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ABSTRACT: Zigzag graphene nanoribbon (zGNR) of narrow width has a moderate
energy gap in its antiferromagnetic ground state. So far, first-principles electron transport
calculations have been performed using nonequilibrium Green function (NEGF) method
combined with density functional theory (DFT). However, the commonly practiced
bottom-gate control has not been studied computationally due to the need to simulate an
electron reservoir that fixes the chemical potential of electrons in the zGNR and electrodes.
Here, we present the isochemical potential scheme to describe the top/back-gate effect
using external potential. Then, we examine the change in electronic state under the
modulation of chemical potential and the subsequent electron transport phenomena in
zGNR transistor under substantial top-/back-gate and bias voltages. The gate potential can
activate the device states resulting in a boosted current. This gate-controlled current-
boosting could be utilized for designing novel zGNR field effect transistors (FETs).

Owing to its ballistic transport property, graphene1,2

exhibits high electron mobility. It could resolve the
scale-down issue in nanoscale transistors. However, the absence
of band gap in pristine graphene precludes its use in FET
without modification.3 Graphene nanoribbon (GNR), one of
the graphene derivatives with a small band gap, has been
intensively studied as a viable material for graphene-based
devices.4−13 Various efforts to open a bandgap in graphene have
been made, such as top-down/bottom-up synthesis of GNR
with finite width,14,15 dual doping of bilayer graphene,16,17 and
functionalization of graphene.18 To realize GNR as a transistor,
it is essential to investigate such feasibility based on theoretical
understanding that could attract experimental demonstrations.
Model calculations predict that the band gap of zGNR is closed
upon charging,19,20 whereas the nonequilibrium transport study
for open systems was not reported, to the best of our
knowledge. Instead of modifying the occupation number with
fixed single-particle orbitals, we need to self-consistently
consider the chemical potential equilibrium of electrons
between the device and electrodes. Because the electron is
free to move to and from the back-gate, applying a back-gate
voltage modifies chemical potential of the device-gate system.
However, its effect on transmission has hardly been studied in
first-principles calculations. Top-gate voltage, considered as a
local perturbation potential, can be studied by adding an
external potential to a device part.21,22 However, a further
consideration of the charged device part in the presence of a
moderate gate potential (Vg) of ∼1 eV has yet to be made.
On the basis of the commonly used DFT-NEGF

method,7,23,24 for the first time, we implement the isochemical
potential (iso-μ) scheme to study electron transport of GNR
under varying Vg which substantially modifies μ. Of course,

modification of the electrostatic potential in the device arising
from bias voltage (Vb) is taken into account using the Poisson
equation. We minimize the total energy (E − μNe) by
controlling the total number of electrons (Ne) under Fermi−
Dirac distribution in the system to obtain a given μ at
temperature T. This Fermi−Dirac distribution implicitly takes
into account the TS term (S: entropy), and so the system
energy corresponds to E-TS-μNe, which is associated with grand
canonical ensemble approach. For this calculation, we choose a
zGNR with a width of six carbon atoms (6-zGNR) as an
example, where the electronic structure varies with respect to μ
and Ne. First-principles band calculations of the unit 6-zGNR
system having the initial antiferromagnetic (AFM) ordering in
the charge-neutral state are performed at varying Fermi levels.
The relative stability of AFM and FM phases is compared for
the systems with same charging level Δn. After showing the
homogeneous charging effect on the electron transport, we also
show a local charging effect that emulates the top gate.
Spin-resolved transmission functions of 6-zGNR are

calculated using POSTRANS.24,25 Geometry of edge-hydro-
genated 6-zGNR is optimized using the Perdew−Burke−
Ernzerhof (PBE) functional,26 single-ζ polarization basis set,
Troullier−Martins pseudopotential,27 and cutoff energy of 300
Ry. Temperature 300 K is used for the Fermi−Dirac
distribution throughout this work.
On the basis of Landauer−Büttiker formalism, the source-

drain current (I) at Vb is
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We assume that μL/R = ±Vb/2 for the left/right (L/R)
electrode. The Fermi−Dirac function f(E − μL/R) at energy E
depends on Vb. The transmission probability is expressed as the
trace of transmission matrix

= Γ Γ †T E V N Tr G G( , , ) [ ]b e L R (2)

where ΓL/R = i[ΣL/R − ΣL/R
†], ΣL/R is self-energy, and Green’s

function is

= − − Σ − Σ −G E H E E[ ( ) ( )]C L R
1

(3)

Here, Hc is the device Hamilitonian.
The transmission matrix is diagonalized in orbital basis using

Inelastica package28 to yield the eigenchannels and correspond-
ing transmission values.
Because the orbital-based DFT method calculates individual

orbital occupancies by filling the orbitals according to f(E −
μL/R), the Ne does not need to be an integer. Instead of
determining μ for the given Ne (as normal DFT calculations
do), we choose a constant μ and determine the corresponding
Ne

∫ μ= −
−∞

∞
N D E f E E( ) ( )de (4)

where D(E) is the density of states at E. DFT eigenstates are
highly dependent on Ne, so it must be gradually modified in
order to avoid divergence. Ne is varied until the corresponding
μ is within 0.5 meV of the desired value.
The charged systems require compensating charges to

prevent the divergence of electrostatic energy. In usual cases,
the fast-Fourier-transform (FFT)-based Poisson solver resolves
the problem by ignoring G = 0 in the Poisson equation V(G) =
−4πρ(G)/G2 (G: reciprocal lattice vector), equivalent to
adding the homogeneous compensating charge inside the cell.
However, description of low-dimensional charged systems
using atom-centered basis set is restricted by the inability of
the basis set to cover the compensating charge in the vacuum
space. Therefore, all the compensating charges are added on
the atom center to avoid unphysical error in Hartree energy.
The compensating charges affect only the electrostatic potential
because it is removed before exchange-correlation energy
calculation.
Introducing fractional charge can be justified in the sense of

electronic doping, where the metallic substrate either donates
or withdraws electron, without affecting electronic structure of
the device. However, error in electrostatic energy is inevitable
to some extent due to the interaction of compensating charge
and the electron density of the system. For this reason, the total
energy is not precisely E − μN. Thus, comparison of two
electronic states is possible only if the states of interest have the
same compensating charge.
Figure 1 and Table 1 illustrate the calculation results. Charge-

neutral AFM 6-zGNR has a band gap of 0.61 eV, with double
dispersions at valence and conduction bands. The depth of
second dispersion is 0.24 eV for the valence band and 0.08 eV
for the conduction band. For small charge modification, as
charge per unit cell |Δn| changes from 0 to ∼0.1, the relative
stabilization of the AFM state over the FM state decreases. The
transition from the AFM to FM state arises at Δn < − 0.047 e/
cell or Δn > 0.057 e/cell. The AFM state of zGNR is quite

stable under Fermi level modulation within the zGNR band
gap. The ground state is AFM until ΔμAFM is lower/higher than
the first conduction/valence band edge, whereas it becomes
FM when ΔμAFM < − 0.294 eV or ΔμAFM > 0.280 eV (see
Figure S1 for the relative stability of the AFM state over the FM
state with respect to Δn.).
In the band diagram of Figure 1b,c,e−g, the AFM state

retains the band gap in the stable FM region with a reduced
band gap (<0.5 eV), whereas the system changes to FM if
ΔμAFM is greater than the AFM gap. Moreover, as in Figure
1c,f, we find the collapse of double dispersion of the AFM
conduction/valence band, implying that the second dispersion
is highly susceptible to μ-modulation. Changes in dispersion
behavior of the FM spin-up valence and spin-down conduction
bands are also found.
At an extreme charge modification listed in Table 1 and

Figure 1d,h, the system converges to the paramagnetic (PM)

Figure 1. Band structures of 6-zGNR at varying total charge of the
device (or varying μ). (a) Pristine zGNR band structure at the
noncharged state. Black/blue/red lines correspond to AFM/FM(spin
up)/FM(spin down). (b−d) Cases for up-shifted Fermi levels. The
FM state is more stable, while the AFM gap still retains (b). A Fermi
level shift causes flat FM spin-up states (c). At high Fermi energy
levels outside the AFM double dispersion region, the system becomes
PM (d). (e−h) Cases for down-shifted Fermi levels. A flat FM spin-
down band occurs between (e) and (f). The second dispersion of the
AFM conduction band also vanishes (f). At low Fermi energy levels,
the PM state is the most stable (g).

Table 1. Chemical potential changesa, AFM-FM energy
differences, and most stable spin statesb at varying charge
per unit cellc of 6-zGNR.d

Δn ΔμAFM ΔμFM EAFM − EFM spin state

−0.614 −0.65 −0.665 P
−0.509 −0.6 −0.616 1.1 F
−0.130 −0.35 −0.359 6.3 F
−0.0563 −0.3 −0.176 2.0 F
−0.0133 −0.25 −0.042 −8.3 AF
0.0 0.0 0.0 −12.9 AF
0.0164 0.25 0.051 −7.9 AF
0.150 0.3 0.287 3.6 F
0.380 0.35 0.345 0.5 F
0.500 0.4 0.391 P

aΔμAFM, ΔμFM. bAF/F/P. cΔn. dΔμ are in eV; E in meV. AF,
antiferromagnetic; F, ferromagnetic; P, paramagnetic.
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state regardless of initial spin configuration. Hence, as μ
deviates from zero, the stable configuration changes from the
AFM semiconductor to the FM metal, then to the PM metal, in
agreement with the Hubbard model result.20

As μ changes, the electronic state undergoes phase transition.
Thus, choosing the right phase (AFM/FM/PM) for the
electrodes is important when calculating the zGNR system at
a given μ. Because the given μ determines the electronic state of
the specific phase, the electrode state and its coupling to the
device should be recalculated for the updated μ. The back-gate
voltage modifies μ over the whole device.
Here, we calculate the transmission probability at each

charging level in Table 1. There is no transmission gap for the
FM and PM metal cases. It is important to self-consistently take
into account orbital relaxation caused by change in μ. Figure
2b−d shows an additional modification in the curve shape

besides a simple shift toward positive or negative direction.
Although the transmission in metal is not changed under
charging, additional transmissions arising from multiple
dispersion at a given Fermi level show substantial modulations,
as expected from the modified band structure in Figure 1. For
example, Figure 2c shows enhanced/suppressed transmission of
spin-up electron in the positively/negatively charged condition.
The transmission value of ∼3.0 occurs at a band-overlapped
region of FM states, and its width corresponds to the width of
overlapped dispersion. The eccentric transmission near E − EF
= −0.28 eV of a negatively charged case arises from the flat
band formation of FM dispersion near ka = π, as in Figure 1c.
These results raise an important point on the conventional

transport calculations. The commonly accepted pictures on
nanodevice systems, where back-gate voltage operation is
regarded as mere shift of μ with fixed band and transmission
structures, should not be used when the electronic states are

susceptible to change upon charging. Consequently, the
practically meaningful part of a transmission diagram at a
given bias is strictly restricted within the bias window, because
every transmission should be recalculated at different values of
μ and Vb.
To simulate local potentials which are represented as

nanoscale top-gate effects, we examine the transport in 6-
zGNR at varying Vg on the central device segment, using the
iso-μ scheme in grand canonical ensemble approach (Figure
3b). The application of Vg is mimicking the top-gate voltage. If

the potential is lowered in a small region, then the electron is
accumulated in that region of zGNR. Because the circuit is of
macroscopic size, semi-infinite leads are regarded as an electron
reservoir with fixed μ, so that the Fermi level will not be
changed by small manipulation on the device part.
DFT−NEGF calculations are performed on the system
comprised of device and 1−2 units of source/drain electrode(s)
representing infinite continuum. We choose Δμ = 0 and then
keep the electrode state as AFM throughout the calculation.
To adopt Vg as an independent variable while keeping μ

fixed, we consider gate-controlled coupling of device and leads.
The gate potential elevates the device energy level, but under
the iso-μ, the number of device electrons is adjusted, resulting
in the shifting of the valence/conduction band toward the
Fermi level. We consider Vb as another independent variable
because the gap between source and drain should be overcome
by Vb.
The system consists of 12 blocks of 6-zGNR, the left/right 2

blocks were assigned as leads (source/drain), and the top-gated
region was set as 6 blocks total, with 4 blocks of cutoff region.
Square potential of depth Vg was added to the top-gated region,
illustrated as shaded in Figure 3b. A cutoff function of the shape

Figure 2. Transmission shifts in the 6-zGNR calculations at Vb = 0 V.
Black lines as the reference represent the noncharged transmission at
each magnetic state. The system consists of 12 cells; Δn is given per
cell. (a) AFM region. Δn = ± 0.0025 corresponds to ΔμAFM = ± 0.20
eV. (b) PM region. Δn = −0.67/+0.575 corresponds to ΔμPM =
−0.684/+0.565 eV. (c/d) FM spin-up/down region. Δn = −0.34/
+0.38 corresponds to ΔμFM = −0.527 + 0.326 eV.

Figure 3. (a) Relation between source/drain band and transmission
profiles. Green/magenta arrows stand for individual eigenchannels
shown in the transmission curve. (b) Illustration of the calculated
system with top-gate where the shape of external potential is
schematically drawn.
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Vg(1 + cos(πz/zcut))/2 was introduced to scale down the
potential outside the given area.
The calculated transmission details for each Vb within the

bias-induced conduction range are given in Figure S1. We note
that the region with modified gate potential converges to the
AFM configuration after reaching the self-consistency because
the AFM-AFM coupling rather than others is favored for the
gate length considered here. Thus, only one spin component
has been plotted.
Transmission is modified according to Vg. Figure 4a is the

representative result of transmission at Vb = 0.8 V. Two major

transmission eigenchannels28,29 exist in the region 0.6 V < Vb <
0.9 V, implying the existence of two terminals in conduction
band, as in Figure 3a. This Vb window is the bias control range.
The change made in Vg affects only the coupling parameter
between source and drain states because the starting/terminal
state is determined according to source/drain valence/
conduction band. The transmission is found to be modulated
controllably at large |Vg|, and just one of the two eigenchannels
is active to the modulation by Vg. Figure 4b−d shows the
eigenchannel analysis at extreme Vg’s (Vg = ± 3.0 eV). There is
a smaller eigenchannel of width 0.08 eV within 0.7 V ≤ Vb < 0.9
V. Thus, we deduce that the smaller eigenchannel originates
from the transmission from the valence band to the smaller
dispersion of conduction band. Consequently, the wider
transmission originates from the large dispersion of 6-zGNR

conduction band. At Vg = 3.0 eV, the overall transmission is
highly boosted and both eigenchannels are found to be
activated, but at Vg = −3.0 eV only the eigenchannel originated
from the larger dispersion is active.
The increase of transmission at extreme Vg could be

compared with a simple tight-binding Hamiltonian, where the
density of states of the device part shows parallel shift by Vg. If
the number of active device states increases, the transmission
and current will increase. The iso-μ condition regulates the
electron occupancy of the device part, determining the number
of states within the bias window. However, the transmission in
orbitals is mainly governed by coupling between lead and
device states, which should be recalculated for every new device
states.
The I−V characteristics of the system derived from the

transmission data (Figure S1) are in Figure 4e,f. Figure 4e
shows the I−V curve for every gate potential (not gate voltage).
Inside the bias control range, the I−Vg curve shows the trend of
Figure 4f, indicating that the gate-controlled current is well-
described in first-principles calculations. Otherwise, outside the
bias control range, the current does not follow the same trend,
due to the partial collapse of AFM transmission.30

Expanding our study of zGNR to arbitrary semiconducting
nanodevices, one can expect more than unit transmission (and
more current) if more than one dispersion exists in a specific
energy of conduction band. This can be either multiple
dispersions within a band or multiple conduction bands at a
specific point such as 3n + 1 width armchair GNR. One may
derive a new property if the band structure of the target system
is sensitive to charging, such as spin-polarized current as
expected in Figure 2.
In summary, we discussed an FET-like current modulation of

6-zGNR using DFT-NEGF formalism based on the gate-
controlled iso-μ scheme in the presence of moderate Vb and Vg
at 300 K. The transmission profiles of the charged zGNR were
reported for the first time. They are highly dependent on band
structures within charging effect, along with the magnetism. We
were able to describe modulation of the electronic structure of
the 6-zGNR system with respect to additional charging, along
with the range of μ to keep the initial magnetism. Careful
choice of gate potential can activate the initially inactive states
and thus boost the current. This phenomenon could invoke
experimental demonstrations for effective GNR-FET using
bottom-up synthesized GNRs.
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Figure 4. (a) Gate-control driven modulation of the transmission
curve at Vb = 0.8 V. Transmission boosts at high Vb, but it is not
symmetric. (b−d) Eigenchannel eigenvalues of transmission channel at
varying Vg obtained from eigenchannel decomposition. The width of
the two-channel region is 0.08 eV. Note that eigenchannels are
ordered in terms of their magnitude. (e) I−Vb curve of 6-zGNR at
varying gate potentials Vg (threshold Vb: 0.6 V). (f) I−Vg curve at Vb =
0.8 V. Current increases with increasing Vg.
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