fall below a fixed barrier
B< St at t< u< T; otherwise, pays zero. Then, the value of this option
at t is given as
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(16)

(ii) A down-and-in asset-or-nothing call option pays ST if Su falls below
a fixed barrier B< St at t< u< T; otherwise pays zero. Then, the value
of this option at t is given as
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where Φ is the standard normal distribution with risk-free rate r and
stock price volatility σ.

To apply the possibility of regulatory default to CoCo's prices, we
consider a type of virtual payoff reflecting the post-conversion risk that
could occur after conversion - termed the ‘hypothetical payoff’ herein.
Let ζDO be a barrier option price with strike E=0 and random barrier
B= α1L′= α1ψ(L) in Eq. (16). The hypothetical payoff K τ S( , )B τB is
defined as

= − + −K τ S C S ζ T τ α ψ L S w δN( , ) ( ) ( , ( ), ) (1 ) .B τ r τ
DO

B τ1B B B (18)

The meaning of the hypothetical payoff corresponds to the con-
tractual payoff in CoCos replacing SτB with ⋅ ⋅ζ S( , , )DO

τB in Eq. (5). As
barrier options are less worthy than the corresponding European op-
tions, we have

− ≥K τ S K S( , ) ( ) 0,B τ τB B (19)

where K S( )τB is the contractual payoff in Eq. (5).
Based on the difference between the hypothetical and contractual

Fig. 2. Illustration of the sample paths of an equity price for regulatory default
τD in ex-post conversion.
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payoffs from an expectation perspective, we develop a formula for post-
conversion risk amount α( )1D .
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where ζDI is in Eq. (17). To obtain Eq. (21), we use
�=S D τ T S[ ( , ) | ]τ B T τB BF , which is equivalent to a regular European call

with a zero strike. Then, we use the parity relation for knock-out and
knock-in options6 since SτB in Eq. (20) is the corresponding European
call with a zero strike.

By calculating Eq. (21), we have
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The following theorem shows the zero-coupon CoCo that has the
hypothetical payoff, i.e. reflects post-conversion risk until maturity T.
Theorem 10 (Zero-coupon CoCos with post-conversion risk). Suppose a
zero-coupon CoCo with unit face value and maturity T. The zero-coupon
CoCo value that reflects post-conversion risk on [τB,T] is given as
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where K is the hypothetical payoff in Eq. (18).

We define the post-conversion risk premium α( )1P by computing
the difference between the levels of yield-to-maturity (YTM) from two
CoCo prices under the following two assumptions: (i) no post-conver-
sion risk is reflected after conversion and (ii) post-conversion risk is
reflected after conversion. The CoCo value under (i) and (ii) indicates a
CoCo without post-conversion risk (Theorem 4 with a contractual
payoff) and a CoCo with post-conversion risk (Theorem 10 with a hy-
pothetical payoff), respectively.

For zero-coupon CoCos, we have

= −α
T

P T
P T

( ) 1 ln (0, )
(0, )

,
ZC

ZC1P
(24)

where P ZC and PZC are the T-maturity zero-coupon CoCo prices speci-
fied in Theorems 4 and 10, respectively. For coupon-bearing CoCos, we
need to employ a numerical method (an iterative procedure, such as
trial and error) to estimate the YTM from a bond price. Eq. (24) can be
extended to general coupon-bearing types by computing the difference
between the estimated YTMs of CoCos with/without post-conversion
risk from the corresponding bond prices. As α1 rises, the post-

conversion risk premium α( )1P increases. Fig. C6 illustrates that a CoCo
price or its YTM changes depending on α1.

In this framework, a notable fact is that WD CoCos have a zero value
of α( )1P because the probability of regulatory default is zero (WD
contracts terminate at conversion). However, EC CoCos can have a
positive value that depends on the level of regulatory default trigger α1
since taking post-conversion risk. Thus, the proposed model enables us
to differentiate between the methods of valuing EC and WD CoCos in
that sense.

5. Empirical result

In this section, we assess the accuracy and efficiency of our theo-
retical formulae via a comparison with a full Monte Carlo method, and
then carry out empirical tests based on the theoretical framework. For
both the numerical and empirical tests, we assume that RWA-per-share
level L follows a log-normal distribution7 in Eq. (10). Since the pro-
posed formulae contain definite integral, a Gaussian quadrature scheme
is used to estimate the integrations. Appendix C presents the results of
the numerical simulations and the correctness of all proposed formulae
can be confirmed by these tests. For the empirical tests, we obtain
market price data from Thomson Reuters and use the CoCo issuance
data collected by Moody's.

5.1. Estimation of the expected recovery rate of CoCos

We estimate the expected recovery rates evaluated at the issuance
date by using Corollary 6 for the issued CoCos in practice. We select 14
EC CoCos with a fixed conversion price issued by major banks such as
Barclays, HSBC, Lloyds Banking Group (Lloyds), Royal Bank of Scotland
(RBS), and Standard Chartered (SC) before 3Q-2015. In this test, ex-
pected RWA level L is assumed to be 20% of the stock price on the issue
date because this is the average hidden stock trigger level (De
Spiegeleer & Schoutens, 2013). Table 1 presents the empirical expected
recovery rates of EC CoCos, which range from 18.0% to 37.9%.

5.2. Finding the post-conversion risk premium in the market

We examine whether the market prices of EC CoCos contain the
post-conversion risk premium. We select the EC and WD CoCos of
Credit Suisse, the only bank that issued both types of CoCos from 2009

Table 1
Empirical expected recovery rates REC evaluated at an issuance date for fixed
conversion price EC CoCos undertaken by Barclays, HSBC, Lloyds, RBS, and SC
(given the conversion ratio Cr, the fixed conversion price Cp, the stock price at
issuance S0, the CET1 ratio trigger α0).

CoCo issuer ISIN Cr Cp S0 α0 REC

Barclays XS1002801758 605.7287 1.99 2.96 7.0% 29.7%
US06738EAB11 605.3791 1.6519 2.18 7.0% 26.3%
XS1068574828 740.5810 1.6515 2.18 7.0% 26.3%
XS1068561098 741.2727 1.349 2.18 7.0% 32.3%
XS1274156097 606.0606 1.65 2.78 7.0% 33.7%

HSBC US404280AS86 229.5800 4.3558 6.40 7.0% 29.4%
US404280AR04 229.5800 4.3558 6.40 7.0% 29.4%
XS1111123987 296.2840 3.3751 6.40 7.0% 37.9%

Lloyds XS0459090774 1535.3853 0.5921 0.55 5.0% 18.5%
XS1043550307 1555.2100 0.6430 0.75 7.0% 23.4%
US539439AG42 932.8358 1.0720 1.29 7.0% 24.1%

RBS US780099CJ48 277.3156 3.606 3.44 7.0% 19.1%
US780099CK11 277.3156 3.606 3.44 7.0% 19.1%

SC US853254AT77 87.5350 11.424 10.3 7.0% 18.0%

6 For options with the same underlying, strike, and maturity, a regular
European call (put) price is equal to the sum of prices of knock-out and knock-in
calls (puts) that have the common barrier level.

7 For the simulation, we employ the setup used by the Technical Report,
Finger, Finkelstein, Pan, Lardy, and Ta (2002) of the RiskMetrics Group,
Chapter 2.
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to 3Q-2015. The test is conducted under the following three-step pro-
cedure:

(i) Calibrate the model parameters from the WD CoCo market prices.
(ii) Compute a theoretical price of the EC CoCo by using the formula

for CoCos under the assumption that no post-conversion risk is
assumed (Theorem 4) with the parameters calibrated from the WD
CoCo in step (i).

(iii) Compare the market price of the EC CoCo with the corresponding
theoretical price under the assumption of no post-conversion risk,
obtained in step (ii).

The samples used in this test are the WD CoCo (US22546DAB29)
with a 7.5% semi-annual coupon, CET1 ratio trigger α0= 5.125% is-
sued on 11 December 2013; and the EC CoCo (XS0810846617) with a
9.5% semi-annual coupon, α0= 7% issued on 21 July 2012.

In step (i), we estimate the most appropriate model parameters not
directly observable in the market: mean L and standard deviation σL
under the log-normal assumption for a RWA-per-share variable L. By
using the other observable information, L , σL can be calibrated from a
CoCo's market price Pmrk based on a least square method, i.e. P
(⋅)= Pmrk with a corresponding theoretical price P. In this test, we as-
sume σL=10% which is the historical standard deviation of the rate of
changes in the CET1 ratio of Credit Suisse. Then, we extract =L 146.8
from the WD CoCo price.

In step (ii), we compute the theoretical value of the EC CoCo
(XS0810846617) as a time series by using Theorem 4 with the para-
meters obtained in step (i)8. Here, it is reasonable to use the parameters
from the WD CoCo to compute the EC CoCo because both CoCos were
issued by the same bank. We assume that the parameters L and σL from
the WD CoCo price represent the capital-ratio of Credit Suisse. We
conduct this test from 15 July 2014 to 13 October 2015 and compute
the corresponding theoretical values for the EC CoCo (XS0810846617)
assuming no post-conversion risk. For the test, we use the closing stock
price of Credit Suisse Group AG (CGNG.VX) listed on the SIX9, and the
EURIBOR swap rates for the risk-free rate. The left panel of Fig. 3

displays the time series for the market price of the EC CoCo
(XS0810846617) and stock price of the Credit Suisse Group AG. The
huge jumps in both time series on 15 January 2015 are due to a sudden
announcement on its currency policy.10

In step (iii), we compare the market price with the theoretical va-
lues of the EC CoCo obtained in step (ii). We find that the market prices
of the EC CoCo are constantly higher than the theoretical values, with
an average difference of 2.00% in the test period. This result indicates
that the market prices of the EC CoCo reflect a 2% post-conversion risk
premium on average compared with the theoretical prediction without
post-conversion risk. The right panel of Fig. 3 displays the time series of
the market YTMs of EC CoCos and their theoretical results under the
assumption of no post-conversion risk.

As discussed by previous research that compares the different risk
incentives in EC ad WD CoCos (Avdjiev et al., 2015; Martynova &
Perotti, 2018), issuing EC CoCos can be more efficient than issuing the
corresponding WD for issuers, but much riskier for investors, provided
all other conditions are the same including the expected recovery rate.
By assessing EC CoCos under the proposed framework, we find that
they are traded in the market at a price including the 2% post-con-
version risk premium on average. The result implies that such addi-
tional risk that only exists in EC CoCos can be quantified as 2% on
average based on the market prices, which is consistent with the theory.

6. Concluding remarks

In this study, we propose a valuation framework for CET1 ratio
trigger CoCos and validate the theoretical prediction empirically. First,
we propose a new model for a CET1 ratio for pricing CoCos. We assume
that a bank's equity value follows a geometric Brownian motion and
that its RWA-per-share value is a single random variable that is un-
known, where only the distribution is given. Under this setup, we ob-
tain analytical formulae for the conversion probability, expected re-
covery rates, and CoCo values with a CET1 ratio trigger. Second, we
quantify post-conversion risk that only exists in EC CoCos by finding the
probability of regulatory default, which denotes that a CoCo-issuing
bank defaults from a regulatory perspective after conversion (e.g.
failing to meet the minimum capital requirements). Then, we derive the
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Fig. 3. Left: Market data of EC CoCos price and stock price of Credit Suisse. Right: Comparison of the theoretical values under the formula without post-conversion
risk (‘Contractual YTM’), the market value (‘Market YTM’), and the empirical post-conversion risk premium of EC CoCos (‘Post-conversion risk premium’). Sample
period is 15 July 2014 to 13 October 2015.

8 The estimated L corresponds to the expected stock barrier =E S[ ] 26.32%τB
for an initial stock price.
9 Credit Swiss Group AG is listed on the Swiss Exchange (SIX) and New York

Stock Exchange.

10 Among many news articles, see https://www.theguardian.com/
commentisfree/2015/jan/16/switzerland-euro-crisis-swiss-franc-abolition-cap.
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post-conversion risk premium by computing the difference between the
prices of CoCos with/without post-conversion risk.

In this framework, WD CoCos have a zero probability that reg-
ulatory default occurs after conversion, whereas EC CoCos have a po-
sitive probability in the post-conversion risk setting. We thus differ-
entiate between the valuation methods for EC and WD CoCos in that
sense. In practice, regardless of the loss-absorbing method is adopted,
all CoCos are treated equally in terms of valuation, especially under
regulation. Considering the pressure to recapitalize after the financial
crisis and the favourable treatment of CoCos, a more rigorous analysis
of EC and WD CoCos is necessary. Nonetheless, our study provides a
more in-depth valuation of EC ad WD CoCos than earlier studies.

Finally, our empirical analysis bridges the gap between our theo-
retical proposal and the market perception in terms of the loss-ab-
sorbing functions in CoCos. To examine the existence of the post-con-
version risk premium in the real market, we conduct several tests by
using the market data on CoCos issued by Credit Suisse. We find that
market EC CoCo prices reflect a 2% post-conversion risk premium on
average. This finding implies that issuers and investors of CoCos as well

as policymakers need to impose different risk charges or implement
risk-taking incentives depending on the type of loss-absorbing method
for CoCos.
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Appendix A. Figures and tables

All statistics data are based on a source by Moody's Quarterly Rated and Tracked CoCo Monitor Database during 4Q-2009 to 3Q-2015.

Fig. A.4. Left: Cumulative issuance amounts of CoCos with respect to a continental region. Right: proportion of cumulative issuance of CoCos with respect to loss-
absorbing methods: equity-conversion and write-down. Sample period is 4Q-2009 to 3Q-2015.

Table A.2
Issuance proportion of CET1 trigger CoCos with respect to EC and WD conversion and with low-trigger, middle-trigger, and high-
trigger levels. Sample period is 4Q-2009 to 3Q-2015.

CET1 trigger Less than 5% 5% ≤⋅ < 7% Greater than 7%

EC CoCo 11.9% 61.3% 61.5%
WD CoCo 88.1% 38.7% 38.5%

Appendix B. Proofs

Proof of Lemma 7. Note that Cr(x)= x/Cp(x) for Cp which is given in Eq. (4), i.e.,

=C x βx S( ) max( , *)p

and ψ(x) equals

=
+

ψ x x( )
1

.x
M βx Smax( , *)

For β≠0 and <x S
β
* , we have
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thus ψ is increasing.
For β≠0 and ≥x S

β
* , we have
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and hence, ψ is an increasing function.
If β=0, then Eq. (B.1) holds for all 0< x<∞. Thus we obtain the desired result.

Proof of Lemma 3. For s ≥ t, we obtain
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According to Remark 1, the distribution of the first hitting time of the geometric Brownian motion is given by H(s− t;α0x,St) with B= α0x and an
initial point St during the time period s− t.

Let Gt(s) be the conditional distribution of τB for any time s ≥ t, given the observation up to time t, that is, � ≤τ s( | )B tF with a filtration
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Hence, Lemma 3 implies as follows:
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where τB
x is defined in Definition 2.

Proof of Theorem 4. The discounted cash flows of a CoCo that pays contractual payoff at time t is written by
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where K S( )τB is the contractual payoff in Eq. (5) and 1(⋅) is a characteristic function.
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The first term of Eq. (B.4) is equivalent with as follows: for t ≤ T,
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In case when conversion occurs between time 0 and t, an equity price SτB at the moment of conversion is equal to α0x. Since the set ≤τ t{ }B
x is

equivalent to the set {mt ≤ α0x} up to time t, Eq. (B.5) is derived as follows:
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In case when conversion occurs after time t, using Lemma 1, Eq. (B.6) is given as follows:
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Furthermore, the second term of Eq. (B.4) is written as follows:
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Proof of Theorem 10. The discounted cash flows of a CoCo that pays hypothetical payoff at time t is written by
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where K S( )τB is the hypothetical payoff in Eq. (18).
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The first term of Eq. (B.8) is equivalent with as follows: for t ≤ T,
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In case when both conversion and regulatory default occur before t, the payoff (1−w)δ was paid at τB. Thus, as the set {τD ≤ t} is equivalent to
the set mt ≤ α1ψ(x) up to time t, Eq. (B.9) implies
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For Eq. (B.10), we have
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Eq. (B.12) implies
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Here we have used the fact that an equity price at conversion SτB
x is equal to S0 on {x : S0 ≤ α0x}.

Similar to the proof of Theorem 4, in case when conversion occurs after time t, using Lemma 1, Eq. (B.11) is given as follows:
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Furthermore, the second term of Eq. (B.8) is written as follows:
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Proof of Corollary 6. For Eq. (8), by definition of a fixed conversion price, we have
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For Eq. (9), by definition of a floor conversion price, we have
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Note that integration-by-parts is used to hold the last equality in Eq. (9).
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For Eq. (11), we assume that F is a cumulative distribution of a log-normal variable L and its logarithm has mean m and standard deviation Σ. We
have to compute F(A) and ∫ xdF x( )A

0 for A>0 to obtain the recovery rate with floor conversion price in Eq. (9)
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Next,
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By Eqs. (B.13) and (B.14), the expected recovery rate with the floor conversion price is given as
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B.1. Application the proposed model to a fixed-income derivatives approach

De Spiegeleer and Schoutens (2010, 2012) propose the derivatives-based model. Here, CoCos are considered to have both properties, equity and
fixed-income derivatives. In the equity derivatives approach, a CoCo is divided into three building blocks: a zero-coupon bond without a conversion
feature, a knock-in forward, and a down-and-in digital barrier option on the shares of an issuing bank. These three components can be computed
under the Black-Scholes framework. The hidden equity barrier in knock-in options is estimated from market CoCo prices. This approach was
mentioned in the main text.

In the fixed-income approach, CoCo spreads are denoted as an extra return over the risk-free rate and they can be derived in a similar way to
computing CDS spread. To find the conversion probability, conversion intensity is estimated from the market spreads of CoCos, which are higher
than the default intensity of an issuing bank. Based on the credit triangle for CDS spreads, a similar relation can be derived among a CoCo spread, its
recovery rate, and conversion probability (intensity). Denote s(T) by a T-maturity CoCo spread for a T-maturity CoCo. Then, the estimate of s(T) is
constructed as

= − ×s T R λ( ) (1 ) ,T (B.15)

where R is the expected recovery rate derived as a formula in Corollary 6 and λT is conversion intensity, which is calculated by taking the average of
instantaneous conversion intensities λ(t) over [0,T] such that
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Under our framework, the intensity of conversion λ(t) is estimated as
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where G0(t) is the conversion probability up to time t as seen from t=0.

Appendix C. Numerical tests in Section5

For the numerical tests, the following are chosen: an EC CoCo with a 6% coupon provided semi-annually, stock price S0= 100, risk-free interest
rate r=3%, stock price volatilityσ=20%, expected RWA-per-share level =L 500, fixed conversion price Cp=2S0, floor conversion price

=C Smax( , 60)p τB , maturity T=20 years, conversion trigger level α0= 5%, post-conversion default (regulatory default) level α1= 3%, face value
N=100, and EC proportion w=1.

C.1. Probability distributions of conversion time

Lemma 3 shows the distribution of conversion time τB in Eq. (7). Fig. C1 shows the cumulative distribution G0(t) of conversion time τB with
different choices of conversion trigger levels α0= 10%,7%,5% over time 0 ≤ t ≤ 50 years. As conversion trigger level α0 falls, the probability of
conversion decreases. As usual, conversion trigger levels are set between 5% and 8% in practice.

Fig. C1. A cumulative distribution (left) and a probability density function (right) for conversion time when trigger levels α0= 10%,7%,5%.

C.2. Comparison with full Monte Carlo methods

Figs. C2 and C3 display the CoCo prices at t=0 without post-conversion risk (Theorem 4) and with post-conversion risk (Theorem 10) depending
on maturity 5 to 50 years, respectively. The left panels show the results from a Monte Carlo method and its statistical estimate given by 99%
confidence intervals with an I-shaped bar. In this simulation, fixed conversion price Cp= S0 is used. We confirm that the values estimated by using
our method are in the confidence interval.

In Figs. C2 and C3, the right panels show the running time to implement the numerical results by the analytic formula and a Monte Carlo method.
The computing time remains similar when using the analytic formula, while that of the Monte Carlo method increases approximately linearly as the
maturity increases.
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Fig. C2. Comparison of the CoCo prices without post-conversion risk (Theorem 4) obtained by the analytic formula and a Monte Carlo method with respect to time-
to-maturity (left) and the corresponding computation time (right).
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Fig. C3. Comparison of the CoCo prices with post-conversion risk (Theorem 10) obtained by the analytic formula and a Monte Carlo method with respect to time-to-
maturity (left) and the corresponding computation time (right).

C.3. CoCo prices with/without post-conversion risk

The tests show sensitivity for a zero-coupon EC CoCo price and its YTM with/without post-conversion risk when the maturity changes from 1 to
40 years at S0= 100, and the stock price from 40 to 180 at T=10. Figs. C4 and C5 display the results with the fixed/floor conversion price,
respectively. In this simulation, we use risk-free rate r=2.1%, initial RWA-per-share level =L 700, stock floor level SF=70, conversion trigger
α0= 5.125%, and regulatory default trigger α1= 4.5%. The EC CoCo prices with post-conversion risk are less than those without post-conversion
risk, while YTMs of EC CoCos with post-conversion risk are greater than those without post-conversion risk for all choices of maturity and stock
prices.
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Fig. C4. Comparison of CoCo prices (left) and their YTMs (right) for fixed conversion prices with and without post-conversion risk with a baseline of a risk-free bond
price against maturities (top) and equity prices (bottom).
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Fig. C5. Comparison of CoCo prices (left) and their YTMs (right) for floor conversion prices with and without post-conversion risk with a baseline of a risk-free bond
price against maturities (top) and equity prices (bottom).

C.4. Impact of post-conversion risk

We simulate EC CoCo values and their YTMs with respect to regulatory default triggers, α1, and compute the amounts of α( )1D and α( )1P derived
in Eqs. (22) and (24), respectively. Fig. C6 displays the CoCo values (left) and YTMs (right) with a fixed conversion price and a conversion trigger
level α0= 7% when α0 is between 0% and 7%. The figures explain two extreme cases: The end points in Fig. C6 are the extreme cases. From the
regulatory perspective, the left end points with α1= 0% mean the case when a CoCo-issuing bank never default before maturity after EC, and the
right end points with α1= 7% mean the case when an CoCo-issuing bank defaults immediately EC occurs.
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