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Photo-patternable and transparent films using cellulose
nanofibers for stretchable origami electronics

Sangyoon Ji1,4, Byung Gwan Hyun1,4, Kukjoo Kim1,4, Sang Yun Lee2, Si-Hoon Kim3, Ju-Young Kim3,
Myoung Hoon Song2 and Jang-Ung Park1

Substantial progress in flexible or stretchable electronics over the past decade has extensively impacted various technologies

such as wearable devices, displays and automotive electronics for smart cars. An important challenge is the reliability of these

deformable devices under thermal stress. Different coefficients of thermal expansion (CTE) between plastic substrates and the

device components, which include multiple inorganic layers of metals or ceramics, induce thermal stress in the devices during

fabrication processes or long-term operations with repetitions of thermal cyclic loading–unloading, leading to device failure and

reliability degradation. Here, we report an unconventional approach to form photo-patternable, transparent cellulose nanofiber

(CNF) hybrid films as flexible and stretchable substrates to improve device reliability using simultaneous electrospinning and

spraying. The electrospun polymeric backbones and sprayed CNF fillers enable the resulting hybrid structure to be

photolithographically patternable as a negative photoresist and thermally and mechanically stable, presenting outstanding optical

transparency and low CTE. We also formed stretchable origami substrates using the CNF hybrid that are composed of rigid

support fixtures and elastomeric joints, exploiting the photo-patternability. A demonstration of transparent organic light-emitting

diodes and touchscreen panels on the hybrid film suggests its potential for use in next-generation electronics.
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INTRODUCTION

Flexible or stretchable electronics are among the most attractive next-
generation electronics in the foreseeable future owing to their various
unprecedented possible applications,1,2 such as in displays,3,4 energy
devices,5 wearable electronics,6,7 augmented or virtual reality devices,8

smart living9 and automotive electronics for smart cars.10 In recent
years, these deformable devices have been applied to diverse fields, and
it has become increasingly important to improve their reliability
against thermal stress. For example, automotive electronic devices are
expected to function reliably in a temperature range from − 40 °C
(on a cold winter day) to 105 °C (on a hot summer day).11 In
addition, the local temperature of displays or smartphones can rise
above 60 °C during operation. In contrast to rigid glass substrates with
a low coefficient of thermal expansion (CTEo10 p.p.m. K− 1),12 most
plastic films for flexible electronics, such as polyethylene terephthalate
(PET), polyimide (PI), polycarbonate (PC) and polyethylene naphtha-
late, have relatively high CTEs13,14 exceeding 50 p.p.m. K− 1. The
difference in CTE between plastic substrates and device components

that contain multiple inorganic layers of metals or ceramics induces
thermal stress in the device region during thermal fabrication
processing or device operation. Therefore, when deformable devices
are exposed to environments with thermal cyclic loading–unloading or
mechanical bending or stretching, the repetitions of residual stress can
lead to fatigue failure.15,16 Moreover, plastic substrates have relatively
low mechanical strength and hardness, implying that they are limited
in terms of safety-protecting devices. Furthermore, non-biodegradable
plastic waste is generated from discarded devices, causing serious
environmental concerns.17,18 Therefore, there is a clear and urgent
need for new substrate materials that support flexible or stretchable
electronics.
Cellulose, the most abundant and biodegradable biomass in nature,

has attracted tremendous interest as an alternative substrate material,
especially in the form of nanofibers.19,20 Individual singular nanofibers
of cellulose exhibit low CTE, which is comparable to quartz glass, and
an outstanding Young’s modulus, which is higher than that of
aluminum and glass fibers.21,22 Although dense aggregates of cellulose
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nanofibers (CNFs) can form flexible, transparent films for electronic
devices,23–26 there currently are still substantial challenges to the
practical application of CNF films, such as (i) incompatibility with
high-temperature processing (o200 °C),27 (ii) optical haze (420% in
visible light wavelengths)28 derived from highly porous microstruc-
tures, (iii) poor water resistance (o28° in water contact angle),26,29

(iv) difficulty in forming complex, fine shapes and (v) limits in
mechanical stretchability. To the best of our knowledge, the potential
of CNF to provide stretchable but reliable electronic devices is yet
unexplored. Here, we introduce a method to produce photo-pattern-
able, transparent films that are flexible and also applicable as
stretchable substrates supporting reliable devices, which are fabricated
by electrospinning polymeric backbones and simultaneous spraying of
CNF fillers. The resulting film can be patterned using photolitho-
graphy as a negative photoresist, and this CNF hybrid structure can
enhance thermal stability (thermal degradation temperature of 5%
weight loss, T5%, at 280 °C), suppress light scattering (haze below 4%
at 550 nm) and effectively increase water resistance (contact angle
of 86°). This flexible CNF hybrid also shows excellent thermal (CTEs
of 10 p.p.m. K− 1, similar to the glass case), optical (transmittance of
88% at 550 nm) and mechanical (Young’s modulus of 5.5 GPa and
tensile strength of 190 MPa, more than two times higher than those of
polyimide or PET) properties and excellent reliability (negligible
degradation in performance during a 10 000-cycle bending test and
temperature–humidity bias test for 240 h in 85 °C and 85% relative
humidity). Furthermore, exploiting its photo-patternability, reversible
foldability and stretchability, origami forms of the substrate can be
produced by integrating the CNF patterns with elastomeric joints. We
demonstrate flexible touchscreen panels and transparent organic light-
emitting diodes (TOLEDs) using a CNF hybrid film, providing
evidence for its potential and widespread application in flexible and
stretchable electronics. These remarkable functionalities, together with
examples of practical applications, suggest a promising future for next-
generation electronics.

EXPERIMENTAL PROCEDURES

Preparation of CNF hybrid film
2,2,6,6-tetramethyl-1-piperidine-1-oxyl-oxidized CNFs (0.3 wt%) ~20 nm in
diameter and 1 μm long (University of Maine, Orono, ME, USA) were
prepared for air-gun spray. For the electrospinning of epoxy nanofiber, SU-8
(Microchem, Inc.) and SU-8 thinner were mixed at a ratio of 10:1 (w/w).
Afterward, the epoxy solution was loaded in a 1 ml plastic syringe attached to a
syringe pump. The flow rate of the solution was 0.3 ml h− 1, and the inner
diameter of the needle was 0.455 mm. During the electrospinning, high voltage
(8.3 kV) was applied to the needle tip, and the copper collector was kept
grounded. The distance between the needle tip and copper collector was
~ 15 cm. At the same time, as-prepared CNF solution was sprayed using an air-
gun spray under applied pressure (30 p.s.i.). The volume of the CNF solution
used in the spraying process was changed (100 ml, 200 ml and 300 ml). Next,
obtained CNF–epoxy hybrid was annealed at 95 °C, which is the soft baking
condition of epoxy, under pressure (10 MPa). Finally, the hybrid film was
exposed to ultravilolet (UV) radiation for polymerization of SU-8 epoxy, and
then the film was peeled off from the copper collector.

Characterization of CNF hybrid film
Optical transmittance with a 20-μm-thick hybrid film was measured with
UV-vis-NIR (cary 5000, Agilent, Santa Clara, CA, USA). The transmittance was
recorded every 0.5 nm throughout the spectrum range from 400 nm to
1500 nm. The mechanical analysis was performed using a micro UTM (Instron
5948, Norwood, MA, USA) for samples of 4 mm in length and 1 mm in width
at a strain rate of 4 μmmin− 1. Thermogravimetric analysis measurements were
carried out using an SDT Q600 (TA Instruments, Leatherhead, UK) on samples
of ~ 10 mg. Each sample was scanned over a temperature range from room

temperature to 600 °C. A CTE was evaluated by using a TMA (EXSTAR TMA/
SS 6100, Seiko Instruments, Inc., Chiba, Japan) for a sample size of 10 mm in
length and 2 mm in width from room temperature to 150 °C.

Fabrication of flexible touchscreen panel
The electrode layer was prepared by spin-coating the AgNW (Nanopyxis),
which was dispersed in deionized water, onto hybrid film. The optical
transmittance of this electrode layer was characterized in the same manner as
described before. The flexibility (folding capability) of the electrode layer
wrapped on various cylindrical supports with different curvatures was
investigated using a probe station (Keithley 4200-SCS, Cleveland, OH, USA).
Ten thousand cycles of a bending cyclic test at a bending radius of 0.5 mm with
a frequency of 0.5 Hz were conducted by using a step motor controller
(ECOPIA, Anyang, Korea). After coating the electrodes, the dot spacers
consisting of polymer were photolithographically fabricated, and Au inter-
connects (50 nm) were deposited using a thermal evaporator. Finally, the upper
and lower panels were carefully assembled and connected to the IC board
(Touchdisplay, Co., Ltd, Seoul, Korea) and a desktop computer.

Fabrication of TOLED
The bottom electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic
acid) (PEDOT:PSS) (PH1000, Clevios, Hanau, Germany) doped with dimethyl
sulfoxide (5 wt%) and Zonyl FS-300 (0.5 wt%) (PDZ) was spin-coated at 3000
r.p.m. for 45 s onto 50-μm-thick hybrid film and annealed at 115 °C for
10 min. A hole transport layer, PEDOT:PSS (AI 4083, Clevios), was spin-coated
at 5000 r.p.m. for 45 s onto PDZ and was annealed at 145 °C for 10 min. Super
yellow (Merck Co., Darmstadt, Germany, Mw= 1950 000 g mol− 1) solution
dissolved in chlorobenzene (6.2 mg ml− 1) was spin-coated at 2000 r.p.m. for
45 s onto PEDOT:PSS layer for the emissive layer. And next, poly((9,9-bis(3′-
(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–ioctylfluorene)) (PFN)
(1-Material Co., Dorval, QC, Canada) was dissolved in methanol (0.1 wt%) and
acetic acid (0.002 wt%) was spin-coated at 5000 r.p.m. for 45 s onto super
yellow and was annealed at 110 °C for 10 min. Before deposition of top
electrode, ZnO NP (Sigma Aldrich, St Louis, MO, USA) dissolved in isopropyl
alcohol (IPA) (50 mg ml− 1) was spin-coated at 2000 r.p.m. for 45 s onto PFN
as filler. Finally, for AgNW spray coating, the spray nozzle was positioned
80 mm above the substrate. The AgNWs (Nanopyxis, Jeonju, Korea) dispersed
in IPA (0.25 wt%) were spray-coated onto PFN. The optical transmittance of
the OLED was measured in the same manner as described before. For the
TOLED, the J–V–L characteristics and device performance were measured using
a spectroradiometer (CS-2000, Konica Minolta, Osaka, Japan) and a source
meter (2400, Keithley), respectively.

Fabrication of stretchable origami substrates
A simultaneously deposited CNF–epoxy hybrid sample was soft-baked at 95 °C
for 10 min under a pressure of 10 MPa. This soft-baked hybrid film was then
selectively exposed to ultraviolet light using a photomask for 60 s to polymerize
the SU-8 epoxy, followed by post-exposure baking at 95 °C for 5 min. Next, the
hybrid film was developed by soaking in development solution and thoroughly
rinsed using IPA. To fabricate a stretchable origami substrate, polydimethylsi-
loxane was spin-coated onto patterned hybrid film with a thickness of 100 μm
and cured at 120 °C for 4 h. The stretchability of the origami substrate was
evaluated using a motor controller (ECOPIA) and four-point measurement
using a probe station (Keithley 4200-SCS).

RESULTS AND DISCUSSION

Preparation of the CNF hybrid film
Figure 1a schematically illustrates the manufacturing process for a
CNF hybrid film. The three-dimensional web-like structure of epoxy
was obtained by electrospinning, and the CNFs dispersed in deionized
water (0.3 wt%) were sprayed simultaneously. As shown in Figure 1b,
the three-dimensional nanoweb structure, which consists of electro-
spun epoxy nanofibers with an average diameter of 420 nm, has many
pores (Supplementary Figure S1). This microporous structure of the
epoxy nanoweb makes it difficult to form a uniform CNF–epoxy
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composite using conventional coating methods such as dip-coating,
spin-coating and vacuum filtration because it is difficult to impregnate
several micron-long CNFs into the epoxy nanoweb structure. There-
fore, an unconventional approach using simultaneous electrospinning
and spraying is adopted for the formation of a uniform CNF–epoxy
hybrid, which consists of a three-dimensional epoxy web filled with
CNFs, as shown in Figure 1c. As the volume of sprayed CNF solution
increases, the CNF–epoxy hybrid becomes denser with a high packing
density (Supplementary Figure S2). However, the CNF–epoxy hybrid
film still has a porous structure and a rough surface; therefore, we
applied hot pressing, which is an effective way to improve the surface
roughness30 and remove residual pores by melting the electrospun
epoxy nanofibers. For this hot pressing, the hybrid sample was
annealed at 95 °C for 10 min under a pressure of 10 MPa. In our
system, a 20-μm-thick, flexible and transparent CNF hybrid film with
a highly densified structure and a smooth surface morphology (root-
mean-square roughness: 0.7 nm) was obtained by spraying 300 ml of
the CNF solution and sequential hot pressing, as shown in Figure 1d
and Supplementary Figure S3. The film thickness can be controlled by
modifying the electrospinning and spraying time (Supplementary
Figure S4).

Optical, mechanical and thermal characteristics of the CNF hybrid
film
We characterized the optical, mechanical and thermal properties of the
hybrid films, which are the critical determinants of a substrate for
electronic devices. Figure 2a shows photographs of a pristine epoxy
film (spin-coated), a pristine CNF film (vacuum filtered) and a hybrid
film. As shown in Figure 2b and Supplementary Figure S5, this pristine
epoxy film exhibits an optical transmittance of 90% and haze of 3%
(at 550 nm), whereas the CNF film has relatively low transmittance
(77%) and high haze (18%) due to light scattering caused by the
cavities and the rough surface of the film.31 The hybrid film (volume

of the sprayed CNF solution: 300 ml), meanwhile, shows significantly
improved optical properties (for example, transmittance of 88% and
haze of 4%) compared with the pristine CNF film, indicating that the
light scattering is significantly reduced because of the densely packed
structure and reduced cavities within the hybrid structure. The
mechanical property of each film is also characterized and described
in the stress–strain curves in Figure 2c. The pristine CNF film has
Young’s modulus and tensile strength of 6 GPa and 220 MPa, whereas
those of the epoxy film are 1.7 GPa and 40MPa, respectively. Their
hybrid structure, however, shows improved Young’s modulus and
tensile strength compared with the pristine epoxy film. In addition, as
the volume of sprayed CNF solution increases, the hybrid film exhibits
significantly enhanced mechanical properties. Young’s modulus and
tensile strength of the hybrid film formed by spraying 300 ml of the
CNF solution are 5.5 GPa and 190 MPa, respectively, which are three
times higher than those of the epoxy film. These enhanced mechanical
properties can be attributed to the reinforcing effect of the high-
strength CNFs in the hybrid film and are superior to those of
commonly used plastic substrates. Young’s moduli of PET and
polyimide are 2 GPa and 2.5 GPa, respectively.
In addition to the optical and mechanical performances, thermal

stability is another important factor of a substrate. A large difference in
CTEs between the substrate and other layers of devices causes
undesirable stress at the interface, thereby leading to the bending or
distortion of the whole device during the fabrication process, which
typically involves high-temperature treatments. A low CTE value,
typically o20 p.p.m. K− 1, is required to match the thermal expansion
of the substrate to that of other layers of thin-film electronic devices.15

However, commonly used plastic substrates, such as PET and
polyimide, have relatively high CTE values450 p.p.m. K− 1. As shown
in Figure 2d, the CTE of the epoxy film (53 p.p.m. K− 1) is also too
high to be utilized as a substrate for thin-film electronic devices.
Conversely, the hybrid film formed by spraying 300 ml of the CNF

Figure 1 Preparation of the CNF hybrid film. (a) A schematic image of an electrospinning epoxy backbone and spraying CNF fillers simultaneously.
Schematics and scanning electron microscopy (SEM) images (top and cross-sectional views) of (b) the electrospun three-dimensional (3D) epoxy nanoweb
structure, (c) the CNF–epoxy hybrid before hot pressing and (d) the CNF–epoxy hybrid after hot pressing. White scale bars are 10 μm, and black scale bars
are 20 μm.
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solution shows a significantly reduced CTE (10 p.p.m. K− 1) because
the thermal stress in the epoxy is largely suppressed by the CNF
network. The temperature–humidity bias test was also conducted to
examine the thermal/chemical reliability of this hybrid film. To
examine the sole effect of the CTE value (thermal expansion) of the
substrates on the mechanical failure of the electrode materials, other
variables, such as an instability in oxidation, which may influence the
test results, should be excluded. Therefore, as an example, a chemical
vapor deposition-synthesized graphene layer, which is stable against
thermal oxidation, was transferred onto a PET film or this hybrid film

and then exposed to the conditions of 85 °C and 85% relative
humidity for 240 h. The graphene on the PET film shows significant
changes in the sheet resistance (Rs) of graphene because large thermal
expansion of the PET substrate (~60 p.p.m. K− 1) (Supplementary
Figure S6) induces cracks in the graphene layer. In contrast, the Rs of
graphene changes negligibly on the hybrid film owing to the low
thermal expansion of the hybrid film, indicating that this hybrid film
with the low CTE can be compatible with other functional layers of
devices. Figure 2e and Supplementary Figure S7 present the thermo-
gravimetric analysis results showing the weight loss of each film as a

Figure 2 Optical, mechanical and thermal characteristics of the CNF hybrid film. (a) Photographs of a pristine epoxy film (spin-coated, left), a pristine CNF
film (vacuum filtered, middle) and a hybrid film (right). Scale bars, 1 cm. (b) Optical transmittance spectra of each film in the range from 400 nm to
1500 nm. (c) Stress–strain curves for each film. The hybrid shows significantly enhanced mechanical properties compared with pristine epoxy film.
(d) Coefficient of thermal expansion of each film. (e) Thermogravimetric analysis (TGA) shows the weight change of each film as a function of temperature.
The hybrid film remains stable up to 280 °C.
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function of temperature. The CNF and the epoxy film exhibit a single-
stage degradation peak of 5% of the weight loss (T5%) at 216 and 336 °
C, respectively, whereas the hybrid film with the largest CNF
concentration shows two distinct degradation peaks. The first stage
begins at 280 °C, which mainly involves the thermal degradation of the
CNFs, and the second stage, which starts at 356 °C, involves the
thermal degradation of the epoxy. The thermal decomposition of the
hybrid film occurs at a higher temperature than the pristine CNF film
owing to the epoxy barrier, which retards oxygen permeation and
rapid heat transfer within the hybrid film.

Demonstration of a flexible touchscreen panel using the hybrid film
As an example of the application of the hybrid film, we demonstrate
here a four-wire resistive touchscreen panel utilizing hybrid films as
substrates for both sides of the touchscreen panel with transparent
electrodes of silver nanowire (AgNW) random networks. Typically, a
pristine cellulose film is vulnerable to water29 and, therefore, is
incompatible with water-based solution processes. The hybrid film,
however, shows an increased contact angle of the film from 42° to 86°,
indicating that the remaining epoxy enhances the hydrophobicity of
the hybrid (Supplementary Figure S8). This improved water resistance
improves the process capabilities of the hybrid films. Figure 3a shows a
photograph of this AgNW-coated, 20-μm-thick hybrid film, and the
inset scanning electron microscopy image presents a uniformly coated
AgNW electrode on the hybrid film. The optical transmittance of
this sample (including the hybrid substrate and AgNWs) is 83%
(at 550 nm), indicating that ~ 4–5% loss of transmittance is intro-
duced by the AgNW electrode (Figure 3b). This AgNW electrode on

the hybrid film shows excellent mechanical flexibility, as shown in
Figures 3c and d. Figure 3c shows the relative change in resistance
(ΔR/R0) as a function of the bending radius (Rc). The resistance of the
electrode is negligibly changed even at a bending radius as small as
270 μm. It then slightly increases by 12% upon bending with a radius
o100 μm, implying that the AgNW network is damaged at a bending-
induced strain (ε) of 10% (see Supplementary Information). The
mechanical reliability was further investigated by a cyclic bending test
(10 000 cycles) with a radius and frequency of 0.5 mm and 0.5 Hz,
respectively. As plotted in Figure 3d, the Rs of the AgNW electrode
(initial Rs= 12Ω sq− 1) slightly increases by 11 and 5% during the
repetitive tensile and compressive bending (10 000 cycles), respec-
tively. These AgNW-coated hybrid films are utilized as substrates for
the touchscreen panel, as illustrated in Figure 3e. The polymer dot
spacers and gold interconnects (50 nm thick) are patterned on the
AgNW-coated hybrid substrate by photolithography and metal
evaporation. Subsequently, the upper and lower panels are assembled
and connected to a controller circuit and a desktop computer.
Figure 3f and Supplementary Movie S1 show the operation of the
transparent and flexible touchscreen panel fabricated on the hybrid
substrates. To characterize the thermal stability of integrated touchsc-
reen panels (TSPs), TSPs with different substrates (CNF hybrid films
and PET films) were exposed to temperature of 100 °C for 10 days.
The TSP using hybrid films was operated stably, and no cracking on
the gold interconnections was observed after 10 days. Conversely, the
TSP using PET films did not operate normally because thermal
expansion of the PET film caused many cracks on the gold
interconnections (Supplementary Figure S9). This stable operation

Figure 3 Flexible touchscreen panel using hybrid film. (a) Photographs of the AgNW-coated hybrid film. Scale bar, 2 cm. The inset shows an scanning
electron microscopy image of uniformly coated AgNW electrode on the hybrid film. Scale bar, 2 μm. (b) Optical transmittance spectra of the hybrid film and
AgNW-coated hybrid film. (c) Relative resistance changes of the AgNW electrode on the hybrid film as a function of bending radius and bending-induced
strain. (d) Cyclic bending fatigue test of the AgNW electrode on the hybrid film for 10 000 cycles at a bending radius of 0.5 mm. (e) A schematic structure
and (f) a photograph of the touchscreen panel fabricated on the hybrid film. Scale bar, 2 cm. The inset and Supplementary Movie S1 show the operation of
the touchscreen panel.
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of the TSP with the CNF hybrid substrate can be attributed to the
minimized mismatch of CTEs between the metal electrodes (CTE
~14 p.p.m. K− 1) and our CNF hybrid films (CTE of 10 p.p.m. K− 1).

Demonstration of a transparent OLED on the hybrid film
The hybrid film can also be used as a flexible substrate for TOLEDs,
suggesting a promising strategy towards next-generation transparent
displays. Figure 4a illustrates a schematic diagram of the device
structure. The TOLED on the 50-μm-thick hybrid film is composed
of (PEDOT:PSS) doped with dimethyl sulfoxide and zonyl fluorosur-
factant (PDZ) as a transparent anode,32 PEDOT:PSS as a hole

transport layer, super yellow as an emitting layer, PFN as an
electron-injection layer and zinc oxide nanoparticles (ZnO NPs)/
AgNWs as a transparent cathode. The large openings within the
AgNW network cathode are likely to induce a non-uniform electrical
field distribution,33 which is undesirable for the stable operation of
OLEDs. Therefore, ZnO NPs were employed as filler materials, and
the resulting ZnO NP/AgNW layer can work as the cathode in the
device.34 All layers were formed via solution processes (that is, spin-
coating and spray coating) without any vacuum process. Figure 4b
shows a photograph of the TOLED on the hybrid substrate. The
TOLED shows high transparency so that the background letters could

Figure 4 Transparent OLED (TOLED) on the hybrid film. (a) Schematic structure of the TOLED on the hybrid film. (b) Photograph of the TOLED device
with high transparency. Scale bar, 1 cm. (c) Optical transmittance spectra of the TOLED device including and excluding the substrate transmittance.
(d) Comparison of current density versus applied voltage and luminance versus applied voltage curves of the TOLED on the hybrid film and the glass.
(e) Photographs of the TOLED on the hybrid substrate emitting light through both top and bottom directions. Scale bars, 1 cm.
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Figure 5 Fabrication of the reversibly foldable and stretchable substrate for stretchable origami electronics. (a) Photographs and optical micrographs of
various patterns (an electronic circuit, letters, a Korean traditional symbol and a lotus) of the hybrid film. Scale bars, 5 mm. (b) 50 μm-thick CNF hybrid film
patterned with an aspect ratio higher than 1:1 and feature size of 50 μm. Scale bar, 50 μm. (c) Schematic illustration of the fabrication process for the
stretchable origami substrate by patterning the CNF hybrid into the isosceles right-angled triangle rigid plates, followed by spin-coating of
polydimethylsiloxane (PDMS) elastomer. (d) Optical micrograph of the fabricated stretchable origami substrate. Scale bar, 200 μm. (e) Effective strains
on each part along the direction indicated by colored arrows in d. (f) Relative changes in the resistance of the AgNW electrode coated on the stretchable
origami substrate under various tensile strains. Inset images indicate that the blue inorganic light-emitting diode (ILED) still illuminates upon 50%
tensile strain of the substrate. (g) A planar figure for the origami structure made of the stretchable origami substrate and its completed origami structure. The
right image demonstrates the illumination of an inorganic light-emitting diode inside the regular dodecahedron origami structure. All scale bars (white and
black), 1 mm.
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be clearly recognized. The optical transmittance of the TOLED
including and excluding this hybrid substrate at 550 nm were 62
and 70%, respectively, as shown in Figure 4c. The device performance
was evaluated by the current density versus the applied voltage (J–V)
and the luminance versus the applied voltage (L–V). As shown in
Figure 4d, the TOLED fabricated on the hybrid film presented a
maximum luminance of 410.3 cd m− 2, which is comparable to the
luminance of 442.7 cd m− 2 of the TOLED fabricated on the glass. The
detailed performance of fabricated TOLEDs, including luminous
efficiency, power efficiency, external quantum efficiency and emitting
spectrum, are shown in Supplementary Figure S10. Figure 4e and
Supplementary Movie S2 show the stable operation of the TOLED
fabricated on the hybrid substrate, emitting light through both the top
and bottom directions.

Reversibly foldable and stretchable substrate for stretchable origami
electronics
The evolution of electronics has increased consumer demand for
electronic devices with various form factors, which ultimately
require a substrate that is patternable and deformable in arbitrary
shapes. To achieve this functionality, we suggest a patternable and
foldable substrate using our CNF hybrid film. Although many
previous studies have reported on stretchable interconnects using
graphene,35 metal nanowires,36 metal nanofiber,37,38 and geome-
trical approaches,39 conventional electronic devices fabricated on
the elastomeric substrate are easily broken because most of the
semiconductor, dielectric and encapsulation materials are still
brittle. Therefore, the approach using origami substrates made of
strain-free rigid plates with reversibly foldable and stretchable,
elastomeric joints40 has been considered as a promising strategy for
stretchable electronics. Our hybrid film with outstanding mechan-
ical, optical and thermal properties can also be used for the origami
substrates by imparting photo-patternability to the CNF hybrid.
The CNF hybrid can be patterned as a negative photoresist.
Figure 5a shows photographs and optical micrographs of various
patterns (that is, an electronic circuit, letters, a Korean traditional
symbol and a lotus) of the hybrid. As shown in Figure 5b, the
50-μm-thick hybrid film can be patterned into the structure with
an aspect ratio higher than 1:1 and a feature size of 50 μm. A
stretchable origami substrate was fabricated by patterning the
hybrid film into isosceles right-angled triangle rigid plates, followed
by spin-coating of polydimethylsiloxane elastomer with a thickness
of 100 μm, as shown in Figures 5c and d. Figure 5e plots the
effective tensile strain on each part, as indicated by the colored
arrows in Figure 5d, (ɛhorizontal: strain along the horizontal
direction; ɛdiagonal: strain along the diagonal direction; ɛplate: strain
on the rigid plates), when a tensile strain (ɛ) is applied to the
stretchable origami substrate. Whereas the elastomeric soft region
in the substrate absorbs large effective strains (ɛhorizontal= 1.62 ɛ,
ɛdiagonal= 0.59 ɛ), the rigid plates composed of the patterned CNF
hybrid experience negligible strains regardless of the applied strain
(ɛplate= 0). The relative changes in the resistance of the AgNW
electrode coated on this substrate under various tensile strains is
plotted in Figure 5f. During the stretching of up to 50%, the
resistance of the electrode on a single rigid plate remains almost
constant, and the resistance of the electrode on the elastomeric
joint between the rigid plates was slightly changed (ΔR/R0= 24% at
a strain of 50%), which is still acceptable as an electrode by
considering the low initial resistance (R0= 13 Ω). This stretchable
origami substrate with structural uniqueness can also be utilized as
a foldable substrate for emerging origami electronics. An origami

geometry fabricated by folding the AgNW-coated hybrid substrate
was used as an interconnect for an inorganic light-emitting diode,
as shown in Figure 5g. The left and middle images in Figure 5g
show the planar figure for the origami structure made of the
foldable, CNF hybrid substrate and its completed origami struc-
ture, respectively. The right image in Figure 5g demonstrates the
illumination of an inorganic light-emitting diode inside the regular
dodecahedron origami structure, representing an aesthetic applica-
tion example of the photo-patternable hybrid film.

CONCLUSION

In summary, we demonstrate a photo-patternable and transparent
CNF hybrid film that is a flexible or stretchable substrate with superb
mechanical, optical and thermal properties. The CNF with high
Young’s modulus and low CTE enhances the mechanical and thermal
characteristics of this hybrid film. In addition, the epoxy with photo-
patternability and hydrophobicity enables new functionality and
effectively compensates for the drawbacks of the cellulose. The
application examples demonstrated here (that is, a transparent and
flexible touchscreen panel, a transparent OLED and photo-patternable
substrates for origami electronics) represent unprecedented opportu-
nities for various potential applications and provide a promising
strategy for developing next-generation wearable electronics.
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