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Boosted output performance of triboelectric
nanogenerator via electric double layer effect
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For existing triboelectric nanogenerators (TENGs), it is important to explore unique
methods to further enhance the output power under realistic environments to speed up their
commercialization. We report here a practical TENG composed of three layers, in which the
key layer, an electric double layer, is inserted between a top layer, made of Al/poly-
dimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the
middle layer, based on Volta's electrophorus, results from sequential contact configuration of
the TENG and direct electrical connection of the middle layer to the earth. A sustainable and
enhanced output performance of 1.22 mA and 46.8 mW cm — 2 under low frequency of 3Hz is
produced, giving over 16-fold enhancement in output power and corresponding to energy
conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides
enough d.c. power for charging a smart watch or phone battery, is also successfully devel-
oped.
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nergy harvesting technologies enabled by the contact

electrification that occurs when two objects are brought in

contact and then separated, have been investigated as a
means to efficiently convert mechanical energy into electricity' >,
Lightning may be one representative energy source initiated by
friction. Within a thundercloud, many small ice particles collide
with each other as they move around, generating electrical
charges. Generally, positively charged particles in the cloud move
up and negatively charged particles move down, determined by
their weight; thus, the charges are separated. When the charge
separation is produced enough, lightning occurs between the two
charges within the cloud or between the cloud and the ground.
Because the lightning carries a huge amount of energy of several
billion joules, there have been several attempts to harvest the
lightning energy for electricity®’. However, very large-scale
constructions are required to harvest it, and it is also hard to
obtain high energy conversion efficiency because of the extremely
high voltage generated.

Recently, a new type of power generating device, termed the
triboelectric nanogenerator (TENG), based on triboelectric effects
coupled with electrostatic effects, has been demonstrated®!”.
So far, the TENGs have been already demonstrated in man
applications such as self-powered chemical sensors!82C,
self-powered electrochemical ~processes?! > and powered
commercial light-emitting diodes (LEDs)**"?7. If the converted
energy is convenient enough to power a number of small
electronic devices such as smart phones/watches and tablets, we
may use them without a battery in sight or the battery may not
need to be replaced. Generally, the TENG in vertical-contact
mode consists of two materials, chosen according to the
difference in surface potentials, a metal and a dielectric in
general?®=31, During the friction between the two surfaces, the
negative charges (that is, electrons) are transferred to the
dielectric, inducing the flow of electrons of equal number
through the external circuit. Thus, the charge density on the
surface of the dielectric, which is constant if there is no charge
loss by the air, determines the electric potentials, thereby, the
output power. So far, the roughening of both surfaces has
frequently been employed to increase the effective contact area
and has been quite effective. Recently, there have been a few
attempts to modify the properties of the dielectrics, such
as the increase of the compressibility>? and surface potential
control®3~3>,  Artificial injection of ions, such as corona
discharging, was also considered as one means to maximize the
charge density>®. However, any dielectric has a maximum charge
density that can be sustained on the surface and the capability
seems to be not easily improved. Also, it may include limtations
for long-term stability>. Thus, the detailed understanding of the
working principle, and further progress in device technologies
and triboelectric materials, is necessary to further enhance the
performance.

Here we demonstrate a new type of TENG that overcomes the
limit of the output performance of the conventional TENG under
realistic environments. This work started with a basic idea to find
how the two opposite charges are efficiently separated on the top
and bottom electrodes during friction, as observed in thunder-
clouds. The conventional TENG has only positive charges on the
electrodes, limiting the output power. The key component is a
middle layer with Al film coated by Au nanoparticles, inserted
between a top layer with mesoporous dielectric film on the top
electrode (Al), and a bottom layer (Al). Thus, the new TENG is
composed of three layers. As the force is applied to the top layer
and then withdrawn, the positive and negative charges are
spatially separated in the middle layer by sequential contact
configuration of the TENG and direct electrical connection of the
middle layer to the earth (ground), forming an electric double
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layer. This induces the positive and negative charges on the top
and bottom electrodes, respectively, enhancing the electric
potential. As the force is then withdrawn, the three layers are
simultaneously separated, and more electrons are flowed through
the external circuit by the enhanced potential. A sustainable and
enhanced output performance of 1.22mA and 46.8 mW cm ~ 2
under a low frequency of 3 Hz and compressive force of 50N is
produced, giving 16-fold enhancement in output power and
corresponding to energy conversion efficiency of ~22.4%.
Wireless sensing systems such as the remote controller and the
infrared sensor are successfully demonstrated with a signal-
processing circuit. We also develop a portable power-supplying
system that provides enough continuous d.c. power to charge a
battery in smart watch/phone.

Results

Fabrication of TENG and the electrical outputs. The schematic
diagrams of the three-layer structured TENG are shown in Fig. la
and detailed information is described in the Methods. The TENG
consists of three layers: a top layer with mesoporous polymer film
on the top electrode (Al), a middle layer with Al film coated by
Au nanoparticles and a bottom layer (Al). Figure 1b shows that
the mesoporous polydimethyl siloxane (PDMS) film, having a
pore size of 1um, is uniformly formed on the top electrode.
Previously, we showed that the mesoporous film is so effective in
generating high output power because it exhibits more com-
pressibility than the flat film32. The Au nanoparticles, having an
average size of 100 nm, are uniformly coated on the Al film, as
shown in Fig. 1c, which is used as a positive triboelectric material.
Actually, the Au nanoparticles increase the effective contact area
with the polymer layer and enhance the stability because of their
high oxidation resistance. To maintain a gap between the top and
middle layers, four springs were used, anchored at the edges.
Finally, another Al film was used as a bottom electrode and four
springs were also used to maintain a gap between the middle and
bottom layers.

For achieving sequential contact configuration between the
three layers, four springs with larger spring constants were used
between the middle layer and bottom layer. Supplementary
Figure 1 shows the optical images of the TENG when it is pressed
and then released. When a compressive force is applied on the top
layer, the mesoporous film is first brought into contact with the
middle layer. When the force is continuously applied, the two
layers make contact with the ground tip and then the bottom
layer sequentially. As the force is withdrawn, it is clearly observed
that the three layers are simultaneously separated. According to
the coupled spring model®’, if there are no damping forces
present, the upward restoring force is simultaneously exerted on
the top layer and the middle layer. Finally, the middle layer is
then detached from the ground tip. To compare the output
performance, and confirm the advantage of the new TENG over a
conventional TENG, a separate conventional TENG without the
middle layer was also fabricated.

The output voltage and current measurements of the three-
layer structured TENG were carried out under a cycled
compressive force of 50N and at an applied frequency of 3 Hz,
plotted in Fig. 2a,b. The TENG has an active area of around
2 x 2cm?. We think that the working condition gives an input
energy to the TENG lower than those in most previously reported
TENGs'®. It is well known that the output power increases with
the magnitude of the force and frequency, and eventually
saturates'®. As a reference, we fabricated a two-layer structured
TENG and the electrical signals were measured under the same
conditions, as plotted in Supplementary Fig. 2. With a gap
distance (dg,p) of 0.5cm between the mesoporous film and Al
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electrode, the TENG produced an alternating-current (a.c.)
output with a short-circuit current (I,) of 0.095mA and an
open-circuit voltage (V) of 100 V. As the gap size increased, the
electrical signals increased up to 0.12mA and 120V at a gap
distance of 1.5cm. It is ascribed to the increase of the surface
charge density on triboelectric materials due to the larger electric
potential between the two materials; that is, the maximum charge
density is obtained at the maximum of dg,, (ref. 38). In the three-
layer structured TENG with a gap distance of 1.5 cm between the
top and the bottom electrodes, it is clearly observed that the
output voltage and current reaches a record value of 300 V and
1.22mA under the same compressive force, giving over 16-fold
enhancement, compared with the two-layer structured TENG of
same gap size. The Au decoration increases both output voltage
and output current, although the enhancement is not signficant,
compared with those in the three-layer structured TENG,
shown in Supplementary Fig. 3. As a dielectric, we also used
polytetrafluoroethylene film and the enhancement of the output
power was also observed, meaning that this phenomenon occurs
in general, shown in Supplementary Fig. 4.

Power generation mechanism. The marked enhancement in the
output power of three-layer structured TENG was found to
originate from the connection of the middle layer to the ground.
We measured the output signals of the TENG without the ground
connection, in which the middle layer made direct contact
with the bottom layer, not the ground. It is clearly seen that the
TENG produces an I of 0.15mA and V. of 80V, which are
the same as, or smaller than, those of conventional TENGs.

Three-layer TENG

Supplementary Movie 1 also clearly shows that enhancement of
the electrical signal by the ground connection under a high
frequency of 10 Hz and compressive force of 50N is produced.
We also measured the electroluminescence (EL) of the single
green LED powered by the TENG, the two-layer structured
TENG and the three-layer structured TENGs, with and without
the ground connection, as plotted in Fig. 2d. Without the ground
connection, the EL intensity in the three-layer structured TENG
is lower than that of the two-layer structured TENG. As the
ground is connected, the EL intensity increases up to 2.56 times.
However, the enhancement of the EL intensity is not as large as
expected from the output current (~ 10 times). Actually, the EL
intensity is not continuous, due to the generation of the instan-
taneous (~3ms) output power of the TENG. Here a spectro-
meter (ELT-1000) with an integration time of 10 ms was used to
obtain reliable EL signals. This equipment measures the signal
every 1s, which makes it possible to measure the instantaneous
EL signal from the LED. The green EL images in the inset of
Fig. 2d, and the red and blue EL images in Supplementary Movies
2 and 3 clearly show that the LEDs powered by the TENG with
the ground connection are much brighter.

In general, the power generation of the TENG in vertical-
contact mode by the compressive force can be understood from
the coupling of the triboelectric effect and electrostatic induction,
in which the electrons flow back and forth between the electrodes
in a.c. characteristics through the external circuit, as shown in
Fig. 2a,b. The a.c. signal observed in the three-layer structured
TENG may indicate that the power generation mechanism is
similar to that of the two-layer structured TENG. The working
mechanism can be estimated from the physical movement of each

Two-layer TENG

Ground

Figure 1| Fabrication of three-layer structured triboelectric nanogenerator. (a) Schematic diagrams of the three-layer structured and two-layer
structured triboelectric nanogenerator (TENG). The photograph of the nanogenerator is also shown. Scale bar, Tcm. (b) Scanning electron microscope
(SEM) images of the mesoporous polymer film on the top electrode. Top-view SEM images in left side and top-right corner, and cross-sectional view SEM
image in bottom-right corner with scale bars of 1, 50 and 10 um, respectively. (¢) Top-view SEM images of the middle layer with Al film coated by Au
nanoparticles (Au NPs). Scale bar of 5um. The inset also shows the expanded view, with scale bar of Tum.
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Figure 2 | Electrical outputs of triboelectric nanogenerator. (a) Output voltages and (b) currents of two-layer structured TENGs with gap sizes of 0.5 and
1.5cm, and three-layer structured TENGs with and without a ground connection. (¢) Optical images of measuring output signals for three-layer structured
TENGs with and without a ground connection. (d) Electroluminescence (EL) spectra for commercial green LEDs powered by two-layer and three-layer

structured TENGs as a function of wavelength.

layer when they are pressed and then released (Supplementary
Fig. 1). When an external force is applied on the top layer, the
porous film and the middle layer are brought into contact,
resulting in positive charges on the surface of the middle layer
and negative charges on the porous film of the top layer. When
the force is continuously applied, the two layers make contact
with the ground tip and then the bottom layer sequentially. As the
force is withdrawn, the three layers are simultaneously separated.
The positive charges in the middle layer will induce the flow of
the electrons from the ground and the negative charges of the
porous film will induce the positive charges on the top electrode,
resulting in electron flow through the external circuit. After the
first cycle, the top electrode is positively charged with the porous
film negatively charged, while the bottom electrode is negatively
charged, as shown in Supplementary Fig. 5.

In Fig. 3, after the first cycle, when an external force is applied
on the top layer again, the negative charged porous film
electrostatically induces positive charges on the surface of the
middle layer, while negative charges are induced on the opposite
surface of the layer, well known in Volta’s electrophorus, known
as the first electrostatic generator®®. When the force is
continuously applied, the negative charges of the middle layer
induce positive charges on the bottom layer, leading to the
electron flow through the external circuit. And then, the middle
layer makes contact with the ground tip and the electrons go to
the ground, evident by a current through the circuit connected to
the ground, as shown in the inset. As the force is withdrawn, the
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three layers are simultaneously separated and the electrons enter
into the middle layer from the ground. The flow of electrons in
the opposite direction is clearly shown in the inset. This is totally
different from the charge generation occuring in a conventional
TENG and very similar to the charge separation inside the
thundercloud, as shown in Fig. 3b. Thus, the power generation
mechanism can explain substantially larger electric potential,
ideally twice, of the new TENG, compared with a conventional
TENG.

To support the above-proposed working mechanism, the
COMSOL simulations are performed for the two-layer and
three-layer structured TENGs (Supplementary Fig. 6). The
material parameters of the Al and PDMS, taken from the
COMSOL simulation software, are used for the finite element
analysis. The dielectric constants of Al and PDMS are 1 and 2.4,
respectively. When the TENG is fully released, if we assume the
electric potential (Upouom) Of the surfaces of the bottom layer to
be zero, the electric potential of the surfaces of the top dielectric
layer (Uyop) can be expressed by Utp = 0dgap/eo, Where o is the
triboelectric charge density, &y is the vacuum permittivity of free
space (8.854 x 10~ 2pm—1). For two-layer structured TENG,
the bottom layer is assumed to be in neutral state as the TENG is
fully released, that is, Upottom 18 0. The maximum voltage drop can
be defined by 4V = Viortom = Viep =0 — Viep = — Viop = 0d/e.
In the case of three-layer structured TENG, positive charges are
induced in bottom electrode, thus, the potential is not zero. This leads
to larger electric potential difference (AViyee =2AViy,=20d/e)
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Figure 3 | Working mechanism of three-layer structured triboelectric nanogenerator. (a) Working mechanism for the generation of output voltage
and current in the TENG under external force. (b) The output voltage and current produced by the TENG, and the current measured between the middle
layer and ground. (¢) The charge densities and (d) the accumulative charge densities at two-layer structured TENGs with gap sizes of 0.5 and 1.5cm, and

three-layer structured TENGs with and without a ground connection.

between the top and bottom layer, in good agreement with the
experimental results of Fig. 2.

However, the instantaneous output current was increased by
more than 10 times, not twice, compared with two-layer
structured TENG. To see why the output current is correct, we
measured the charge density on the surface of both electrodes in
the three-layer structured TENG by using the electrometer system
(Keithley 6514), ~270 uCm ~ 2 under an external force of 50 N,
as shown in Fig. 3d. The maximum surface charge density (0,ax)
can be also obtained from the theoretical analysis by comparing
the threshold voltage for the air breakdown and voltage drop

across the airgap in the TENG. The 0., can be expressed as

below??
_ (APey(d + xe;)
Omax — (d(lni(PerB)) min (1)

where A and B are the constants determined by the composition
and pressure of the gas (A=2.87%x10°V (atmm) ~! and
B=126) and P, d, x, & and ¢, the pressure of the gas
(101kPa), the dielectric thickness, the airgap distance, the
permittivity of free space, and the dielectric constant of
dielectric, respectively. From the equation (1) and parameters of
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this experimentally studied case, the theoretical oy, is
numerically calculated to be 275.44 uCm ~ 2, in agreement with
the experimentally measured value in Fig. 3c. The value is
~45 times larger than 60uCm~2 of two-layer structured
TENG. Although the enhancement in charge density is not as big
as the instantaneous output current, it seems that more electrons
are flowed through the external circuit by the middle layer. The
extraordinary increase in output current was also reported in a
previous paper, but, it was not well understood*!. Although
additional studies are required, we ascribe the increase to the
enhancement of the electric field between the top and bottom
layers, due to the generation of the two opposite charges.
Actually, the electrostatic force is proportional to the electric field
strength??, Through a diode bridge to rectify the alternating
output signals, the accumulative charge density (accumulative o)
of the three-layer structured TENG stably reached up to
4,600 u.Cm 2 in 50s (Fig. 3e).

Energy conversion efficiency and output power of the
triboelectric nanogenerator. Figure 4a shows the output voltage
and the output current of the three-layer structured TENG at a
load resistance of 10 MQ, as a function of the pushing force from
10 to 90N. Under a compressive force of 10N, the TENG
produces an I of 0.87mA and V,. of 185V. As the force
increases to 90N, it is clearly seen that the output voltages and
currents increase up to 355V and 1.5 mA. This is ascribed to the
increase in the surface contact area, resulting in a larger surface
charge density, which is a well-known effect>>*°, Also note that
the output voltages and currents are almost saturated at ~60N,
which may imply that the force is enough for maximizing the
triboelectric charges on the surface of the mesoporous film.

Figure 4b shows the stability and durability test of the TENG
under cycled compressive force of 30 N. It is clearly seen that the
output current does not appear to change significantly after
10,800 cycles (60 min) although there is a small change in the
output current. This result reveals the robustness and mechanical
durability for a practical nanogenerator. Figure 4c shows the
relationships between the electrical output performances of the
three-layer structured TENG with the triggering frequency from
1 to 10Hz. At 1Hz, the TENG produces an I of 0.55mA and
Voo of 148V, which is higher than those of the two-layer
structured TENG measured at an applied frequency of 3 Hz. The
output signals increased up to 1.22 mA and 300 V. The active size
was increased to 7 x 7cm? and the electrical outputs were
measured, as plotted in Supplementary Fig. 7. The output current
and voltage increased to 2.5mA and 440V, respectively.
Although the electrical signals did not increase linearly with the
area, it is clearly seen that the output power from the TENG is
able to instantaneously light up 256 LEDs simultaneously.

The energy conversion efficiency (ECE, 1) may be estimated
from the electrical output signals. In general, the conversion
efficiency is defined as the ratio between the output energy and
the input energy, in which the output energy is produced by the
TENG and the input energy is the energy applied to the TENG.
Here, as an input energy, kinetic energy (E}) can be defined with
the velocity (v) and mass (m) of top layer, and calculated as %mvz.
The velocity (v) of the top layer with the frequency was monitored
by using a video camera with 480fp.s. and the mass (m)
was estimated as the mass (50 g) of the top layer, in which the
mass of Al thin film and PDMS layer are negligible. Thus, the
kinetic energy ranges from 0.18 to 18.48 m], increasing with the
frequency. At low values of input kinetic energy, the output
voltages and currents steeply increase with the kinetic energy. As
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Figure 4 | Electrical outputs of three-layer structured triboelectric nanogenerator under various forces and frequencies. (a) The output current

and voltage generated by three-layer structured TENGs under various forces from 10 to 90N, (b) stability and durability test

of the TENG under cycled compressive force of 30 N, (¢) working frequencies from 1to 10 Hz and (d) kinetic energies from 0.18 to 18.48 mJ. All error bars
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the input energy increases, the output signals increase very slowly,

meaning that the efficiency

can decrease at such a high input

energy. Supplementary Fig. 8a and Supplementary Note 1 show

how to calculate the energy conversion efficiency when the
compressive force of 50 N at a load resistance of 10 MQ is applied
to the top layer. Supplementary Figure 8b also shows the ECE
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change of two- and three-layer structured TENGs as a function of
applied kinetic energy from 0.18 to 18.48 m]J. In the three-layer
structured TENG, as the input energy increases, the efficiency
also increases up to 26% at 10 Hz, but there is no more significant
increase in the efficiency over 5m]J. It is clearly seen that
three-layer structured TENG shows an ECE value 2-3 times
higher than that of the two-layer structured TENG.

The output power of the three-layer structured TENG was also
measured with external loads from 10Q to 1 G, as shown in
Fig. 5a. The output voltage significantly increases with increasing
the resistance, while the output current decreases. However, it is
worthy of notice that the output current does not drop drastically
with the resistance. Consequently, the instantaneous power
is ~46.8mWcm ™2 at a resistance of 10MQ, as shown in
Fig. 5b, giving over 16-fold power enhancement, compared with
the conventional TENG with same gap size, as shown in
Supplementary Fig. 9a,b.

Wireless sensing system and portable power-supplying system
to smart watch or phone. To demonstrate the capability of the
three-layer structured TENG as a practical power source, a
wireless sensing system was developed by integrating the TENG
with a signal-processing circuit, as shown in Supplementary
Fig. 10. The wireless sensing system can be easily operated by the
output voltage generated from the TENG to trigger an integrated
circuit timer (NE 555) that controls a wireless transmitter for
remotely switching a siren between an emergency and a normal
state. When the TENG is pushed by a human hand, the generated
output voltage operates the remote controller and the infrared
sensor, resulting in turning on a siren, along with the flashing
light of the sensor, as shown in Fig. 6a,b, and Supplementary
Movies 4 and 5.

Finally, a portable power-supplying system was also developed
by integrating the TENG with an a.c. to d.c. converting circuit
and buck-boost circuit, as shown in Fig. 6¢c and Supplementary
Fig. 11. The converting circuit consists of three rectifiers and two
capacitors (3 x 0.001, 1, 2 x 1,000 uF) which converts a.c. to d.c.
output signal. When the compressive force of 50 N was applied to
the TENG, the charged voltage of the capacitors was boosted up
to a constant voltage of 5V with using a buck-boost circuit, as
shown in Fig. 6d,e. After 2h, it is clearly seen that both smart
phone and smart watch are being charged by connecting the
batteries with the power-supplying system, as shown in Fig. 6f.
It is also seen that the batteries are being charged in
Supplementary Movies 6 and 7. Although it still takes a long
time to be fully charged, it can provide a continuous uniform
enough d.c. power to charge the battery and to drive various
commercial electronics. However, under the same conditions, the
two-layer structured TENG only produced a constant voltage of
less than 2V, not enough for charging the smart phone or smart
watch.

Discussion

In summary, we reported here a practical TENG composed of
three layers, not two layers, by inserting a metallic middle layer
between a top layer, made of Al/PDMS, and a bottom layer, made
of Al. This TENG effectively conjoins two operation modes:
vertical contact-separation mode and single-electrode mode.
However, based on the power generation mechanism, the device
design is different with the stack of TENGs with the two modes.
A sustainable and enhanced output performance of 1.22 mA and
46.8 mW/cm ~ 2 under a low frequency of 3 Hz and a compressive
force of 50 N was produced, giving 16-fold enhancement in
output power, compared with the conventional TENG, and
corresponding to energy conversion efficiency of approximately

8

22.4%. As a key for enhancing the output power, we believe that
the charge separation in the middle layer, known in Volta’s
electrophorus, is efficiently induced by sequential contact
configuration of the TENG and direct electrical connection of
the middle layer to the earth (ground), increasing the charge
density on the top and bottom layers as the force is applied to the
top layer. As the force is withdrawn, the three layers are
simultaneously separated, and more electrons are flowed through
the circuit by the enhanced potential.

Through the integration of the TENG with a signal-processing
circuit, wireless sensors such as the remote controller and
the infrared sensor were demonstrated. Finally, a portable
power-supplying system was also successfully demonstrated by
integrating the TENG with an a.c. to d.c. converting circuit and a
buck-boost circuit, in which it provided enough continuous d.c.
power to charge a battery of smart watch/phone. Although
further improvement is needed, from these results, it is expected
that the new TENG can contribute efficiently not only to the
realization of self-powered electronics, but also possibly to the
development of large power generation technologies on a large
scale.

Methods

Production of dielectric layer and Au nanoparticle-coated Al layer. PDMS
(Sylgard 184, Dow Corning) was used as the polymer layer with many pores, which
was prepared by the selective removal technique. The solution of mixed base
monomer and curing agent in a mass ratio of 10:1 was dropped on the beaker. An
aqueous suspension of polystyrene spheres (2.6 wt%, Polysciences, Warrington)
was used to fabricate the PDMS inverse opal-structured film. Many layers of
polystyrene spheres with diameters of 1 um were stacked in a face-centred cubic
structure onto a SiO,/Si substrate. Then, PDMS solution was poured into the
periodically-arranged polystyrene spheres, and allowed to solidify into an
amorphous free-standing film by heating it on a hotplate at 90 °C. Further, to
obtain the PDMS inverse opal-structured film, the PDMS matrix was detached
from the substrate, and soaked in acetone for 24 h to remove the polystyrene
spheres. The effective area and thickness of both flat and porous structure films
were 2 x 2cm? and 300 pum, respectively. As a dielectric, polytetrafluoroethylene
film was also used to confirm that this design is broadly applicable to a range of
dielectrics.

An aqueous suspension of 100-nm gold (Au) colloids (BBI International) was
used for the fabrication of the Au nanoparticle-coated electrode. The Al electrode
was first treated with Ultraviolet/Ozone (AHTECH LTS, South Korea) to make the
surface of the substrate hydrophilic. Au colloid solution was spin coated onto the
electrode’s surface, and then the samples were dried for 12h in a dry box at room
temperature, followed by the attachment of an Al electrode on the opposite side of
Kapton film, used as the middle layer.

Fabrication of three-layer structured triboelectric nanogenerator. The Al film
was attached on an Acryl plate, used as the bottom layer. Four springs to support
the middle layer and another Al-coated spring, which connected to the ground,
were installed on the Acryl plate. The middle layer, which is a Au nanoparticle-
coated Al film, was stacked on them. Four more springs were used to support the
top layer. The top layer, which consists of a dielectric and Acryl plate, was then
stacked on them.

Characterization and measurements. The morphologies of porous PDMS
films and Au nanoparticle-coated electrode were further characterized by a

field emission-scanning electron microscope. The light output power of LEDs
was measured using an LED tester (ECOPIA Inc., model no. ELT-1000).

A pushing tester (Labworks Inc., model no. ET-126-4) was used to create
vertical compressive strain in the nanogenerator. A Tektronix DPO 3052
Digital Phosphor Oscilloscope and a low-noise current preamplifier (model no.
SR570, Stanford Research Systems, Inc.) were used for electrical measurements.
The charge density from the output signals was measured using a Keithley 6514
system electrometer. The energy harvesting power supply, consisting of an
integrated low-loss full-wave bridge with a high voltage buck-boost converter
circuit (Linear Technology Inc., model no. DC2048A) and an a.c. to d.c. converter
(Texas Instruments Inc., trigger NE 555), harvested energy from three-layer
structured TENG.

Data availability. All relevant data are available from the authors on request.
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