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Assessing the ergodicity of graphene liquid cell electron microscope measurements, we 
report that loop states of circular DNA interconvert reversibly and that loop numbers fol-
low the Boltzmann distribution expected for this molecule in bulk solution, provided that 
the electron dose is low (80-keV electron energy and electron dose rate 1–20 e− Å−2 s−1). 
This imaging technique appears to act as a “slow motion” camera that reveals equilibrated 
distributions by imaging the time average of a few molecules without the need to image 
a spatial ensemble.

TEM | graphene liquid cell | ergodicity

Imaging the rich conformational substates of biomacromolecules requires that one slow 
their interconversion rate, as in bulk aqueous solution, it is prohibitively rapid. Here, we 
assess the potential of graphene liquid cell (GLC) transmission electron microscopy (TEM) 
to accomplish this goal. This technique originated in the study of nanoparticles (1, 2) and 
ubiquitously showed diffusion slowed by a factor of 108, reflecting enhanced interfacial 
viscosity (3–5) or more likely transient adsorption (6). Diffusion of DNA oligomers is 
slowed by roughly the same factor (7). Although recognizing the possible perturbative 
influence of electron energy and electron dose (8), we conjectured that flexible molecules 
explore conformations similar to those in free solution when they are near the adsorp­
tion–desorption transition. A test of ergodicity—whether ensemble-average coincides 
with time average—should concern a molecule sufficiently simple to compare to theory 
with sufficient dynamic range. To provide this test, we selected circular DNA (9).

We work with a closed-loop (circular) double-stranded DNA (dsDNA) of 336 bp (10), 
dissolved in dilute aqueous solution, confined between atomically thin graphene sheets 
<100 nm in height, which is sufficiently thin to resolve individual molecules without 
prohibitive background electron scattering (1). Each displays time-dependent numbers of 
loops, and their relative abundance reflects the relative energetics. The first imaging con­
dition (A) was H2O, 44 molecules in 11 GLCs, electron dose rate 5–20 e− Å−2 s−1, each 
movie containing several hundred frames with 21,000 images total. The second (B) was 
D2O to prolong the imaging time by retarding bubble formation (11) (16 molecules in 
five GLCs). The third (C) was electron dose rate 1–5 e− Å−2 s−1 in H2O (14 molecules in 
two GLCs). The fourth (D) was electron dose rate 1–5 e− Å−2 s−1 in D2O (21 molecules 
in five GLCs). Ten thousand images were obtained for each condition in (B), (C), and 
(D), 53,496 images in total including (A). The GLC setup is shown schematically in 
Fig. 1A. The persistence length of dsDNA is 50 nm (150 bp), so this sample 336 bp long 
is flexible with curvature reflected in the number of loops, N. Theory predicts that bending 
energy is proportional to N  2 (12).

Results

Distributions of Loop Number N Suggest Ergodicity. An ergodic molecule should 
exhibit molecular states whose energy distribution obeys Boltzmann distribution. We 
observe up to N = 4 loops and quantify them using an image analysis algorithm (13). 
Fig. 1A shows examples. State N = 1 is most abundant; loop incidence decreases with 
N and interconversion is reversible. Loop number N are predominantly in sequence as 
illustrated in Fig. 1B and Movie S1 but occasional molecules skip a loop state, for example, 
transforming from N = 3 to N = 1. These features, expected in equilibrium, suggest that 
our dataset is sufficiently large to include states of low probability.

The distributions of N are insensitive to imaging condition; the difference across imaging 
conditions is similar to the uncertainty for any single imaging condition. Fig. 1C, relative 
probability plotted against N  2, shows consistency with the Boltzmann relation anticipated 
for an equilibrated distribution of independent molecules (37,247, 12,742, 3,191, and 
316 images for N = 1, 2, 3, and 4, respectively). As shown in Fig. 1C, differences between 
different imaging conditions are second order. Grouping together the data from four 
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imaging conditions, there is no systematic dependence on the 
imaging condition and from the Boltzmann equation, the energy 
difference between given loop numbers is 1 to 2 kBT. The slope 
of linear regression fit to the average dataset is 0.3 with correlation 
coefficient R2 = 0.998. For each state-to-state transition, the prod­
uct of slope in Fig. 1C and the difference of squared loop number 
for each of these states is the activation energy, giving ΔE12, ΔE23, 
ΔE34 = 0.9 ± 0.2, 1.6 ± 0.3, and 2.2 ± 0.4 kBT, respectively (uncer­
tainty is the SD).

Kinetic Pathways Depend on Electron Dose. Within the exper­
imental time window, the interconversion between states should 
be reversible for an ergodic system. Reversible transformations, 
tallied in Fig. 1D as relative probabilities, are symmetric within 

experimental uncertainty for imaging conditions (A) and (B) 
but slightly asymmetric for imaging conditions (C) and (D), for 
which we observe a higher frequency of N = 2 to N = 1 than the 
reverse process. The N = 1 state may be statistically stabilized 
by having more points of surface contact when the electron 
dose is low. Interestingly, the transition probabilities are similar 
in H2O and D2O despite the adsorption isotope effect (14). 
This suggests that electron dose is the stronger influence. From 
histograms of duration time between conformational transitions, 
we inferred time constants τ illustrated in Fig. 1E. They decrease 
with increasing N as expected since looped states are less stable 
(Fig. 1F). Although absolute values of τ depend on the imaging 
condition, their ratios do not. Estimating free energy differences 
from this ratio, we obtain estimates for ΔE12, ΔE23, and ΔE34 = 

A B
0.0 s 13.2 s 34.8 s 87.6 s 111.3 s

N = 1 N = 2 N = 3 N = 4

e-

E F

C D

Fig. 1. Cyclic DNA molecules imaged in GLCs using TEM. (A) Schematic illustration of the GLC in which we image interconversion between loop numbers  
N = 1, 2, 3, and 4. The four images for each N show schematic sketch of this N (Top Left), its electron micrograph (Top Right), image processed using the software 
algorithm UNet++ with red circles identifying the loop state (Bottom Left), and binarized image for improved visual contrast (Bottom Right). (Scale bar, 10 nm.) 
Double-headed arrows indicate reversible interconversion between neighboring states, thicker according to relative frequency. (B) Time-resolved images for the 
pathway N = 3–2–1–2–3. Exposure time is 0.3 s, Scale bar is 10 nm, with images (top row), analyzed using the software UNet++, with red circles identifying the 
loop state (middle row), and binarized images for better visual contrast (third row). (C) Relative probabilities of N plotted against N2. Black pentagons represent all 
data points. Data obtained under four imaging conditions: open stars (A), open circles (B), half-filled stars (C), and half-filled circles (D). (D) Relative probabilities 
of interconversion between N specified in abscissa. Symbols are the same as in panel C. (E) For imaging condition B and N = 1, illustrative histogram of duration 
time used to obtain τ with line showing exponential fit. Inset: Same data on semilogarithmic scales. (F) Time constants τ plotted against N with the same symbols 
as in panel D.
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1.6, 1.5, and 2.5 kBT, respectively, consistent with the estimates 
obtained from Fig. 1C.

Discussion

Our data are ergodic within experimental uncertainty. These 
data support the view that the GLC–TEM imaging technique 
acts as a “slow motion” camera, revealing intermediate states 
too fleeting to be captured in bulk solution, yet characteristic 
of bulk solution owing to the tradeoff between adsorption to 
graphene, which tends to stabilize low-energy conformations, 
and electron dose which tends to facilitate interconversion to 
higher-energy states. Speculatively, this technique has oppor­
tunity, also for other biomacromolecules, to investigate confor­
mational rearrangements when macromolecules encounter one 
another.

Materials and Methods

We synthesized 336-bp minicircles by procedures described previously (15) with a 
minicircle plasmid pTUBB3-MC (gift from Juan Belmonte, Addgene plasmid #87112; 
http://n2t.net/addgene:87112; RRID: Addgene_87112) using the ClonExpress II 
One Step Cloning Kit (Vazyme). We purchased Quantifoil@R 1.2/1.3 gold grids with 
a mesh size 300 from SPI Supplies. The 2-layer and 3- to 5-layer graphene grown by 
CVD on copper was bought from ACS Material. We formed GLCs from graphene scrolls 
or creases (6) and used common electron microscope: a JEOL-2100 TEM equipped 
with a direct electron-detection camera (K2 summit, Gatan) or a Gatan Oneview 
IS camera. Images were processed and analyzed (13) with details in SI Appendix.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.
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