

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Doctoral Thesis

Heterogeneity-Aware Resource Management

Techniques for Data-Intensive Applications

Myeonggyun Han

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

2024

Heterogeneity-Aware Resource Management

Techniques for Data-Intensive Applications

Myeonggyun Han

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

Abstract

A wide range of applications have become data-intensive as they operate on the massive amounts of

data generated by social network services, multimedia devices, and Internet of Things sensors. These

data-intensive applications typically require enormous computational and memory resources to extract

useful information from the massive amounts of data they encounter. To accommodate the enormous

computing and memory demands of data-intensive applications, hardware resources in computing sys-

tems are becoming highly heterogeneous. Specifically, numerous hardware accelerators, such as tensor

processing units (TPUs) and neural processing units (NPUs), have been developed to address the ever-

increasing computing demands of deep-learning applications. In addition, new memory devices, such as

high-bandwidth memory (HBM) and non-volatile memory (NVM), have been developed to tackle the

growing demand for increased memory performance, capacity, and cost-efficiency.

Heterogeneous computing and memory have great potential to significantly improve the performance

and efficiency of data-intensive applications. However, taking full advantage of the capabilities of het-

erogeneous computing and memory poses significant challenges to system software in that it is the

responsibility of the underlying system software to manage the heterogeneous computing and mem-

ory resources effectively so as to maximize the metric of interest, such as the performance or energy

efficiency. This dissertation presents heterogeneity-aware resource management techniques that signif-

icantly improve the performance and efficiency of data-intensive applications by effectively exploiting

heterogeneous computing and memory resources.

First, we investigate system software techniques that effectively schedule computations on hetero-

geneous computing devices for efficient deep-learning inference. To this end, we propose MOSAIC,

a software-based system for heterogeneity-, communication-, and constraint-aware model slicing and

execution for accurate and efficient inference on heterogeneous embedded systems. MOSAIC employs

accurate models for estimating the execution and communication costs of the target inference work-

load. MOSAIC generates an efficient model slicing and execution plan for the target workload using an

algorithm based on dynamic programming.

Second, we propose HERTI, a reinforcement learning-augmented system for efficient real-time in-

ference on heterogeneous embedded systems. HERTI efficiently explores the state space and robustly

finds an efficient state that significantly improves the efficiency of the target inference workload while

satisfying the corresponding deadline constraint through reinforcement learning. In addition, HERTI

significantly accelerates the training process based on the accurate and lightweight cost estimators.

Third, we investigate a system software technique that effectively manages heterogeneous mem-

ory for high-performance deep-learning. We analyze the characteristics of representative deep-learning

workloads on a real heterogeneous memory system. Guided by the characterization results, we propose

HALO, hotness- and lifetime-aware data placement and migration for high-performance deep-learning

on heterogeneous memory systems. HALO extracts the hotness and lifetime information on the tensors

of the target deep-learning application based on its dataflow graph. HALO then dynamically places and

migrates the tensors on heterogeneous memory nodes based on their hotness and lifetime characteristics.

Finally, we investigate a system software technique for QoS-aware and efficient workload consolida-

tion on heterogeneous memory systems based on software-defined far memory. We conduct an in-depth

characterization of the impact of cores, memory, and compressed memory swap (CMS) on the QoS and

throughput of consolidated latency-critical (LC) and batch applications. Guided by the characteriza-

tion results, we propose COSMOS, a software-based runtime system for the coordinated management

of cores, memory, and CMS for QoS-aware and efficient workload consolidation for memory-intensive

applications. COSMOS dynamically collects runtime data from consolidated applications and the un-

derlying system and allocates the resources to the consolidated applications in a way that achieves high

throughput with strong QoS guarantees.

2

Contents

I Introduction . 1

1.1 Contributions . 2

1.2 Organization . 3

II Background . 4

2.1 Heterogeneous Embedded Systems and Inference 4

2.2 Heterogeneous Memory Systems . 5

III Related Work . 7

3.1 Model Slicing and Execution for Efficient Deep Learning Inference 7

3.2 Data Placement and Migration for High-Performance Deep Learning 8

3.3 Resource Management for QoS-Aware and Efficient Workload Consolidation . . 9

IV Heterogeneity-, Communication-, and Constraint-Aware Model Slicing and Execution

for Accurate and Efficient Inference . 11

4.1 Introduction . 11

4.2 Experimental Methodology . 12

4.3 Need for Heterogeneity-, Communication-, and Constraint-Aware Inference . . . 13

4.4 Design and Implementation . 16

4.5 Evaluation . 22

4.6 Summary . 29

2

V Reinforcement Learning-Augmented System for Efficient Real-Time Inference on Het-

erogeneous Embedded Systems . 30

5.1 Introduction . 30

5.2 Background: Deep Q-Network . 31

5.3 Design and Implementation . 33

5.4 Experimental Methodology . 39

5.5 Evaluation . 40

5.6 Summary . 48

VI Hotness- and Lifetime-Aware Data Placement and Migration for High-Performance Deep-

Learning on Heterogeneous Memory Systems . 49

6.1 Introduction . 49

6.2 Background . 50

6.3 Experimental Methodology . 53

6.4 Characterization of DL Applications . 54

6.5 Design and Implementation . 58

6.6 Evaluation . 64

6.7 Summary . 71

VII Coordinated Management of Cores, Memory, and Compressed Memory Swap for QoS-

Aware and Efficient Workload Consolidation for Memory-Intensive Applications 72

7.1 Introduction . 72

7.2 Background . 74

7.3 Experimental Methodology . 75

7.4 Characterization . 77

3

7.5 Design and Implementation . 82

7.6 Evaluation . 87

7.7 Summary . 93

VIII Conclusion . 94

References . 96

Acknowledgements . 113

List of Figures

1 Hardware and software stacks for deep-learning inference on heterogeneous embedded

systems. 4

2 Evaluated heterogeneous embedded system and power monitor 13

3 Performance heterogeneity of inference workloads . 14

4 Energy heterogeneity of inference workloads . 15

5 Communication overheads . 16

6 Overall architecture of MOSAIC . 16

7 Communication time with various tensor sizes . 17

8 Inference latency . 23

9 Inference energy . 24

10 Latency impact of the MOSAIC components . 26

11 Energy impact of the MOSAIC components . 26

12 Inference latency with smaller models . 27

13 Inference energy with smaller models . 27

14 Latency estimation accuracy . 28

15 Energy estimation accuracy . 28

16 Overheads for performance optimization . 29

17 Overheads for energy optimization . 29

5

18 Overall architecture of HERTI . 32

19 DQN architecture of MSEP . 36

20 Inference latency . 42

21 Inference energy . 43

22 Sensitivity to the inference deadline . 44

23 Sensitivity to the system heterogeneity . 45

24 Generality of HERTI . 45

25 Energy-delay product . 46

26 Training time comparison . 47

27 Networks with linear and non-linear connections . 51

28 Per-operation execution time of VGG . 55

29 Execution time breakdowns . 56

30 Per-operation execution time of GN . 57

31 Tensor characteristics of VGG . 58

32 Tensor characteristics of GN . 59

33 Overall architecture of HALO . 60

34 Overall performance results . 65

35 Execution breakdowns with HALO and various memory management policies 66

36 Memory traffic . 67

37 Energy consumption breakdowns . 68

38 Performance overheads of HALO . 69

6

39 Sensitivity to the application working-set size . 70

40 Impact of the optimization techniques . 70

41 Impact of cores, memory, and CMS allocated to the LC container with low load and low

MOR . 78

42 Impact of cores, memory, and CMS allocated to the LC container with low load and high

MOR . 79

43 Impact of cores, memory, and CMS allocated to the LC container with high load and

low MOR . 80

44 Impact of cores, memory, and CMS allocated to the LC container with high load and

high MOR . 81

45 Overall architecture of COSMOS . 82

46 Execution flow of the system state space explorer . 83

47 Quality of service . 88

48 Effective machine utilization . 89

49 Sensitivity to the memory overcommit ratio . 90

50 Sensitivity to the load for the LC container . 91

51 Sensitivity to the load and memory overcommit ratio 91

52 Number of the explored system states . 92

53 Effectiveness of dynamic resource management . 93

List of Tables

1 Evaluated deep-learning inference workloads . 13

2 Voltage and frequency levels of the evaluated computing devices 19

3 Model slicing and execution plans for performance optimization 23

4 Model slicing and execution plans for energy optimization 25

5 Tunable hyper-parameters . 38

6 Evaluated real-time inference workloads . 39

7 Model slicing and execution plans . 43

8 System specification . 53

9 Evaluated deep-learning applications . 53

10 Loads for the LC benchmarks . 76

11 Working-set sizes . 77

12 Evaluated workload mixes . 87

I Introduction

An enormous volume of data is being generated through the widespread use of social network ser-

vices, multimedia devices, and Internet of Things sensors [101]. Various applications, including ma-

chine learning, graph analytics, and databases, are becoming increasingly data-intensive as they operate

on extensive datasets to enable innovative services. Data-intensive applications typically require large

computational and memory resources to derive valuable insights and knowledge from extensive datasets

and to make predictions and informed decisions. Given that data-intensive applications are widely used

across various computing domains ranging from embedded systems to high-performance computing, it

is crucial to optimize the performance and efficiency of these applications.

Hardware resources in computing systems are becoming highly heterogeneous due to the emergence

of new hardware accelerators and memory technologies. On the computing device side, numerous hard-

ware accelerators, such as Google’s tensor processing units (TPUs) [76, 77], Meta’s MTIA [53], Ama-

zon’s Inferentia [1], and various neural processing units (NPUs) [5, 13, 14, 20], have been developed to

address the ever-growing computing demands in deep-learning applications. Along with these hardware

accelerators, heterogeneous computing systems that employ multiple types of computing devices (e.g.,

CPU, GPU, and NPU) have emerged as promising solutions for efficient machine learning. For exam-

ple, the Huawei Kirin 9000 [14] comprises eight CPU cores of two different types (i.e., four Cortex-A77

and four Cortex-A55 cores), a 24-core GPU, and a 3-core NPU of two different types (i.e., two Ascend

Lite and one Ascend Tiny cores). In addition, the Apple A17 Pro [13] contains six CPU cores of two

different types (i.e., two performance and four efficiency cores), a 6-core GPU, and a 16-core NPU.

On the memory device side, new memory devices, such as high-bandwidth memory (HBM) [6]

and non-volatile memory (NVM) [9], have been developed to address the growing demand for improved

memory speeds and capacities. With these new memory devices, heterogeneous memory systems, which

consist of various memory nodes with a wide range of architectural characteristics, are rapidly emerging

as a promising solution to increase memory performance and capacity in a cost-effective manner. The

key concept behind heterogeneous memory systems is to offer useful properties, such as performance,

energy efficiency, durability, and cost efficiency, that cannot be obtained with a single memory type.

For instance, the recently-released Intel Xeon CPUs (i.e., Intel Xeon Max Series) [11], which comprise

HBM and DRAM nodes, can effectively provide high memory bandwidths (e.g., 1638.4 GB/s with

HBM) as well as large memory capacities (e.g., 4 TB with DRAM).

Heterogeneous computing and memory have great potential to significantly improve the performance

and efficiency of data-intensive applications. However, taking full advantage of the capabilities of het-

erogeneous computing and memory poses several challenges in terms of resource management. First,

it is necessary to schedule computations on heterogeneous computing devices according to the char-

acteristics of the workload and the computing devices. Second, it is necessary to place and migrate

data between various memory nodes according to the memory access patterns. Third, it is necessary to

allocate an appropriate amount of heterogeneous resources to each application when sharing resources

between multiple applications.

1

In this dissertation, we investigate system software techniques that effectively manage heteroge-

neous computing and memory resources to address the aforementioned challenges. To address the first

challenge, we investigate model slicing and execution techniques [58, 61]. Model slicing and execu-

tion techniques divide the deep-learning model into multiple slices and schedule them on heterogeneous

computing devices to improve the performance and energy efficiency of deep-learning inference [61]

or to improve the energy efficiency while satisfying a deadline constraint [58]. To address the second

challenge, we investigate hotness- and lifetime-aware data placement and migration techniques to im-

prove the performance of deep-learning application on heterogeneous memory systems [60]. Finally, to

address the third challenge, we investigate a resource allocation technique for QoS-aware and efficient

workload consolidation on heterogeneous memory systems based on software-defined far memory [62].

1.1 Contributions

The focus of this dissertation is to improve the performance and efficiency of data-intensive applications

by fully utilizing heterogeneous computing and memory resources. To this end, we designed and imple-

mented system software techniques that effectively manage hardware resources in a heterogeneity-aware

manner and evaluated them.

Specifically, this dissertation makes the following contributions:

• Model Slicing and Execution for Efficient Inference on Heterogeneous Embedded Systems
We propose MOSAIC, a software-based system for heterogeneity-, communication-, and constraint-

aware model slicing and execution for accurate and efficient inference on heterogeneous embed-

ded systems [61]. MOSAIC utilizes accurate models to estimate the execution and communication

costs of the target inference workload. MOSAIC generates the efficient model slicing and exe-

cution plan for the target inference workload through dynamic programming. We quantify the

effectiveness of MOSAIC with widely-used inference workloads on a real heterogeneous embed-

ded system, which consists of big core cluster, little core cluster, GPU, and NPU. Our experimental

results demonstrate the effectiveness of MOSAIC as it significantly reduces inference latency and

energy, exhibits high estimation accuracy, and incurs small overheads.

• RL-Based System for Efficient Real-Time Inference on Heterogeneous Embedded Systems
We propose HERTI, a reinforcement learning (RL)-augmented system for efficient real-time in-

ference on heterogeneous embedded systems [58]. HERTI efficiently explores the state space and

robustly finds an efficient state that significantly improves the efficiency of the target real-time

inference workload while satisfying the corresponding deadline constraint through reinforcement

learning. Our quantitative evaluation conducted on a full heterogeneous embedded system demon-

strates the effectiveness of HERTI in that HERTI achieves high inference efficiency in multiple

metrics (i.e., energy and energy-delay product) with a strong deadline guarantee, delivers larger

gains as the inference deadline and the system heterogeneity increase, provides strong generality

for hyper-parameter tuning, and significantly reduces the training time through its estimation-

based approach across all the evaluated inference workloads and scenarios.

2

• Memory Management for High-Performance DL on Heterogeneous Memory Systems
We propose HALO, hotness- and lifetime-aware data placement and migration for high-performance

deep-learning (DL) on heterogeneous memory systems [60]. We conduct an in-depth characteriza-

tion of widely-used deep-learning workloads on a real heterogeneous memory system and design

and implement HALO guided by the characterization results. HALO analyzes the hotness and

lifetime characteristics of tensors based on a dataflow graph of the target deep-learning applica-

tion. HALO dynamically places and migrates the tensors across the heterogeneous memory nodes

in a hotness- and lifetime-aware manner based on the proposed algorithm. Through quantitative

evaluation, we demonstrate the effectiveness of HALO in that it significantly outperforms vari-

ous memory management policies supported by the underlying system software and hardware,

achieves performance comparable to the ideal case with infinite HBM, incurs small performance

overheads, and delivers high performance across a wide range of application working-set sizes.

• Resource Allocation for QoS-Aware and Efficient Workload Consolidation on Heteroge-
neous Memory Systems Based on Software-Defined Far Memory
We propose COSMOS, a software-based system for coordinated management of cores, memory,

and compressed memory swap (CMS) for QoS-aware and efficient workload consolidation for

memory-intensive applications [62]. CMS is used as a software-defined far memory in this work.

We conduct an in-depth characterization of the impact of cores, memory, and CMS on the QoS

and throughput of the consolidated latency-critical (LC) and batch applications and design and

implement COSMOS guided by the characterization results. COSMOS dynamically collects the

runtime data from the consolidated applications and the underlying system and allocates cores,

memory, and CMS in a way that significantly improves the throughput of the consolidated appli-

cations while satisfying the LC application’s QoS. Our quantitative evaluation based on a real sys-

tem and widely-used memory-intensive benchmarks demonstrates that COSMOS provides strong

QoS guarantees and achieves high throughput across all the workload mixes with various loads

for the LC application and memory overcommit ratios.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter II provides background information related

to the dissertation. Chapter III summarizes previous work. Chapter IV presents MOSAIC, a software-

based system for heterogeneity-, communication-, and constraint-aware model slicing and execution

for accurate and efficient inference on heterogeneous embedded systems. Chapter V describes HERTI,

an RL-augmented system for efficient real-time inference on heterogeneous embedded systems. Chap-

ter VI presents HALO, hotness- and lifetime-aware data placement and migration for high-performance

deep-learning on heterogeneous memory systems. Chapter VII describes COSMOS, a software-based

system for coordinated management of cores, memory, and CMS for QoS-aware and efficient workload

consolidation for memory-intensive applications. Finally, Chapter VIII concludes this dissertation.

3

Deep-Learning Inference Workload

Heterogeneous Embedded System
NPUGPULITTLEBIG

Deep-Learning Framework (e.g., TensorFlow Lite)

Embedded Operating System
Neural Network APIDevice Frequency Driver

Figure 1: Hardware and software stacks for deep-learning inference on heterogeneous embedded sys-
tems.

II Background

2.1 Heterogeneous Embedded Systems and Inference

Heterogeneous embedded systems consist of various computing devices (e.g., big core cluster, little core

cluster, GPU, and NPU). Each heterogeneous computing device exhibits widely-different characteristics

in terms of performance, power efficiency, communication overheads, functionality, and memory capac-

ity [4, 5, 13, 15, 20].

Widely used deep-learning (DL) frameworks (e.g., TensorFlow Lite [23], PyTorch [122]) simplify

inference workload programming on heterogeneous embedded systems. With such frameworks, parts

of inference workloads are offloaded to computing devices through the invocations of API functions

provided by the frameworks, eliminating the need to implement device-specific code. Figure 1 illustrates

the hardware and software stacks for DL inference on heterogeneous embedded systems.

Inference workloads consist of layers. A layer is defined as a set of associated mathematical oper-

ations such as convolution and rectifier. Each layer takes a set of input tensors (i.e., multidimensional

arrays), performs computations specified by its mathematical operations, and generates a set of output

tensors.

In this dissertation, we define a model slice as a set of consecutive layers, to be executed on the

same computing device of the underlying heterogeneous embedded system. There exist communication

overheads between adjacent slices as they need to communicate through input and output tensors.

Due to memory or functionality constraints, it may be infeasible to execute a model slice on cer-

tain heterogeneous computing devices. For example, if a model slice includes mathematical operations

unsupported by a computing device or has a memory footprint larger than the memory capacity of a

computing device, the model slice cannot be executed on the device.

While the importance of efficient inference is ever increasing, it is highly challenging to maximize

the efficiency of inference workloads on heterogeneous embedded systems. As we will show in Sec-

tion 4.3, each layer exhibits greatly differing performance and power consumption characteristics on

4

each heterogeneous computing device and different model slicing plans incur different execution and

communication costs. In addition, each heterogeneous computing device imposes different constraints.

Therefore, the design complexity and the state space that an optimizing system needs to cover increase

drastically.

2.2 Heterogeneous Memory Systems

Heterogeneous memory systems comprise two or more types of memory nodes (e.g., non-volatile mem-

ory (NVM) and DRAM [9, 52] high-bandwidth memory (HBM) and DRAM [11, 144]) that exhibit a

broad range of different characteristics, including bandwidth, latency, persistence, and durability.

Heterogeneous memory systems can be largely classified into two categories. The heterogeneous

memory systems that belong to the first category organize heterogeneous memory nodes in a flat manner

in that the heterogeneous memory nodes are mapped to a single physical address space [28, 82, 136,

157,161,162,166]. The heterogeneous memory systems in the second category organize heterogeneous

memory nodes in a tiered manner in that faster and smaller memory nodes are used as hardware caches

for slower and larger memory nodes [46,56,165,167]. In Chapter VI, we investigate the system software

technique (i.e., HALO) that significantly improves the performance of the target deep-learning (DL)

application on heterogeneous memory systems with the flat memory organization by effectively utilizing

the application-level information (e.g., hotness, lifetime).

One of the most representative heterogeneous memory systems is the Intel Xeon CPU-based het-

erogeneous memory systems, such as the Intel Xeon CPU Max Series [11], the Intel Xeon CPU with

Optane Memory [9], and the Intel Xeon Phi KNL [143]. A prior work has characterized the performance

of the HBM and LBM nodes1 using a Xeon Phi KNL CPU-based system [129]. Because HBM employs

a high-performance multi-channel interface between the HBM nodes and the CPU, it achieves signifi-

cantly higher bandwidth (i.e., 480 GB/s vs. 80 GB/s) than LBM. In contrast, HBM nodes incur slightly

longer latency (i.e., 160-175 nanoseconds vs. 130-140 nanoseconds) than LBM nodes [129].

Further, the capacity of HBM is significantly smaller (i.e., 16 GB vs. 192 GB) compared to that of

LBM as the area budget of HBM is tightly limited to employ the high-bandwidth package-on-package

technology. Given that data-intensive applications typically require a large amount of physical memory,

their working-set size often significantly exceeds the capacity of HBM.

The Xeon Phi KNL architecture provides the Flat mode (i.e., flat memory organization) in which

the HBM and LBM nodes are mapped to a single physical address space. In addition, the Xeon Phi KNL

architecture provides the Cache mode (i.e., tiered memory organization). In the Cache mode, HBM is

fully managed by hardware as a last-level hardware cache and is transparent to the OS. Note that other

Xeon CPU-based heterogeneous memory systems, such as the Intel Xeon CPU Max Series [11] and

Intel Xeon CPU with Optane Memory [9], also provide the Flat mode and Cache mode.

Another representative type of heterogeneous memory system is a system that employs software-

defined far memory. Production cloud computing systems and datacenters (e.g., Google [93] and

1We denote multi-channel DRAM (MCDRAM) and DRAM as high-bandwidth memory (HBM) and low-bandwidth mem-
ory (LBM), respectively.

5

Meta [160]) employ the compressed memory swap (CMS) as a software-defined far memory to ef-

fectively increase the memory capacity of the underlying server system in a cost-effective manner. CMS

compresses cold pages and stores them in the in-memory swap area to effectively create a second-tier

slow memory in software.

CMS is a promising technique for hosting memory-intensive applications without increasing the

physical memory of the underlying server system [93, 160]. With CMS, pages selected as victim pages

by the memory reclaim algorithm in the OS are compressed and evicted to CMS instead of the disk

swap. CMS mitigates the page swapping overhead by storing the victim pages in the in-memory swap

area instead of the disk. While CMS incurs overheads when compressing and decompressing pages, it

is still significantly faster than a disk swap as it eliminates expensive disk I/O operations. Widely used

OSes (e.g., zswap in Linux [25], memory compression in Windows [18], and compressed memory in

macOS [19]) support CMS.

6

III Related Work

3.1 Model Slicing and Execution for Efficient Deep Learning Inference

Prior works have extensively investigated deep-learning model analysis and optimization techniques to

improve the inference latency and/or address the constraints of inference workloads [29, 35, 43, 68, 74,

78, 84, 114, 128, 132, 146, 158]. While insightful, none of the prior works considers the efficiency het-

erogeneity, communication overheads, and constraints of inference workloads and emerging computing

devices in an integrated manner.

The prior works proposed in [29, 35, 68, 74, 78, 114, 128, 146] lack the consideration of the effi-

ciency heterogeneity and memory and functionality constraints of inference workloads and emerging

computing devices (e.g., NPU), which are crucial factors to achieve the best possible efficiency on het-

erogeneous embedded systems. The works proposed in [43, 132, 158] lack the consideration of the

efficiency heterogeneity, communication overheads, and functionality constraints of computing devices

and deep-learning workloads. Our works (i.e., MOSAIC and HERTI) significantly differ in the sense

that we analyze the characteristics of inference workloads on a real heterogeneous embedded system that

includes a highly-optimized NPU, propose efficient algorithms to solve the model slicing and execution

problem in a heterogeneity-, communication-, and constraint-aware manner, and design, implement, and

evaluate the proposed systems using full hardware and software stacks.

The systems (e.g., AutoScale) proposed in [35, 84] consider the real-time property of inference

workloads and employ DVFS to enhance energy efficiency. However, they lack the consideration of the

heterogeneity- and constraint-aware model slicing and execution for real-time inference workloads and

emerging computing devices (e.g., NPU), which are crucial for achieving the best possible efficiency

on heterogeneous embedded systems. For instance, as we will show in Chapter V, the heterogeneity-

oblivious inference workload execution employed by the aforementioned systems significantly degrades

efficiency. Our work (i.e., HERTI) significantly differs as it proposes a reinforcement learning (RL)-

augmented system that robustly addresses the model slicing and execution planning problem for real-

time inference workloads in a heterogeneity- and constraint-aware manner and quantifies the effective-

ness of HERTI on a real heterogeneous embedded system with a highly-optimized NPU.

Prior works have proposed techniques to apply machine learning to optimize the efficiency of com-

puter systems in various contexts such as cloud resource management [39,49,83,85,112,113], memory

system design and management [51, 140], and compiler analysis and optimizations [106, 107]. Their

common theme is that machine learning can effectively be used to address problems whose optimal so-

lutions are unknown or exact solutions are computationally too expensive due to their high complexity.

In line with the prior works, our work (i.e., HERTI) demonstrates that RL can effectively be used to

solve the model slicing and execution planning problem for real-time inference workloads in order to

maximize their efficiency while meeting their deadlines.

Prior works have explored the design and implementation of hardware accelerators for deep learn-

ing [30,31,42,44,50,53,53,57,66,70,76,116,145,148,159]. As hardware accelerators for deep learning

7

become more widely-used and diverse, we believe that systems like MOSAIC and HERTI will become

even more crucial to effectively utilize all the heterogeneous computing devices in the underlying system

with heterogeneity, communication, and constraint awareness for efficient inference.

Prior works have investigated the architectural and system software techniques to improve the ef-

ficiency of heterogeneous computing systems [63, 64, 91, 110, 115, 117, 118, 124, 125, 141, 155, 168].

Our works (i.e., MOSAIC and HERTI) differ as we investigate the characteristics of various inference

workloads on heterogeneous computing devices including an NPU and present systems that efficiently

execute inference workloads on heterogeneous embedded systems.

3.2 Data Placement and Migration for High-Performance Deep Learning

Prior works have extensively investigated system software techniques to improve the performance and

scalability of the parallel and distributed deep-learning (DL) systems [26,43,45,72,75,92,108,132,158,

171]. While impactful, most prior works propose optimization techniques on homogeneous memory

systems [26, 45, 72, 75, 108, 171]. Our work (i.e., HALO) significantly differs in that it investigates

the hotness- and lifetime-aware tensor placement and migration techniques on heterogeneous memory

systems, where data can be directly placed, accessed, and migrated across the heterogeneous memory

nodes in a fully parallel manner.

Some of the prior works (e.g., vDNN) are closely related to ours [43, 92, 132, 158]. Based on the

memory usage pattern of each layer in the target application, the techniques presented in [43,92,132,158]

dynamically transfer the data between the CPU and GPU memory [43,132,158] or the memory modules

attached to the device-side interconnection network (e.g., NVIDIA NVLink) and GPU memory [92] to

ensure that the GPU memory usage of the target application does not exceed the capacity of the GPU

memory during the entire execution time of the target application. While insightful, those works lack

the consideration of the hotness of tensors because the data in the CPU host memory [43, 132, 158]

or the memory modules within the device-side interconnect [92] cannot be directly accessed by the

computation units in the GPU. Our work significantly differs in the sense that HALO dynamically places

and migrates the tensors based on their hotness and lifetime characteristics to significantly improve the

performance of the target DL applications on heterogeneous memory systems on which the computation

units can directly and simultaneously access all the heterogeneous memory nodes.

Prior works have investigated the design and implementation of hardware accelerators for high-

performance and low-power DL [44, 53, 66, 145]. While effective, the prior works primarily focus

on the design and implementation of computation units that are customized for efficiently executing

the mathematical operations (e.g., convolution) that are frequently employed by DL applications and

lack the consideration of the performance issues on heterogeneous memory systems. We believe that

heterogeneity-aware memory management techniques such as HALO will become more crucial with the

widespread use of the hardware accelerators as the data transfer time is expected to account for a larger

portion of the total execution time of DL applications as the hardware accelerators effectively reduce the

time spent for computations.

8

Prior works have extensively explored architectural [28, 46, 56, 82, 157, 165, 167] and system soft-

ware [103, 130, 136, 161, 162, 166] techniques for heterogeneous memory systems. Some of the prior

works [28,82,136,157,161,162,166] investigate the placement [28,82,161,166] and/or migration [103,

130, 136, 157, 162, 166] policies for heterogeneous memory systems that employ the flat memory or-

ganization. The other prior works [46, 56, 165, 167] explore the cache management (e.g., placement,

replacement, bypassing) policies [56, 165] and the techniques to reduce the traffic between memory

nodes [46, 167] for heterogeneous memory systems with the tiered memory organization.

While insightful, the prior works lack the consideration of application-level information, which is

readily available from the dataflow graph of the target DL application. In contrast, HALO robustly

extracts the application-level information (e.g., hotness, lifetime) from the target DL application and

effectively places and migrates tensors across the heterogeneous memory nodes based on the application-

level information.

3.3 Resource Management for QoS-Aware and Efficient Workload Consolidation

Prior works have extensively investigated resource management techniques for workload consolida-

tion [40,59,65,99,111,113,119,121,163,172]. Most of the prior works focus on partitioning resources

such as cores and memory bandwidth and lack the consideration of dynamically partitioning the memory

capacity between the consolidated applications [59, 65, 99, 111, 113, 119, 121, 163, 172]. Our work (i.e.,

COSMOS) differs in that it investigates system software support for coordinated management of cores,

memory, and compressed memory swap (CMS) for QoS-aware and efficient workload consolidation for

memory-intensive applications.

The technique proposed in [40] considers memory capacity partitioning between the consolidated

applications. While insightful, it lacks the consideration of dynamic allocation of the CMS, which

is crucial to improve the throughput of the consolidated applications with strong QoS guarantees for

the latency-critical application. Our work (i.e., COSMOS) is significantly different in the sense that it

presents the in-depth characterization of the impact of cores, memory, and CMS on the QoS and through-

put of the consolidated applications and design, implement, and evaluate a software-based runtime sys-

tem for QoS-aware and efficient workload consolidation for memory-intensive applications based on a

real system.

Prior works have explored memory offloading techniques based on the CMS [93, 160]. While the

prior works have a similarity to our work in that they show that the CMS can effectively be used to im-

prove the resource efficiency of cloud computing systems and datacenters, they lack the consideration of

dynamic management of the CMS in the context of workload consolidation. Our work (i.e., COSMOS)

significantly differs in the sense that it investigates coordinated resource management of cores, memory,

and CMS for QoS-aware and efficient workload consolidation.

Prior works have studied the feasibility of the CMS for embedded applications [69,81,95,147]. The

prior works show that the CMS can be used to reduce the response time and improve the interactivity of

applications on embedded systems with limited memory capacity. However, they lack the capability of

9

holistically allocating the resources to the consolidated applications. Our work is considerably different

in that COSMOS dynamically allocates cores, memory, and CMS to the consolidated applications in a

coordinated manner for QoS-aware and efficient workload consolidation.

10

IV Heterogeneity-, Communication-, and Constraint-Aware Model Slic-
ing and Execution for Accurate and Efficient Inference

4.1 Introduction

The need for accurate and efficient deep-learning inference on mobile systems continues to increase to

enable intelligent and interactive services such as augmented reality and personal mobility. For a wide

range of mobile applications such as security- and privacy-sensitive applications, it is crucial to execute

inference workloads within mobile systems without relying on cloud services, which may leak sensitive

information through various security attacks.

Heterogeneous embedded systems are rapidly emerging as a promising solution to enable accurate

and efficient inference on mobile systems [4, 5, 13, 15, 20]. Heterogeneous embedded systems consist

of various computing devices (e.g., big core cluster, little core cluster, GPU, and neural processing unit

(NPU)), which exhibit widely-different characteristics in terms of performance, energy consumption,

functionality (e.g., supported operations), memory capacity, and communication overheads.

Inference workloads also exhibit widely-different characteristics in terms of heterogeneity in perfor-

mance, energy efficiency, communication overheads, and constraints across computing devices on het-

erogeneous embedded systems. Despite extensive prior works, it still remains unexplored to investigate

the system-software support that efficiently executes inference workloads on heterogeneous embedded

systems by judiciously considering their characteristics.

To bridge this gap, this chapter2 proposes MOSAIC, heterogeneity-, communication-, and constraint-

aware model slicing and execution for accurate and efficient inference on heterogeneous embedded sys-

tems. MOSAIC builds on the accurate models for estimating the execution and communication costs,

generates the efficient model slicing and execution plan with low time complexity, and executes the tar-

get inference workload to significantly improve its efficiency based on the user-specified metric such as

latency and energy.

Specifically, this work makes the following contributions:

• We propose MOSAIC, a software-based system for heterogeneity-, communication-, and constraint-

aware model slicing and execution for accurate and efficient inference on heterogeneous embed-

ded systems. MOSAIC employs the accurate models for estimating the execution and communi-

cation costs of the target inference workload. MOSAIC generates the efficient model slicing and

execution plan for the target workload using an algorithm based on dynamic programming.

• We design and implement the prototype of MOSAIC as a user-level runtime system using the Ten-

sorFlow Lite programming framework [23] for deep-learning inference on the Android OS. MO-

SAIC achieves high efficiency by executing the slices of the target inference workload across com-

puting devices on the underlying heterogeneous embedded system in a heterogeneity-, communication-

, and constraint-aware manner.
2The work presented in this chapter was also published in [61]

11

• We quantify the effectiveness of MOSAIC with widely used inference workloads on a full het-

erogeneous embedded system that consists of a big core cluster, a little core cluster, a GPU, and

an NPU. Our experimental results demonstrate the effectiveness of MOSAIC as it significantly

improves the efficiency of inference (e.g., 29.2% lower inference latency than an NPU-preferred

version (i.e., TF-NPU-P) with the performance governor and large models and 36.6% lower energy

consumption than an NPU-preferred version (i.e., TF-NPU-O) with an on-demand governor and

large models), achieves high estimation accuracy, and incurs small overheads.

The rest of this chapter is organized as follows. Section 4.2 describes the experimental methodology.

Section 4.3 presents the need for heterogeneity-, communication-, and constraint-aware inference. Sec-

tion 4.4 discusses the design and implementation of MOSAIC. Section 4.5 quantifies the effectiveness

of MOSAIC. Section 4.6 concludes the chapter with a summary.

4.2 Experimental Methodology

To investigate the characteristics of deep-learning inference workloads and the effectiveness of MO-

SAIC, we use a heterogeneous embedded system, the HiKey 970 embedded development board [8].

The evaluated system is equipped with the Kirin 970 mobile processor [15] that comprises a CPU in-

cluding four Cortex-A73 (big) cores, four Cortex-A53 (little) cores, a Mali-G72 GPU, and an NPU.

The big core cluster, little core cluster, and GPU support DVFS. The available frequency ranges of the

big core cluster, little core cluster, and GPU are 682–2362MHz, 509–1844MHz, and 104–767MHz,

respectively. The NPU lacks DVFS support.

The NPU has a memory constraint in that it cannot execute a model slice whose size exceeds

100MB [8]. While the exact memory constraints of the big core cluster, the little core cluster and the

GPU for executing inference workloads on the evaluated system are undocumented, they are sufficiently

large for the evaluated inference workloads.

With regard to the system software stack, the evaluated heterogeneous embedded system is installed

with Android 8.1. In addition, all of the evaluated inference workloads and MOSAIC are implemented

using TensorFlow Lite 1.11.0 [23].

Table 1 shows the inference workloads (i.e., Inception V4 (IN) [152], MnasNet with model width

parameters (pW) of 1.0 (MN-1.0) and 1.3 (MN-1.3) [153], MobileNet V2 with pW = 1.3 (MO-1.3) and

pW = 1.4 (MO-1.4) [138], ResNet V2 (RN) [67], and VGG (VGG) [142]) with large models. They

exhibit high accuracy (i.e., Top-1 accuracy with the ImageNet [135] dataset) and widely-different char-

acteristics such as the model size (i.e., the memory used by the model, which is reported by TensorFlow

Lite), the layer count, and the inference latency (on the evaluated GPU). The evaluated workload set

includes the state-of-the-art inference workloads (e.g., MobileNet V2 [138], MnasNet [153]), which are

highly optimized for mobile systems. MobileNet V2 and MnasNet provide a mechanism to exploit the

tradeoff between inference accuracy and latency through hyperparameters. Specifically, the model width

parameter (i.e., pW) determines the number of channels, which generally results in higher accuracy and

longer latency when it is set to a larger value.

12

Table 1: Evaluated deep-learning inference workloads

Workload Accuracy Model Size Layers Latency
Inception V4 (IN) [152] 80.1% 183.7MB 20 430.0ms
MnasNet with pW = 1.0 (MN-1.0) [153] 74.1% 321.9MB 20 66.8ms
MnasNet with pW = 1.3 (MN-1.3) [153] 75.2% 511.6MB 20 81.3ms
MobileNet V2 with pW = 1.3 (MO-1.3) [138] 74.4% 187.8MB 18 49.1ms
MobileNet V2 with pW = 1.4 (MO-1.4) [138] 75.0% 214.7MB 18 55.4ms
ResNet V2 (RN) [67] 77.8% 260.4MB 53 603.8ms
VGG (VGG) [142] 71.5% 407.4MB 16 218.7ms
MnasNet with pW = 0.5 (MN-0.5) [153] 68.0% 98.3MB 20 42.7ms
MobileNet V2 with pW = 1.0 (MO-1.0) [138] 71.8% 94.5MB 18 36.6ms
SqueezeNet (SN) [71] 49.0% 34.8MB 10 32.5ms

Power Monitor

Heterogeneous

Embedded System

Figure 2: Evaluated heterogeneous embedded system and power monitor

As shown in Table 1, we use MnasNet with pW = 0.5 (MN-0.5), MobileNet V2 with pW = 1.0 (MO-

1.0), and SqueezeNet (SN) [71] to investigate the impact of MOSAIC with smaller models. Due to the

use of smaller models, they tend to exhibit lower accuracy.

To measure the latency of the inference workloads, we use the high_resolution_clock function

in the C++ standard library. To measure the energy consumption of the inference workloads, we use an

external power monitor [7], which collects the voltage and current applied to the evaluated heterogeneous

embedded system at a data sampling rate of 5000 samples per second. Figure 2 shows the power monitor

connected to the evaluated heterogeneous embedded system.

4.3 Need for Heterogeneity-, Communication-, and Constraint-Aware Inference

We investigate the characteristics of widely-used deep-learning inference workloads in terms of the

model size, performance and energy heterogeneity, and communication overheads on the evaluated het-

erogeneous embedded system. For conciseness, we mainly report the data with MN-1.0 and MO-1.4,

which represent accurate and highly-optimized inference workloads on mobile systems.

13

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Layer Index

BIG LITTLE GPU NPU

(a) MnasNet 1.0

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Layer Index

BIG LITTLE GPU NPU

(b) MobileNet V2 1.4

Figure 3: Performance heterogeneity of inference workloads

As shown in Table 1, accurate inference workloads including those (e.g., MN-1.3, MO-1.4) highly

optimized for mobile systems employ large models, that exceed the memory constraint of the NPU (i.e.,

100MB) on the evaluated heterogeneous embedded systems. Further, the evaluated inference workloads

exhibit widely-different model sizes, indicating that different numbers of slices are required to execute

them using the NPU.

Figure 3 shows the execution time of each layer of MN-1.0 and MO-1.4 when executed on the big

core cluster, the little core cluster, the GPU, and the NPU. We observe that the layers of MN-1.0 and

MO-1.4 exhibit widely different performance characteristics across the devices. For instance, the GPU

achieves significantly higher performance than the NPU when executing layers 12–17 of MO-1.4. In

contrast, the NPU significantly outperforms the GPU when executing layers 2–9 of MN-1.0.

Figure 4 shows the energy consumption of each layer of MN-1.0 and MO-1.4 when executed on

the big core cluster, the little core cluster, the GPU, and the NPU. Similarly to the performance hetero-

geneity, we also observe that the layers of MN-1.0 and MO-1.4 exhibit disparate energy consumption

characteristics across the devices. For example, the little core cluster consumes significantly lower en-

ergy than the NPU when executing layers 9–17 of MN-1.0. The little core cluster tends to achieve

14

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
n

e
rg

y
 (

m
J
)

Layer Index

BIG LITTLE GPU NPU

(a) MnasNet 1.0

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E
n

e
rg

y
 (

m
J
)

Layer Index

BIG LITTLE GPU NPU

(b) MobileNet V2 1.4

Figure 4: Energy heterogeneity of inference workloads

higher efficiency when executing less computational intense layers. In contrast, the NPU significantly

outperforms the little core cluster in terms of energy efficiency when executing layers 1–7 of MO-1.4.

Figure 5 shows the inference latency of MO-1.4 when decomposing MO-1.4 into three slices with

various slicing plans and with the preferred computing device of each slice is set to the NPU. We observe

that their inference latency is highly sensitive to the slicing plan. For instance, the performance differ-

ence between the best and worst slicing plans is 34.1%, which is significant. This data trend indicates

that communication overhead has a significant impact on the efficiency of the target inference workload.

Overall, our experimental results show that the evaluated inference workloads exhibit broadly dif-

ferent characteristics in terms of the model size, performance and energy heterogeneity, and communi-

cation overheads. Therefore, it is crucial to investigate the system-software support for heterogeneity-,

communication-, and constraint-aware model slicing and execution to achieve the best possible effi-

ciency of inference workloads on heterogeneous embedded systems.

15

0

10

20

30

40

50

60

70

80

0 15 30 45 60 75 90 105 120 135

In
fe

re
n

c
e
 L

a
te

n
c
y
 (

m
s
)

Model Slicing Plans

Figure 5: Communication overheads

Deep-Learning Inference Workload

Execution and Communication Cost Estimators

Model Slicer and Scheduler
Model Slicing & Execution Plan

Layers
Inference Workload Profiler

Heterogeneous Embedded System

Profile Data of Each Layer

Costs of Each Layer on Each Device

Inference Workload Executor
Slices Offloaded to Devices

Figure 6: Overall architecture of MOSAIC

4.4 Design and Implementation

MOSAIC is a software-based system that determines the efficient model slicing and execution plan

for the target deep-learning inference workload based on the user-defined metrics such as latency and

energy consumption. Figure 45 shows the overall architecture of MOSAIC, which mainly consists of

the inference workload profiler, the execution and communication cost estimators, the model slicer and

scheduler, and the inference workload executor.

4.4.1 Inference Workload Profiler

The inference workload profiler of MOSAIC executes each of the layers in the target inference workload

and profiles the total costs (e.g., latency, energy consumption) for executing each layer on computing

devices in the underlying heterogeneous embedded system. If a computing device supports DVFS, the

total costs for executing the layer are collected at two frequencies (i.e., the maximum and minimum

frequencies available on the computing device).

If the layer cannot be executed on a certain computing device due to a constraint (e.g., memory

constraint), the total cost for executing the layer on the device is set to an infinite value. The inference

16

0

5

10

15

20

25

0 200 400 600 800 1000C
o

m
m

u
n

ic
a
ti

o
n

 T
im

e
 (

m
s
)

Tensor Size (KB)

NPU GPU

Figure 7: Communication time with various tensor sizes

workload profiler also collects the sizes of the input and output tensors of the layer, which are used to

estimate the communication costs of the layer.

4.4.2 Execution and Communication Cost Estimators

The total cost of each layer measured by the inference workload profiler includes both the execution and

communication costs associated with the layer. Based on the total cost and the input and output tensor

sizes of each layer, the execution and communication cost estimators of MOSAIC estimate the execution

and communication costs of the layer on each computing device in the heterogeneous embedded system.

Communication Cost Estimator: To investigate the relationship between the communication cost

and the tensor size, we developed a micro-benchmark that consists of layers with various tensor sizes.

Figure 7 shows the communication time with various tensor sizes on the GPU (at its maximum fre-

quency) and the NPU. The communication time data with the CPU are omitted as our experimental

results show that they are insignificant due to no or small data copy and format transformation over-

heads. We observe the following data trends.

First, on both the GPU and NPU, the communication time is linearly proportional to the size of the

tensors associated with the layer. Second, the NPU incurs significantly larger communication overheads

than the GPU. While the implementation details of the evaluated NPU are undisclosed [15], we conjec-

ture that the amounts of data copy and/or format transformation overheads for the NPU are significantly

larger than those for the GPU.

Guided by the aforementioned observations, we design and implement the communication cost esti-

mator based on the linear regression technique. Specifically, the communication cost estimator employs

Equations 1 and 2 to estimate the communication costs associated with the input and output tensors of

the layer l, where Tin,l , Tout,l , αd, fd , and βd, fd correspondingly denote the total sizes of the input and out-

put tensors of the layer l and the regression coefficients of computing device d (i.e., the GPU or NPU)

17

at frequency fd .

cin,l,d, fd = αd, fd ·Tin,l +βd, fd (1)

cout,l,d, fd = αd, fd ·Tout,l +βd, fd (2)

Execution Cost Estimator: The execution cost estimator estimates the cost incurred when executing

each layer without including the communication costs. Specifically, the execution cost estimator first

estimates the total execution cost of each layer on a computing device d running at fd based on the

profile data collected at the maximum and minimum frequencies of d. The execution cost estimator then

simply subtracts the communication costs of the layer estimated by the communication cost estimator

from the estimated total cost of the layer. The execution cost estimator consists of the performance and

power estimators.

Performance Estimator: The performance estimator of the execution cost estimator estimates the

latency that arises when executing layer l on computing device d, which runs at frequency fd . The

performance estimator builds on a linear model, as shown in Equation 3, where tl,d, fd , γl,d , and εl,d

denote the estimated latency and coefficients. The coefficients (i.e., γl,d , εl,d) are computed based on the

profile data collected by the inference workload profiler at the maximum and minimum frequencies of

d.

tl,d, fd =
γl,d
fd
+ εl,d (3)

Power Estimator: The power estimator of the execution cost estimator estimates the power con-

sumption for executing a layer l on a computing device d running at frequency fd . As shown in Equa-

tion 4, the power estimator decomposes the total power consumption into the dynamic (i.e., Pdynamic,l,d, fd)

and static (i.e., Pstatic,d, fd) power consumption. Because static power consumption is the inherent prop-

erty of a computing device and independent of the characteristics of the target inference workload, we

only profile it once for each computing device (i.e., no need for per-workload profiling).

Pl,d, fd = Pdynamic,l,d, fd +Pstatic,d, fd (4)

Since dynamic power consumption is dependent on not only the characteristics of the computing

device (and its frequency) but also on the characteristics of the layer, the power estimator estimates

dynamic power consumption to eliminate the need for extensive offline profiling. Specifically, the power

estimator employs Equation 5 to estimate the dynamic power consumption (i.e., Pdynamic,l,d, fd) of layer l

running on computing device d at frequency fd (and the corresponding voltage level Vfd), where fd,max,

Vfd,max , and Pdynamic,l,d, fd,max denote the maximum frequency of d, the corresponding voltage level, and the

18

Table 2: Voltage and frequency levels of the evaluated computing devices

Device Voltage and frequency levels
Big cores (0.7V, 682MHz), (0.8V, 1018MHz), (0.8V, 1210MHz), (0.8V, 1364MHz),

(0.9V, 1498MHz), (0.9V, 1652MHz), (0.9V, 1863MHz), (1.0V, 2093MHz),
(1.1V, 2362MHz)

Little cores (0.7V, 509MHz), (0.8V, 1018MHz), (0.9V, 1210MHz), (0.9V, 1402MHz),
(1.0V, 1556MHz), (1.0V, 1690MHz), (1.1V, 1844MHz)

GPU (0.6V, 104MHz), (0.7V, 151MHz), (0.7V, 237MHz), (0.7V, 332MHz), (0.8V,
415MHz), (0.8V, 550MHz), (0.9V, 667MHz), (1.0V, 767MHz)

dynamic power consumption at the maximum frequency collected by the inference workload profiler.

Pdynamic,l,d, fd =
V 2

fd
· fd

V 2
fd,max

· fd,max
·Pdynamic,l,d, fd,max (5)

The voltage and frequency levels of computing devices are readily available through their specifica-

tions or direct measurements. Table 2 shows the voltage and frequency levels of each computing device

on the evaluated heterogeneous embedded system, taken from publicly available device tree source

(DTS) files. The dynamic power consumption can be estimated by plugging in specific values of fd and

Vfd in Equation 5.

4.4.3 Model Slicer and Scheduler

The main goal of the model slicer and scheduler (MSS) of MOSAIC is to generate an efficient model

slicing and execution plan for the target deep-learning inference workload on the heterogeneous embed-

ded system. Specifically, MSS determines the number of slices, the layers that belong to each slice, and

the computing device that executes each slice in order to maximize the efficiency of the target inference

workload on the heterogeneous embedded system based on the user-defined metric (e.g., latency, energy

consumption).

We formulate the model slicing and execution problem as a dynamic-programming problem [37].

Without loss of generality, we assume that the target inference workload employs a deep-learning model

that consists of Λ layers. Cm,n,δ denotes the total cost for executing the n−m+ 1 consecutive layers

from the m-th layer to the n-th layer of the model on the computing device δ , where 1≤m≤ n≤Λ, and

δ ∈ D. Note that we consider identical physical computing devices running at different frequencies as

different computing devices to simplify the energy optimization problem formulation.

For performance optimization, D is defined by Equation 6, where B fB,max , L fL,max , G fG,max , and N de-

note the big core cluster at its maximum frequency, the little core cluster at its maximum frequency, the

GPU at its maximum frequency, and the NPU, respectively. Note that the NPU on the evaluated hetero-

geneous embedded system lacks support for DVFS. On the evaluated system, |D| is 4 for performance

optimization.

D= {B fB,max ,L fL,max ,G fG,max ,N} (6)

19

With regard to energy optimization, D is defined as Equation 7, where B fB,min , B fB,min+1 , · · · , and

B fB,max denote the big core cluster at its minimum, second minimum, · · · , and maximum frequencies,

L fL,min , L fL,min+1 , · · · , and L fL,max indicate the little core cluster at its minimum, second minimum, · · · , and

maximum frequencies. Additionally, G fG,min , G fG,min+1 , · · · , and G fG,max correspondingly denote the GPU

at its minimum, second minimum, · · · , and maximum frequencies, and N indicates the NPU. On the

evaluated system, |D| is 25 for energy optimization (see Table 2).

D= {B fB,min ,B fB,min+1 , · · · ,B fB,max ,

L fL,min ,L fL,min+1 , · · · ,L fL,max ,

G fG,min ,G fG,min+1 , · · · ,G fG,max ,

N} (7)

Cm,n,δ is computed using Equation 8, where ek,δ , cin,m,δ , and cout,n,δ represent the execution cost

of the k-th layer (m ≤ k ≤ n) and the communication cost associated with the input tensors of the m-th

layer, and the communication cost associated with the output tensors of the n-th layer, respectively. MSS

employs the execution and communication cost estimators to estimate ek,δ , cin,m,δ , and cout,n,δ . If there

is any layer that cannot be executed on δ due to a constraint, Cm,n,δ is set to an infinite value to avoid

selecting the corresponding model slicing and execution plan.

Cm,n,δ=

n
∑

k=m
ek,δ +cin,m,δ +cout,n,δ if δ can execute

∞ otherwise
(8)

Ctot,l represents the total cost to execute the consecutive layers from the first layer to the l-th layer.

To formulate the model slicing and execution problem as a dynamic-programming problem, Ctot,l must

exhibit the optimal substructure and overlapping subproblem properties [37] in that Ctot,l can be effi-

ciently computed if Ctot,0, Ctot,1, · · · , and Ctot,l−1 are known. We consider all the possible cases, in each

of which the l-th layer belongs to a unique slice. Because each layer belongs to only one slice and each

slice consists of consecutive layers, there are l cases in total, where the l-th layer belongs to unique

slices. Specifically, the slice that contains the l-th layer may comprise only a single layer (i.e., the l-th

layer), two layers (i.e., the l-th layer and the (l− 1)-th layer), · · · , or l layers (i.e., the l-th layer, the

(l−1)-th layer, · · · , and the first layer).

Without a loss of generality, we assume that the slice that contains the l-th layer comprises l− k

layers (i.e., the l-th, (l− 1)-th, · · · , and (k+ 1)-th layers). In this case, the lowest cost for executing

the consecutive layers from the first layer to the l-th layer is computed by summing Ctot,k and the total

cost for executing the last l− k layers on the device that incurs the minimum total cost among all the

computing devices on the heterogeneous embedded system.

As shown in Equation 9, Ctot,l can be then computed by finding the minimum total cost among all

l aforementioned cases. Because the model slicing and execution problem has the optimal substruc-

ture and overlapping subproblem properties, its optimal solution can be determined based on dynamic

20

Algorithm 1 The findEfficientSlicingAndExecutionPlan function

1: procedure FINDEFFICIENTSLICINGANDEXECUTIONPLAN(layers, devices)
2: sliceSets[0]← /0
3: sliceSets[0].cost← 0
4: for l ← 1 to layers.length do ▷ layers.length = Λ

5: sliceSet← /0
6: sliceSet.cost← ∞

7: slice← createNewSlice()
8: for k← 0 to (l − 1) do
9: slice.layers← getConsecutiveLayers(layers, k + 1, l)

10: for δ in devices do ▷ devices = D
11: if δ .canExecute(slice) = true then
12: slice.device← δ

13: cost← sliceSets[k].cost + estimateTotalCost(slice)
14: if cost < sliceSet.cost then
15: sliceSet← sliceSets[k]
16: sliceSet.insert(slice)
17: sliceSet.cost← cost
18: end if
19: end if
20: end for
21: end for
22: sliceSets[l]← sliceSet
23: sliceSets[l].cost← sliceSet.cost
24: end for
25: return sliceSets[layers.length]
26: end procedure

programming.

Ctot,l =

0 if l = 0

min
0≤k<l,∀δ∈D

(
Ctot,k +Ck+1,l,δ

)
otherwise

(9)

Algorithm 2 shows the pseudocode for the findEfficientSlicingAndExecutionPlan function

that determines the efficient model slicing and execution plan based on dynamic programming. In the

outer loop (Lines 4–24), MSS iterates the layer count from 1 to Λ. MSS uses the solutions found in

previous iterations to find the solution for the current iteration in the outer loop.

In the inner loop (Lines 8–21), MSS iterates all the cases, in each of which the last layer belongs to

a unique slice. MSS determines the set of slices that minimizes the total cost when executing the con-

secutive layers and memoizes its cost and slicing and execution plan to reuse them in the next iteration

in the outer loop.

The proposed algorithm has low time complexity (i.e., O(Λ2 · |D|), where Λ and |D| denote the

number of layers in the inference workload and the number of computing devices on the heterogeneous

embedded system, respectively). As quantified in Section 4.5, MOSAIC achieves high inference effi-

ciency with small overheads due to the use of an efficient algorithm.

21

4.4.4 Inference Workload Executor

The inference workload executor of MOSAIC is a user-level runtime system that executes the model

slices of the target inference workload across the computing devices on the heterogeneous embedded

system based on the efficient model slicing and execution plan generated by MSS. The current version

of the inference workload executor is implemented in the C++ programming language based on the

TensorFlow Lite framework [23] on the Android OS. However, we believe that MOSAIC is readily

applicable to other widely used deep-learning frameworks as it builds on a framework-agnostic approach

for slicing and executing the target inference workload.

4.5 Evaluation

4.5.1 Overview

This section quantifies the effectiveness of MOSAIC. Specifically, we aim to investigate (1) inference la-

tency, (2) inference energy, (3) impact of the MOSAIC components, (4) efficiency with smaller models,

(5) estimation accuracy, and (6) overheads for generating the model slicing and execution plan.

For each inference workload, we evaluate ten versions – the big core cluster-preferred (TF-BIG-P),

little core cluster-preferred (TF-LITTLE-P), GPU-preferred (TF-GPU-P), NPU-preferred (TF-NPU-P)

with the performance governor of the Android OS, the big core cluster-preferred (TF-BIG-O), little core

cluster-preferred (TF-LITTLE-O), GPU-preferred (TF-GPU-O), NPU-preferred (TF-NPU-O) with the on-

demand governor of the Android OS, exhaustive, and MOSAIC versions.

The big core cluster-, little core cluster-, GPU-, and NPU-preferred versions execute the slices of

each inference workload on the corresponding preferred computing device. For the big core cluster-

, little core cluster-, GPU-, and NPU-preferred versions, we include as many consecutive layers as

possible in each slice if they satisfy all the constraints such as memory and functionality constraints. If

a layer cannot be included in the slice that contains its previous layer due to a memory constraint, the

layer is included in the next slice that is executed on the preferred device. If a layer cannot be executed

on the preferred device due to a memory or functionality constraint, the layer is executed in a separate

slice on the NPU (if feasible), GPU (if feasible), or big core cluster (as the final fallback execution path).

As quantified by our experimental results, the performance governor tends to achieve higher perfor-

mance than the on-demand governor as the performance governor always executes the target inference

workload at the maximum frequency of the underlying computing device. In contrast, the on-demand

governor, which is the default governor of the Android OS, tends to exhibit lower energy consumption

than the performance governor as the on-demand governor performs DVFS based on the dynamic load

of the target inference workload.

The exhaustive version uses the model slicing and execution plan with the highest inference effi-

ciency (e.g., the lowest latency), which is empirically determined through an exhaustive search. Note

that it takes excessive computing time and resources to determine the model slicing and execution plan

for the exhaustive version, which is impractical. For instance, it is estimated to take 1335 days to empir-

22

2.
4

1.
3

1.
4

6.
7

1.
6

4.
9

1.
7

2.
2

2.
8

3.
1

2.
0

13
.5

3.
3

2.
7

1.
3

1.
5

1.
7

2.
2

6.
9

2.
0

5.
5

2.
6

3.
1

4.
0

4.
6

2.
3

13
.6

4.
3

1.
9

1.
2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GEOMEANN
or

m
. I

nf
er

en
ce

 L
at

en
cy

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O
TF-LITTLE-O TF-GPU-O TF-NPU-O Exhaustive MOSAIC

Figure 8: Inference latency

Table 3: Model slicing and execution plans for performance optimization

Workload Model slicing and execution plan
IN N1, N11, B20

MN-1.0 N1, B10, G18, B20

MN-1.3 N1, B9, G12, B20

MO-1.3 N1, G9, N18

MO-1.4 N1, G8, N18

RN B1, N2, B4, N5, B12, N13, N31, B48, N49, B52

VGG N1, G14, B16

ically determine the best model slicing and execution plan for MN-1.3 through exhaustive search using

the evaluated system.

Due to limited computing time and resources, we determine the model slicing and execution plan for

the exhaustive version of each inference workload by executing the workload with 1000 unique model

slicing and execution plans that are randomly selected and choosing the best plan among the randomly

selected plans and the plans used by the other versions including the MOSAIC version. We report the

results with the exhaustive version as the efficiency that can be potentially achieved by any competitive

model slicing and execution technique.

Finally, the MOSAIC version uses MOSAIC to generate the efficient model slicing and execution

plan.

4.5.2 Inference Latency

We investigate the effectiveness of MOSAIC in terms of inference latency. Figure 8 shows the inference

latency of each version of the inference workloads with large models, normalized to the TF-GPU-O

version, which is the default setting of the Android OS. The rightmost bars show the average (i.e.,

geometric mean) inference latency of each version across the workloads. In addition, Table 3 shows the

model slicing and execution plans generated by MOSAIC to minimize the latency of each workload.

Each letter (i.e., big core cluster (B), little core cluster (L), GPU (G), and NPU (N)) indicates a slice and

the device used to execute the slice. The subscript to each letter denotes the ID of the first layer of the

23

3.
6

1.
3

2.
7

2.
2

3.
3

11
.3

2.
8

1.
7

1.
5

1.
5

6.
2

1.
4

1.
2

1.
5

1.
4

1.
5

1.
3

2.
7

1.
8

1.
3

2.
4

9.
9

1.
8

3.
8

0.0
0.2
0.4
0.6
0.8
1.0
1.2

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GEOMEANN
or

m
. I

nf
er

en
ce

 E
ne

rg
y

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O
TF-LITTLE-O TF-GPU-O TF-NPU-O Exhaustive MOSAIC

Figure 9: Inference energy

slice.

First, MOSAIC significantly outperforms the big core cluster-, little core cluster-, GPU-, and NPU-

preferred versions. Specifically, MOSAIC exhibits 70.3%, 86.1%, 39.1%, and 29.2% lower inference

latency than the TF-BIG-P, TF-LITTLE-P, TF-GPU-P, and TF-NPU-P versions, respectively. MOSAIC

significantly reduces inference latency by slicing and executing the model of the target inference work-

load in a heterogeneity-, communication-, and constraint-aware manner. For instance, as shown in

Table 3, MOSAIC effectively utilizes various computing devices (i.e., big core cluster, GPU, and NPU)

when executing MN-1.3 and significantly reduces its inference latency.

MOSAIC exhibits the inference latency similar to that of the TF-NPU-P version with IN and RN. This

is mainly because the NPU exhibits the highest performance among the computing devices and the model

slicing plan used for the TF-NPU-P version happens to incur small communication overheads when

executing IN and RN. Nevertheless, the NPU-preferred versions provide no guarantee for maximizing

the efficiency across a wide range of inference workloads as they execute the target inference workload

in a heterogeneity- and communication-oblivious manner.

Second, MOSAIC achieves the performance similar to that of the exhaustive version, which em-

pirically determines the efficient model slicing and execution plan for the target inference workload

through exhaustive search. Specifically, the average performance difference between the exhaustive and

MOSAIC versions is 0.67% across the workloads, which is small. Note that the exhaustive version is

guaranteed to exhibit (at least) the same efficiency as MOSAIC because we always include the model

slicing and execution plan determined by MOSAIC in the plans that are explored by the exhaustive

version. Our experimental results clearly demonstrate the effectiveness of MOSAIC in that it achieves

high inference efficiency without the need for the exhaustive search process, which requires excessive

computing time and resources.

4.5.3 Inference Energy

We investigate the effectiveness of MOSAIC in terms of inference energy. Figure 9 shows the energy

consumption of each version of the inference workloads with large models, normalized to the TF-GPU-O

24

Table 4: Model slicing and execution plans for energy optimization

Workload Model slicing and execution plan
IN N960

1 , N960
11 , L509

20
MN-1.0 G767

1 , L509
7 , G667

12 , L509
15 , G667

18 , L509
20

MN-1.3 G767
1 , L509

7 , G667
12 , L509

14 , G667
18 , L509

20
MO-1.3 N960

1 , L509
5 , B682

7 , L1018
10 , L509

11 , L1018
14 , L509

15 , N960
18

MO-1.4 N960
1 , L1018

5 , L509
6 , L1018

10 , L509
11 , L1402

13 , G767
14 , N960

18
RN B682

1 , N960
2 , B682

4 , N960
5 , L1018

12 , N960
13 , N960

29 , L1210
48 , N960

49 , L509
52 , B682

53
VGG N960

1 , G550
14 , G667

15 , B682
16

version. The rightmost bars show the average (i.e., geometric mean) energy consumption across the

workloads. In addition, Table 4 shows the model slicing and execution plans generated by MOSAIC

for energy optimization. The superscript attached on each letter denotes the frequency of the computing

device in MHz.

First, MOSAIC significantly outperforms the big core cluster-, little core cluster-, GPU-, and NPU-

preferred versions across the workloads in terms of energy efficiency. For instance, MOSAIC consumes

91.0%, 80.5%, 83.4%, and 36.6% lower energy than the TF-BIG-O, TF-LITTLE-O, TF-GPU-O, and TF-

NPU-O versions, respectively. As shown in Table 4, MOSAIC effectively utilizes various computing

devices at various frequencies, significantly reducing the energy consumption of the inference work-

loads.

Second, MOSAIC exhibits the energy consumption similar (i.e., the average difference of 0.53%)

to that of the exhaustive version, which requires excessive computing time and resources. Our experi-

mental results demonstrate that MOSAIC can be effectively used for both inference latency and energy

optimizations on heterogeneous embedded systems.

4.5.4 Impact of the MOSAIC Components

We investigate the impact of the MOSAIC components in terms of inference latency and energy. To this

end, we synthesize the heterogeneity- and constraint-aware (HCA) version, which is an intermediate ver-

sion that generates the model slicing and execution plan by only considering the efficiency heterogeneity

and constraints of each layer (i.e., in a communication-oblivious manner). We report the results with the

HCA version to investigate the efficiency impact of heterogeneity- and constraint-aware model slicing

and execution. Note that the efficiency difference between the HCA and MOSAIC versions shows the

efficiency impact of communication-aware model slicing and execution.

Figure 10 shows the latency impact of the MOSAIC components. We observe that the HCA version

considerably outperforms the TF-GPU-O version, which demonstrates the effectiveness of heterogeneity-

and constraint-aware model slicing and execution. Further, MOSAIC considerably outperforms the

HCA version, which demonstrates the impact of communication-aware model slicing and execution.

The HCA version incurs higher inference latency than MOSAIC as it slices and executes the target

inference workload in a communication-oblivious manner.

We quantify the energy impact of the MOSAIC components. To this end, we synthesize an additional

25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TF-GPU-O Heterogeneity- and
Constraint-Aware

(HCA)

HCA +
Communication-
Aware (MOSAIC)

N
o

rm
.
In

fe
re

n
c
e
 L

a
te

n
c
y

Figure 10: Latency impact of the MOSAIC components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TF-GPU-O Heterogeneity-
and Constraint-

Aware (HCA)

HCA +
Communication-
Aware (HCCA)

HCCA + DVFS
(MOSAIC)

N
o

rm
.
In

fe
re

n
c
e
 E

n
e
rg

y

Figure 11: Energy impact of the MOSAIC components

intermediate version called the HCCA version, which generates the model slicing and execution plan

while considering the heterogeneity of the physical computing devices, constraints of each layer, and

communication overheads between devices in a DVFS-oblivious manner. Figure 11 shows the energy

impact of the MOSAIC components.

The HCA version exhibits considerably lower energy consumption than the TF-GPU-O version,

demonstrating the impact of heterogeneity- and constraint-aware model slicing and execution. In ad-

dition, the HCCA version consumes considerably lower energy than the HCA version, showing the

effectiveness of communication-aware model slicing and execution. Finally, the MOSAIC version sig-

nificantly exhibits significantly lower energy consumption than the HCCA version, which demonstrates

the effectiveness of DVFS. In summary, our quantitative evaluation demonstrates that the individual

components of MOSAIC compose in a constructive manner, providing additional performance and

energy-efficiency gains.

26

1
.4

1
.8

2
.9

3
.5

2
.2

2
.2

2
.2

1
.7

1
.5

4
.3

4
.0

2
.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MN-0.5 MO-1.0 SN GEOMEAN

N
o

rm
.
In

fe
re

n
c
e
 L

a
te

n
c
y

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O

TF-LITTLE-O TF-GPU-O TF-NPU-O Exhaustive MOSAIC

Figure 12: Inference latency with smaller models

1
.3

2
.5

5
.2

2
.6

1
.5

2
.7

1
.4

1
.5

1
.3

1
.4

1
.4

1
.8

3
.8

1
.8

1
.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MN-0.5 MO-1.0 SN GEOMEAN

N
o

rm
.
In

fe
re

n
c
e
 E

n
e
rg

y

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O

TF-LITTLE-O TF-GPU-O TF-NPU-O Exhaustive MOSAIC

Figure 13: Inference energy with smaller models

4.5.5 Discussion

Smaller models: Figures 12 and 13 show the inference latency and energy consumption with smaller

models. Our experimental results show that MOSAIC continues to achieve high efficiency with inference

workloads with smaller models (i.e., MN-0.5, MO-1.0, SN). For instance, MOSAIC exhibits 58.8%,

80.4%, 29.5%, and 9.2% lower inference latency than the TF-BIG-P, TF-LITTLE-P, TF-GPU-P, and

TF-NPU-P versions and performs similarly (i.e., the average difference of 0.89%) to the exhaustive

version. Further, MOSAIC consumes 87.6%, 74.5%, 78.2%, and 22.9% lower energy than the TF-BIG-

O, TF-LITTLE-O, TF-GPU-O, and TF-NPU-O versions and achieves similar energy efficiency (i.e., the

average difference of 0.32%) to the exhaustive version. The efficiency gains of MOSAIC with smaller

models decrease as fewer slices are generated, which reduces optimization opportunities.

Estimation Accuracy: Figures 14 and 15 correspondingly show the latency and energy consumption

estimation accuracy of MOSAIC. Our results show that the estimation accuracy of MOSAIC is high.

Specifically, the average latency and energy estimation errors are 3.0% and 4.3%, which are small.

Overheads: Figures 16 and 17 shows the overheads for performance and energy optimization. Our

experimental results show that MOSAIC incurs small overheads for generating model slicing and exe-

27

0

1

2

3

4

5

6

7

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG AVG

E
s
ti

m
a
ti

o
n

 E
rr

o
r

(%
)

Figure 14: Latency estimation accuracy

0

1

2

3

4

5

6

7

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG AVG

E
s
ti

m
a
ti

o
n

 E
rr

o
r

(%
)

Figure 15: Energy estimation accuracy

cution plans. Specifically, the average times required to generating the model slicing and execution plans

across the workloads for performance and energy optimization are 0.15ms and 0.82ms, which are short.

Because MOSAIC produces the model slicing and execution plan based on the efficient algorithm with

low time complexity (i.e., O(Λ2 · |D|)), it incurs insignificant overheads. Further, note that MOSAIC

generates the model slicing and execution plan only once for each inference workload and incurs no

overheads during the execution of the workload.

MOSAIC incurs larger overheads for energy optimization than performance optimization. This is

mainly because the number of computing devices (i.e., |D|) increases (from 4 (i.e., performance opti-

mization) to 25 (i.e., energy optimization)) as MOSAIC considers each computing device at its maxi-

mum frequency for performance optimization but considers each computing device at all its available

frequencies for energy optimization.

Overall, our quantitative evaluation shows the effectiveness of MOSAIC in that it significantly im-

proves the efficiency of inference workloads in terms of latency and energy consumption, achieves high

estimation accuracy, and incurs small overheads on the evaluated heterogeneous embedded system.

28

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG AVG

O
v
e
rh

e
a
d

s
 (

m
il
li
s
e
c
o

n
d

s
)

Figure 16: Overheads for performance optimization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG AVG

O
v
e
rh

e
a
d

s
 (

m
il
li
s
e
c
o

n
d

s
)

Figure 17: Overheads for energy optimization

4.6 Summary

This chapter presents MOSAIC, heterogeneity-, communication-, and constraint-aware model slicing

and execution for accurate and efficient inference on heterogeneous embedded systems. MOSAIC uses

the accurate models for estimating the execution and communication costs of the target inference work-

load and generates the efficient model slicing and execution plan with low time complexity. Our quan-

titative evaluation with the state-of-the-art inference workloads and heterogeneous embedded system

shows that MOSAIC significantly reduces inference latency and energy (e.g., 29.2% lower inference la-

tency than an NPU-preferred version (i.e., TF-NPU-P) with the performance governor and large models

and 36.6% lower energy than an NPU-preferred version (i.e., TF-NPU-O) with the on-demand governor

and large models), achieves high estimation accuracy, and incurs small overheads.

29

V Reinforcement Learning-Augmented System for Efficient Real-Time
Inference on Heterogeneous Embedded Systems

5.1 Introduction

The need for real-time deep-learning inference is ever increasing to enable latency-critical intelligent

services such as autonomous driving, interactive image editing, and augmented reality. For such ser-

vices, it is highly crucial to meet the deadline of real-time inference workloads to prevent any dangerous

and disastrous situations from happening and deliver the best possible user experiences. Real-time in-

ference workloads are often executed within a single system without relying on cloud services. This

approach provides various advantages such as low latency and enhanced security and privacy.

Heterogeneous embedded systems have emerged as a promising solution for efficient real-time in-

ference in a variety of computing domains ranging from mobile to high-performance computing. Het-

erogeneous embedded systems consist of various computing devices (e.g., big core cluster, little core

cluster, GPU, and neural processing unit (NPU)), each of which exhibits widely-different architectural

and system-level characteristics in terms of performance, power consumption, functionality (e.g., sup-

ported mathematical operations), memory capacity, and communication overheads.

Inference workloads also exhibit widely-different characteristics on heterogeneous computing de-

vices in terms of performance, power efficiency, communication overheads, and constraints. For ex-

ample, some parts of inference workloads may efficiently be executed on hardware accelerators such as

NPUs, whereas other parts of inference workloads need to be executed on CPUs to avoid excessive com-

munication overheads. If inference workloads are scheduled across heterogeneous computing devices

in a suboptimal manner, they may fail to meet their deadlines and/or achieve low efficiency.

Despite extensive prior works on enhancing the efficiency of inference workloads on various sys-

tems, little work has been done to investigate the design and implementation of a practical system that

enables efficient real-time inference on heterogeneous embedded systems. The main challenge when

developing such a system is the high design complexity, which is caused by various characteristics of

inference workloads and heterogeneous computing devices and critical constraints such as the inference

deadline and the functional and capacity constraints of heterogeneous computing devices.

To bridge this gap, this chapter3 proposes HERTI, a reinforcement learning (RL)-augmented system

for efficient real-time inference on heterogeneous embedded systems. HERTI employs the accurate

and efficient execution and communication cost estimators for inference workloads, which significantly

reduce the training time. HERTI efficiently explores the state space with heterogeneity and constraint

awareness and robustly finds the efficient state that executes the target inference workload across the

heterogeneous computing devices while satisfying the deadline constraint through RL.

Specifically, this work makes the following contributions:

• We propose HERTI, an RL-augmented system for efficient real-time inference on heterogeneous

embedded systems. HERTI builds on the accurate and lightweight execution and communication
3The work presented in this chapter was also published in [58]

30

cost estimators to significantly accelerate the training process. HERTI generates the efficient

model slicing and execution plan for the target real-time inference workload with a strong deadline

guarantee based on RL.

• Because the model slicing and execution planning problem for efficient real-time inference on

heterogeneous embedded systems is a variant of the NP-hard multiple-choice quadratic knap-

sack problem [80] and has the Markov property [150], we formulate it as an RL problem. To

overcome the state space explosion problem, we employ the RL algorithm (i.e., deep Q-network

(DQN) [109]) to solve the model slicing and execution planning problem.

• We design and implement the prototype of HERTI as a user-level runtime system based on the

TensorFlow Lite programming framework [23] for deep-learning inference on the Android OS.

HERTI significantly improves the efficiency of the target inference workload with a strong dead-

line guarantee by executing its slices across computing devices on the underlying heterogeneous

embedded system in a heterogeneity- and constraint-aware manner.

• We quantify the effectiveness of HERTI using widely-used inference workloads on a real hetero-

geneous embedded system that consists of the big core cluster, little core cluster, GPU, and NPU.

Our quantitative evaluation demonstrates the effectiveness of HERTI in that it achieves high ef-

ficiency and outperforms the deadline-conscious state-of-the-art technique (i.e., AutoScale [84])

in multiple metrics (i.e., energy (i.e., 28.4%) and energy-delay product (i.e., 29.2%)) while satis-

fying the deadline constraint, consistently meets inference deadlines in contrast to the deadline-

oblivious state-of-the-art technique (i.e., MOSAIC [61]), effectively translates increased inference

deadlines and system heterogeneity into larger efficiency gains, exhibits the strong generality in

that the RL hyper-parameters tuned for a specific configuration can effectively be used in other

configurations, and significantly reduces the training time through its estimation-based approach

across all the inference workloads and scenarios.

The rest of this chapter is organized as follows. Section 5.2 provides background information.

Section 5.3 presents the design and implementation of HERTI. Section 5.4 describes the experimen-

tal methodology and Section 5.5 quantifies the effectiveness of HERTI. Finally, Section 5.6 concludes

the chapter with a summary.

5.2 Background: Deep Q-Network

Reinforcement learning (RL) is a machine learning technique that aims to learn a sequence of decisions

that maximizes a cumulative reward [150]. In RL, there are two main components – the agent and

the environment. The agent interacts with the environment in discrete time steps. The state of the

environment at step t is denoted as st . The agent chooses an action at from the available action set

according to a policy and performs it. The state of the environment is then transitioned to st+1 and

the agent receives the reward rt . The goal of the agent is to learn the best policy that maximizes the

cumulative reward.

31

Profiler

Estimators Model Slicing and
Execution Planner

Runtime
System

Real-Time
Inference Workload

Heterogeneous
Embedded System

Profile Data of
Each Layer

Model Slicing
& Exec. Plan

Layers Slices Offloaded
to Devices

Layers & Deadline Constraint

Execution Cost
Estimator

Communication Cost
Estimator

Estimation
Results

State 𝒕

RL Agent
Q-Network

Figure 18: Overall architecture of HERTI

Q-learning is one of the widely used RL algorithms owing to its effectiveness and simplicity [150].

Q-learning maintains a matrix called a Q-table whose row and column counts are equal to the number

of feasible states of the environment and the number of actions that can be performed by the agent,

respectively. Each element in the Q-table encodes the expected value (i.e., the Q-value) of its associated

action when the environment is in its associated state. At each time step t, the agent performs the action

that has the maximum value in the current state. The corresponding Q-table entry is then updated using

Equation 10, where α and γ denote the learning rate (0 < α < 1) and the discount factor (0 < γ < 1),

respectively. The learning rate controls how rapidly Q-values change based on new observations. The

discount factor determines the relative importance of future rewards over immediate rewards.

Q(st ,at)←(1−α)·Q(st ,at)+α ·(rt +max
a

γ ·Q(st+1,a)) (10)

Despite its effectiveness and simplicity, Q-learning has a major drawback in that its memory usage

for storing the Q-table becomes infeasible with modern computer systems when it is applied to solve

complex problems with large numbers of states and/or actions. Unfortunately, the problem that this work

aims to address belongs to such a category. For instance, the numbers of states and actions associated

with the deadline-conscious energy efficiency optimization of the RN inference workload evaluated in

this work are 1.1× 1090 and 328, respectively (more details in Section 5.3.3). This indicates that the

memory usage for solving the energy optimization problem for RN using Q-learning is 1.4×1093 bytes

(assuming each Q-value requires 4 bytes), which is infeasible on any kind of modern computer systems.

To address this limitation, recent work has proposed a variant of Q-learning called deep Q-network

(DQN) [109]. The main idea of DQN is to replace the aforementioned memory matrix required for

storing accurate the Q-values with a deep neural network called the Q-network, which is used to approx-

imate the Q-table. Given that the reasonably-sized Q-network can effectively approximate the Q-table,

this method eliminates the excessive memory usage issue of the original Q-learning algorithm. To

mitigate the instability issues caused by the correlations in the sequence of observations and the cor-

relations between the Q and target values, Mnih et al. use the experience replay and iterative update

techniques [109]. Owing to its effectiveness and practicality, we have made a design decision to employ

DQN for HERTI.

32

5.3 Design and Implementation

HERTI is a software-based system that determines the efficient model slicing and execution plan for

the target real-time inference workload on the underlying heterogeneous embedded system. Figure 18

shows its overall architecture, which mainly consists of the profiler, the execution and communication

cost estimators, the model slicing and execution planner, and the runtime system.

5.3.1 Profiler

The profiler collects the total cost data (i.e., execution time and energy consumption) for executing each

layer in the target inference workload on each computing device in the underlying heterogeneous em-

bedded system. The collected total cost data is then used to construct the execution and communication

cost estimators.

If a layer can be executed on a computing device and the computing device supports DVFS, the

total cost data for executing the layer is collected at the minimum and maximum available frequencies

of the computing device as multiple data points are needed to construct the DVFS-aware performance

estimator. If a layer cannot be executed on a computing device due to a constraint (e.g., memory or

functional constraint), the total costs for executing the layer on the computing device are set to an

infinite value. The profiler also collects the input and output tensor sizes of each layer, which are used

to estimate the communication costs associated with the layer.

5.3.2 Execution and Communication Cost Estimators

The total cost data of each layer collected by the profiler includes both the execution and communi-

cation costs. Similar to MOSAIC in Chapter IV, HERTI employs the execution and communication

cost estimators. Specifically, they estimate the execution and communication costs of the layer on each

heterogeneous computing device based on the total cost data and the input and output tensor sizes of the

layer.

Communication Cost Estimator: Our experimental results with a micro-benchmark that under-

takes communications with various tensor sizes show that the communication cost is linearly propor-

tional to the transferred tensor size. Based on this observation, we design the communication cost

estimator such that it estimates the communication costs associated with the input and output tensors of

the layer l using Equations 11 and 12. Specifically, τi,l , τo,l , βd, fd , and δd, fd are the total sizes of the

input and output tensors of layer l and the regression coefficients for computing device d at frequency

fd .

Ci,l,d, fd = βd, fd · τi,l +δd, fd (11)

Co,l,d, fd = βd, fd · τo,l +δd, fd (12)

33

Execution Cost Estimator: The execution cost estimator serves to estimate the cost for executing

each layer on each computing device without including the communication costs. Specifically, the

execution cost estimator first estimates the total execution cost of each layer on a computing device d

running at frequency fd using the profile data collected at the maximum and minimum frequencies of d.

The execution cost estimator then subtracts the estimated communication costs of the layer (generated

by the communication cost estimator) from the estimated total cost of the layer. The execution cost

estimator consists of the performance and power estimators.

The performance estimator estimates the latency when executing a layer l on a computing device d

at frequency fd . The performance estimator employs a linear model shown in Equation 13, where Tl,d, fd ,

θl,d , and ρl,d indicate the estimated latency and coefficients, respectively. θl,d and ρl,d are computed

using the data collected by the profiler at the maximum and minimum frequencies of d.

Tl,d, fd = θl,d · 1
fd
+ρl,d (13)

The power estimator estimates the power consumption when executing a layer l on a computing de-

vice d at frequency fd using Equation 14. Specifically, the power estimator decomposes the total power

consumption into dynamic (i.e., Pdynamic,l,d, fd) and static (i.e., Pstatic,d, fd) power consumption. Static

power consumption is the inherent property of a computing device and independent of the characteris-

tics of the target inference workload. Therefore, it can be profiled only once for each computing device

without the need for per-workload profiling.

Pl,d, fd = Pdynamic,l,d, fd +Pstatic,d, fd (14)

Because dynamic power consumption is dependent on the characteristics of the computing device

(and its frequency) and the characteristics of the layer, the power estimator estimates dynamic power

consumption in order to eliminate the need for extensive offline profiling. Specifically, the power es-

timator uses Equation 15 to estimate the dynamic power consumption (i.e., Pdynamic,l,d, fd) of layer l on

computing device d at frequency fd (and the corresponding voltage level Vfd). In Equation 15, fd,max,

Vfd,max , and Pdynamic,l,d, fd,max denote the maximum frequency of d, the voltage level at fd,max, and the

dynamic power consumption at fd,max.

Pdynamic,l,d, fd =
V 2

fd
· fd

V 2
fd,max

· fd,max
·Pdynamic,l,d, fd,max (15)

The voltage and frequency levels of computing devices can be found in their specification documents

or directly measured using instruments. Table 2 summarizes the voltage and frequency levels of the

big core cluster, little core cluster, and GPU on the evaluated heterogeneous embedded system, which

we found in their device tree source (DTS) files.4 Dynamic power consumption can be estimated by

substituting voltage and frequency levels into Equation 15.

Our experimental results show that the performance and power estimators achieve high accuracy.

4The evaluated NPU runs at 960 MHz and lacks a DVFS capability.

34

Specifically, the average performance and energy consumption estimation errors across all the evaluated

inference workloads on the target heterogeneous embedded system are 3.0% and 4.3%, which are small.

The main reason for adopting the estimation-based approach in this work is to significantly accelerate

the training process. The deep Q-network model used in HERTI could be trained by repeatedly executing

the target inference workload on the underlying heterogeneous embedded system in a large number of

different configurations. However, it will significantly increase the training time due to the time required

to repeatedly execute the target inference workload on the heterogeneous embedded system.

To significantly reduce the training time, we have made a design decision to estimate the total costs

for executing the target inference workload in each configuration. For instance, estimating the execution

cost of the RN inference workload (Section 5.4) based on the estimators may be up to 14,313 times faster

than executing it on the heterogeneous embedded system. Since the estimators achieve high estimation

accuracy, the quality of the trained model based on the estimators is high and effectively guides to

efficient states.

5.3.3 Model Slicing and Execution Planner

The main goal of the model slicing and execution planner (MSEP) of HERTI is to generate an efficient

model slicing and execution plan for the target inference workload while satisfying its deadline con-

straint. Specifically, MSEP generates an efficient model slicing and execution plan, which specifies the

number of slices, the specific layers that belong to each slice, and the specific computing device and

frequency for each slice to efficiently execute the target inference workload with a strong deadline guar-

antee. MSEP can perform optimizations based on the user-defined metric (e.g., energy consumption,

energy-delay product).

The model slicing and execution planning problem to maximize the inference efficiency on hetero-

geneous embedded systems with the deadline constraint is a variant of the multiple-choice quadratic

knapsack problem, which is an NP-hard [80] problem. In addition, it has the Markov property (i.e., the

memoryless property) in that the next state is determined solely by the current state and the action with-

out any dependency on the previous states or actions [150]. Therefore, we formulate the model slicing

and execution planning problem as a reinforcement learning (RL) problem because RL can effectively

solve problems with the Markov property.

In our RL formulation, the environment is the target inference workload and the underlying hetero-

geneous embedded system and the agent is MSEP. The state of the environment is the current model

slicing and execution plan. Equation 16 shows the state at step t. The state is expressed as a vector

whose length is equal to the number of layers (i.e., Λ in Equation 16) in the target inference workload.

st = (⃗e1, e⃗2, · · · , e⃗Λ) (16)

Each element of the state vector is also a vector, as shown in Equation 17. l (1 ≤ l ≤ Λ) denotes

the layer index. σ (σ ∈ {0,1}) specifies whether the corresponding layer is the first layer of a slice

(i.e., σ = 1) or not (i.e., σ = 0). d (d ∈ D) denotes the computing device where the layer is scheduled

35

State

…

…

…

…

…

…

…

…

…

…

�

…

Action

Figure 19: DQN architecture of MSEP

to execute. For heterogeneous embedded system evaluated in this work, the device set D is equal to

{big, little,GPU,NPU}. fd (fd ∈ Fd) denotes the frequency of device d and Fd specifies the available

frequencies of d.

e⃗l = (σ ,d, fd) (17)

At each step t, the agent (i.e., MSEP) interacts with the environment (i.e., the target inference work-

load and the underlying heterogeneous embedded system) by performing an action. We design the agent

to choose a single layer (instead of multiple layers) to perform an action. This is done to ensure that the

state space is gradually explored. Equation 18 shows the action performed by the agent at step t.

at = (l,k) (18)

Specifically, l (1≤ l ≤ Λ) indicates the layer index selected to perform the action. k (k ∈ K) denotes

the specific change associated with the action. For each layer, the agent can apply one of the changes

(i.e., K) defined in Equation 19 – creating a new slice starting from the layer (i.e., ksplit), merging the

slice where the layer belongs with the previous slice (i.e., kmerge), changing the computing device by

traversing the device list in either direction (i.e., kd,next or kd,prev), or increasing (i.e., k fd ,up) or decreasing

(i.e., k fd ,down) the computing device frequency by one level.

K = {ksplit,kmerge,kd,next,kd,prev,k fd ,up,k fd ,down} (19)

MSEP employs the RL algorithm (i.e., deep Q-network (DQN) [109]) to solve the model slicing and

execution planning problem. Figure 19 shows the DQN architecture of MSEP, which mainly comprises

a fully connected layer and ReLU functions.

Algorithm 2 shows the pseudocode for MSEP. After initializing key variables, MSEP iterates the

main loop to train the DQN model (Lines 7–23). Without loss of generality, we discuss the main logic

of MSEP in the context of step t.

At step t, MSEP chooses the most feasible action (i.e., at) to perform based on the Q-network with

a probability of 1− ε(t) (Line 12 in Algorithm 2). To prevent the algorithm from converging to a

36

Algorithm 2 The findEfficientSlicingAndExecPlan function

1: procedure FINDEFFICIENTSLICINGANDEXECPLAN(Λ)
2: Q← initializeQNetwork(Λ, depth, width)
3: Mr← initializeReplayMemory()
4: s1← sinit
5: sbest← sinit
6: rbest←−Φ

7: for t ← 1 to tmax do
8: At ← getValidActions(st)
9: if generateRandomNumber() < ε(t) then

10: at ← getRandomAction(At)
11: else
12: at ← argmaxa∈At Q(st , a)
13: end if
14: rt ← calculateImmediateReward(st , at)
15: st+1← applyAction(st , at)
16: if rt > rbest then
17: rbest← rt

18: sbest← st+1
19: end if
20: Mr← Mr ∪ {(st , at , rt , st+1)}
21: B← sampleMiniBatch(Mr)
22: trainAndUpdateQNetwork(Q, B, t)
23: end for
24: return sbest
25: end procedure

local optimum, MSEP randomly (instead of consulting the Q-network) chooses a feasible action with a

probability of ε(t) (Line 10). As t increases, ε(t) decreases to facilitate choosing the action based on the

trained Q-network.

MSEP then computes the immediate reward (i.e., rt) associated with the state transition caused by

performing the action by invoking the calculateImmediateReward function shown in Algorithm 3

(Line 14 in Algorithm 2). The calculateImmediateReward function uses the execution and com-

munication cost estimators discussed in Section 5.3.2 to compute the immediate reward (Lines 3–11 in

Algorithm 3).

The reward computation equation is shown in Equation 20, where Γs denotes the cost (e.g., energy

consumption, energy-delay product) associated with state s and Φ indicates the penalty, which is set to

100, for states that violate the deadline constraint. If the deadline constraint of the target inference work-

load is satisfied in state s, the reward is set to −
√

Γs, which increases as the cost decreases. Otherwise,

the reward is set to Φ to exclude states in which the deadline constraint is violated.

rs =

−
√

Γs if Ts ≤ Tdeadline

−Φ otherwise
(20)

MSEP determines the next state (i.e., st+1) and memorizes it if the associated immediate reward is

37

Algorithm 3 The calculateImmediateReward function
1: procedure CALCULATEIMMEDIATEREWARD(s, a)
2: s′← applyAction(s, a)
3: Cs′ ← estimateCommunicationCost(s′)
4: Ts′ ← estimatePerformance(s′)
5: Ps′ ← estimatePowerConsumption(s′)
6: Γs′ ← calculateCost(Cs′ , Ts′ , Ps′)
7: if Ts′ ≤ Tdeadline then
8: rs′ ←−

√
Γs′

9: else
10: rs′ ←−Φ

11: end if
12: return rs′

13: end procedure

Table 5: Tunable hyper-parameters

Hyper-parameter Candidate values Tuned value
Learning rate 10−5, 10−4, 10−3, 10−2, 10−1 10−3

Discount factor 0.9, 0.99 0.9
Q-network depth 2, 4, 8, 16 4
Q-network width 32, 64, 128, 256, 512, 1024 512
Batch size 32, 64 32
Epsilon in Adam optimizer 10−8, 10−7, 10−6, 10−5, 10−4 10−5

higher than the highest reward that has been discovered up to this point (Lines 15–19 in Algorithm 2).

MSEP then inserts the tuple of (st , at , rt , st+1) into the replay memory (Line 20). The replay memory

is the key data structure enabling the experience replay mechanism of DQN [109]. Specifically, the

replay memory contains the previous observations (i.e., the immediate rewards received by previous

state transitions), which are used to train the Q-network.

MSEP generates a batch of training data by randomly choosing samples from the replay memory

(Line 21 in Algorithm 2). MSEP then trains the Q-network using the batch of training data (Line 22).

Because the Q-network is continuously trained using the previous observations, it can help MSEP to per-

form more effective actions in subsequent steps. MSEP repeats this process until a predefined iteration

count is reached and returns the best state with the highest reward (Lines 7–24).

MSEP employs six tunable hyper-parameters. We use the Hyperband algorithm [96, 97], which

is one of the most widely used and effective algorithms, to automatically tune the hyper-parameters.

Table 5 summarizes the six hyper-parameters and their candidate values explored by the tuner. Table 5

also shows the values of the hyper-parameters, which have been tuned using the MN-1.3 inference

workload and its medium deadline (Table 6). We have made a design decision to use only a single

inference workload and a single deadline for hyper-parameter tuning in order to eliminate the need for

per-workload and/or per-deadline hyper-parameter tuning. Section 5.5.4 quantifies the generality of this

approach.

38

Table 6: Evaluated real-time inference workloads

Workload Accuracy Size (MB) Layers short/medium/long deadlines (milliseconds)
IN [152] 80.1% 183.7 20 190/210/250
MN-1.0 [153] 74.1% 321.9 20 85/100/130
MN-1.3 [153] 75.2% 511.6 20 105/120/150
MO-1.3 [138] 74.4% 187.8 18 75/90/120
MO-1.4 [138] 75.0% 214.7 18 85/100/130
RN [67] 77.8% 260.4 53 155/170/200
VGG [142] 71.5% 407.4 16 135/150/180

5.3.4 Runtime System

The runtime system of HERTI is a user-level process that executes the model slices of the target infer-

ence workload across the heterogeneous computing devices based on the model slicing and execution

plan generated by the model slicing and execution planner. The runtime system is implemented in the

C++ programming language based on the TensorFlow Lite framework [23] on the Android OS because

it supports various heterogeneous computing devices and provides a well-established programming en-

vironment. However, since HERTI employs a framework-agnostic approach for slicing and executing

the target inference workload, we believe that HERTI can be applied widely to other representative

deep-learning frameworks as well, such as PyTorch [122].

5.4 Experimental Methodology

Inference Workloads: Table 6 summarizes the evaluated inference workloads – Inception V4 (IN) [152],

MnasNet with the width parameters (pW) of 1.0 (MN-1.0) and 1.3 (MN-1.3) [153], MobileNet V2 with

pW = 1.3 (MO-1.3) and pW = 1.4 (MO-1.4) [138], ResNet V2 (RN) [67], and VGG (VGG) [142].

The evaluated inference workloads achieve high accuracy (e.g., the Top-1 accuracy with the ImageNet

dataset [135] in Table 6) and exhibit widely-different characteristics such as the model size (i.e., the

memory usage reported by TensorFlow Lite), the layer count, and the inference latency.

MobileNet V2 and MnasNet provide a mechanism to tune their inference accuracy and latency using

the width parameter (i.e., pW), which controls the number of channels. When it is set to a larger value,

their inference accuracy and latency tend to increase.

The deadline is determined using Equation 21, where w, ζ , Tw,best, and Tw,energy_optimized denote the

inference workload, a scale factor, and the latencies that incur the highest performance (i.e., the best-

case execution time) and the lowest energy consumption that are determined by the technique proposed

in [61] (more details in Section 5.5.1), respectively. As shown in Table 6, we use three deadlines (i.e.,

short (ζ = 0.25), medium (ζ = 0.5), and long (ζ = 1.0)) for each inference workload to investigate

the sensitivity of HERTI to the inference deadline.

Deadlinew = Tw,best +ζ · (Tw,energy_optimized−Tw,best) (21)

39

Heterogeneous Embedded System: To investigate the effectiveness of HERTI, we use a heteroge-

neous embedded system, the HiKey 970 development board [8]. The evaluated system is equipped with

the Kirin 970 mobile processor [15] which consists of a CPU with four Cortex-A73 (big) cores, four

Cortex-A53 (little) cores, a Mali-G72 GPU, and an NPU. Table 2 summarizes their available voltage

and frequency levels.

Due to the memory constraint, the NPU cannot execute a model slice larger than 100 MB [8]. The

exact memory constraints of the big core cluster, little core cluster, and GPU are unknown. However,

they can successfully execute all the evaluated inference workloads without any memory capacity issues.

Therefore, we assume that their memory constraints are sufficiently large for the evaluated inference

workloads.

With regard to the system software stack, Android 8.1 is installed on the evaluated heterogeneous

embedded system. In addition, HERTI and the evaluated inference workloads are implemented in the

TensorFlow Lite 1.11.0 [23].

We measure the inference latency through the high_resolution_clock C++ standard library func-

tion. We collect the inference energy consumption data using an external power monitor [7]. The power

monitor periodically samples the voltage and current applied to the evaluated heterogeneous embedded

system at the rate of 5000 samples per second. Figure 2 shows the evaluated heterogeneous embedded

system and the power monitor.

Training Server System: To train the DQN model of HERTI, we use a server system equipped with

two Intel Xeon E5-2640 16-core CPUs running at 2.6 GHz and 32 GB memory. The server system is

installed with Ubuntu 18.04 and TensorFlow 2.3.1 [26].

5.5 Evaluation

5.5.1 Overview

This section quantifies the effectiveness of HERTI. Specifically, we aim to investigate (1) the inference

latency, (2) the inference energy, (3) the sensitivity of the efficiency gains to the inference deadline and

the system heterogeneity, (4) the generality, (5) the energy-delay product (EDP) efficiency, and (6) the

training time reduction through the estimation-based approach.

For each inference workload, we evaluate 13 versions – the big core cluster-preferred (TF-BIG-P),

little core cluster-preferred (TF-LITTLE-P), GPU-preferred (TF-GPU-P), NPU-preferred (TF-NPU-P)

with the performance governor of the Android OS, the big core cluster-preferred (TF-BIG-O), little

core cluster-preferred (TF-LITTLE-O), GPU-preferred (TF-GPU-O), NPU-preferred (TF-NPU-O) with

the on-demand governor of the Android OS, MOSAIC configured to conduct performance optimization

(MOSAIC-P), MOSAIC configured to perform energy optimization (MOSAIC-E), AutoScale, exhaustive,

and HERTI versions.

With the big core cluster-, little core cluster-, GPU-, and NPU-preferred versions, the slices of each

inference workload are executed on the corresponding preferred computing device. To generate the big

core cluster-, little core cluster-, GPU-, and NPU-preferred versions, we include as many consecutive

40

layers as possible in each slice if they satisfy the memory and functionality constraints. If a layer cannot

be included in the current slice due to a memory constraint, a new slice is created and the layer is added

to the new slice, which is executed on the preferred device. If a layer cannot be executed on the preferred

device due to a memory or functionality constraint, a separate slice is created for the layer and executed

on a feasible device among NPU, GPU, and big core cluster (in the preference order).

The performance governor tends to deliver higher performance and lower energy efficiency than the

on-demand governor because the performance governor always executes the target inference workload

at the maximum frequency of the underlying computing device. In contrast, because the on-demand

governor, which is the default governor of the Android OS, performs DVFS based on the dynamic load

of the target inference workload, it typically exhibits lower performance and higher energy efficiency

than the performance governor.

MOSAIC is a technique in Chapter IV that generates the optimal model slicing and execution plan of

the target inference workload on heterogeneous embedded system in terms of the user-specified metric.

However, it is deadline-oblivious and provides no deadline guarantee for real-time inference workloads.

MOSAIC can perform optimizations based on various user-specified metrics. For the MOSAIC-P and

MOSAIC-E versions, MOSAIC is configured to generate the optimal model slicing and execution plan

in terms of inference latency and energy efficiency, respectively. While the MOSAIC-E version lacks a

deadline guarantee, its energy efficiency is always optimal. As quantified in this work, when a deadline

is configured in a way that the MOSAIC-E version also happens to meet the deadline, HERTI achieves

the same efficiency (i.e., the optimal energy efficiency) as the MOSAIC-E version, demonstrating its

effectiveness.

AutoScale is a state-of-the-art technique that executes the target inference workload in a deadline-

conscious manner and employs DVFS to enhance inference efficiency based on machine learning [84].

However, it lacks the consideration of the heterogeneity- and constraint-aware model slicing and exe-

cution for the target inference workload and executes the entire inference workload on a single device.

In other words, AutoScale cannot exploit the optimization opportunities for slicing and executing the

model at the layer level.

The exhaustive version empirically determines the model slicing and execution plan that exhibits the

highest inference efficiency through exhaustive search. Note that exhaustive search is highly time- and

resource-consuming and impractical. For example, it is estimated to take 6.1×1011 years to empirically

find the best model slicing and execution plan for MN-1.3 through exhaustive search even using the

lightweight execution and communication cost estimators. The experimental data for the exhaustive

version of each inference workload has been collected for ten days, covering up to 3.7× 109 states.

Finally, the HERTI version uses HERTI to generate the efficient model slicing and execution plan.

5.5.2 Inference Latency and Energy Efficiency

In this section, we evaluate the effectiveness of HERTI when it is configured to optimize the energy

efficiency of the inference workload while satisfying its deadline constraint. The deadline for each

41

6.
4

6.
3

12
.5

2.
4

12
.8

1.
6

1.
9

2.
6

2.
5

12
.8

25
.2

5.
0

2.
4

3.
5

1.
4

1.
3

7.
6

1.
2

1.
3

1.
6

1.
7

7.
0

12
.9

3.
1

14
.1

2.
5

2.
6

3.
7

3.
6

14
.5

25
.4

6.
4

2.
6

1.
3

1.
3

1.
2

4.
6

1.
9

1.
8

1.
4

1.
3

1.
4

1.
4

1.
3

1.
3

1.
3

3.
0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GEOMEANN
or

m
. I

nf
er

en
ce

 L
at

en
cy

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O TF-LITTLE-O TF-GPU-O
TF-NPU-O MOSAIC-P MOSAIC-E AutoScale Exhaustive HERTI

Figure 20: Inference latency

inference workload is set to the medium case shown in Table 6.

We first investigate the effectiveness of HERTI in terms of inference latency. Figure 20 shows

the inference latency of each version of the inference workload, normalized to the deadline.5 If the

normalized inference latency of a certain version is 1 or lower, the version meets the deadline. Otherwise,

it fails to satisfy the deadline constraint.

First, HERTI robustly satisfies the deadline constraint across all of the evaluated inference work-

loads, which empirically demonstrates that HERTI provides a strong deadline guarantee for real-time

inference workloads. Interestingly, HERTI chooses states that lead to the inference latency lower than

the deadline (i.e., the normalized latency is lower than 1). This is mainly because such states result in

higher energy efficiency than the other states that incur inference latency close to the deadline because

such states facilitate the use of the evaluated NPU that lacks DVFS support (but still more efficient than

other devices in many cases) and reduce static energy consumption.

Second, aside from HERTI, only the TF-NPU-P, MOSAIC-P, and AutoScale versions meet the dead-

lines across the evaluated inference workloads. Because the NPU is effective for reducing the inference

latency and the performance governor of the Android OS is optimized for performance, the TF-NPU-P

version meets the inference deadline. As the MOSAIC-P version conducts performance optimizations

without considering the deadline of each inference workload, it incurs the latency significantly lower

than the other versions at the cost of reduced inference efficiency. In addition, the AutoScale version

meets the inference deadline by finding a single device and its DVFS setting and executing the entire

inference workload (i.e., no model slicing) on the device.

Third, all the other versions fail to meet the deadlines of the inference workloads. The big core

cluster-, little core cluster-, and GPU-preferred and TF-NPU-O versions fail to meet the inference dead-

line because they lack the capability of exploiting heterogeneity in the underlying system and the An-

droid OS is deadline-oblivious. The MOSAIC-E version fails to meet the inference deadline as it performs

optimizations solely to reduce the inference energy consumption without considering the deadline con-

straint. Despite the extensive search conducted for each workload for ten days, the exhaustive version

still fails to meet the deadline. Due to the excessively large state space, the optimal state still remains

5All the reported experimental data is the average of 100 experiments.

42

33
.2

1.
4

1.
6

2.
9

2.
8

20
.9

29
.2

6.
3

27
.1

1.
3

1.
6

1.
9

1.
8 9.
9

19
.7

4.
5

13
.8

2.
0

1.
7

1.
5

1.
4 9.
1

3.
1 3.
1

26
.7

1.
2

1.
4

2.
0

2.
2

17
.5

27
.7

5.
1

18
.0

1.
3

1.
8

1.
5

9.
2

18
.0

3.
8

11
.1

1.
8

1.
4

8.
7

2.
1

2.
5

2.
0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GEOMEANN
or

m
. I

nf
er

en
ce

 E
ne

rg
y

TF-BIG-P TF-LITTLE-P TF-GPU-P TF-NPU-P TF-BIG-O TF-LITTLE-O TF-GPU-O
TF-NPU-O MOSAIC-P MOSAIC-E AutoScale Exhaustive HERTI

Figure 21: Inference energy

Table 7: Model slicing and execution plans

Workload Model slicing and execution plan
IN N960

1 , N960
11 , L1690

20
MN-1.0 N960

1 , L1690
14 , N960

18 , L1402
20

MN-1.3 N960
1 , B1210

9 , G332
12 , B1210

14 , G332
18 , B1210

20
MO-1.3 N960

1 , G550
8 , L1402

15 , N960
18

MO-1.4 N960
1 , G667

9 , L1690
15 , N960

18
RN B1863

1 , N960
2 , L1690

4 , N960
5 , B1364

12 , N960
13 , N960

30 , B1364
48 , N960

49 , B1863
53

VGG N960
1 , G332

14 , G237
15 , B682

16

undiscovered even after the extensive search.

We now investigate the effectiveness of HERTI in terms of energy efficiency. Figure 21 shows the

energy consumption of each version, normalized to that of the MOSAIC-P version. First, we observe

that HERTI significantly outperforms other versions in terms of energy efficiency. For instance, HERTI

consumes 28.0% and 28.4% lower energy than the MOSAIC-P and AutoScale versions, respectively.

Our experimental results provide empirical evidence that HERTI robustly finds the optimal state that

minimizes the energy consumption of each inference workload with a strong deadline guarantee through

reinforcement learning.

Second, the MOSAIC-E version exhibits slightly lower energy consumption than the HERTI version

when the inference deadline is set to the medium one. This is mainly because the MOSAIC-E version ag-

gressively applies DVFS by solely focusing on minimizing the energy consumption without considering

the inference deadline. Hence, as discussed above (Figure 20), the MOSAIC-E version fails to meet the

deadlines of all the inference workloads.

In contrast, since HERTI performs inference energy efficiency optimizations in a deadline-conscious

manner, it achieves the energy efficiency comparable to that of the MOSAIC-E version while robustly

satisfying the deadline constraint for all the evaluated inference workloads. Further, as quantified in

Section 5.5.3, our experimental results show that HERTI achieves energy efficiency identical to that of

the MOSAIC-E version when given a sufficiently long deadline with which the MOSAIC-E version happens

to meet the inference deadline.

43

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S M L S M L S M L S M L S M L S M L S M L S M L
IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GMEAN

N
or

m
. I

nf
er

en
ce

 E
ne

rg
y

HERTI MOSAIC-E

Figure 22: Sensitivity to the inference deadline

Table 7 summarizes the model slicing and execution plans generated by HERTI for deadline-conscious

energy optimization. Each letter (i.e., big core cluster (B), little core cluster (L), GPU (G), and NPU (N))

denotes a slice and its associated device. The subscript and the superscript to each letter represent the ID

of the first layer of the corresponding slice and the frequency of the computing device in MHz, respec-

tively. HERTI tends to execute slices with relatively-low computation intensity and large communication

overheads on the big or little cluster, computation-intensive slices with functional/memory constraints

on the GPU, and computation-intensive slices without any constraints on the NPU.

5.5.3 Sensitivity

In this section, we analyze the sensitivity of the efficiency gains of HERTI to the inference deadline and

the degree of the heterogeneity of the underlying system. Figure 22 shows the energy consumption of

HERTI for each inference workload, normalized to that of the MOSAIC-P version. Each bar represents

the energy consumption when the inference deadline is configured to the short (S), medium (M), or

long (L) deadline in Table 6. Figure 22 also shows the normalized energy efficiency of the MOSAIC-E

version. Because the MOSAIC-E version is deadline-oblivious, we only show one bar for the MOSAIC-E

version with each inference workload.

First, as the inference deadline increases, the energy efficiency gains of HERTI increase across all

the inference workloads. For instance, the average energy efficiency gain increases by 14.1% as the

inference deadline increases from the short deadline to the long deadline. This is mainly because the

more relaxed constraint with a longer inference deadline allows HERTI to explore and find states that

result in higher energy efficiency but still meet the inference deadline.

Second, with the long deadline, HERTI achieves the same energy efficiency as the MOSAIC-E ver-

sion across all the inference workloads. While the MOSAIC-E version is deadline oblivious and lacks a

deadline guarantee, the MOSAIC-E version happens to meet the inference deadline when the inference

deadline for each inference workload is set to the long deadline. In this case, HERTI robustly generates

the same model slicing and execution plan generated by the MOSAIC-E version, which is optimal.

44

9.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CPU(BIG+LITTLE) CPU(BIG+LITTLE)
+GPU

CPU(BIG+LITTLE)
+NPU

CPU(BIG+LITTLE)
+GPU+NPU

In
fe

re
nc

e
En

er
gy

 R
at

io

Figure 23: Sensitivity to the system heterogeneity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S M L S M L S M L S M L S M L S M L S M L S M L
IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG GMEAN

In
fe

re
nc

e
En

er
gy

 R
at

io

(E
_H

ER
TI

/E
_H

ER
TI

-C
)

HERTI HERTI-C

Figure 24: Generality of HERTI

We investigate the sensitivity of the efficiency gains of HERTI to the degree of the heterogeneity of

the underlying system. To this end, we have created synthetic versions of HERTI, which only employ

the CPU (i.e., the big and little core clusters), the CPU and another device (e.g., GPU or NPU), and all

the computing devices (i.e., the full version of HERTI). Figure 23 shows the energy efficiency gain of

each version, normalized to that of the full version of HERTI.6

We observe that the HERTI continues to achieve higher energy efficiency with more heterogeneous

computing devices by effectively utilizing all the available devices with a strong deadline guarantee. Our

experimental results also demonstrate the importance of heterogeneity-aware systems for maximizing

the efficiency of real-time inference workloads on heterogeneous embedded systems.

45

25.6 39.2 6.9 27.9 42.4 7.6

0.0

0.4

0.8

1.2

1.6

2.0

N
or

m
. I

nf
er

en
ce

 E
D

P

Figure 25: Energy-delay product

5.5.4 Generality

The hyper-parameters of the DQN model used in HERTI have been tuned using the MN-1.3 inference

workload and its medium deadline. This design decision has been made to eliminate the need for per-

workload and/or per-deadline hyper-parameter tuning. To quantify the generality of this approach, we

compare the energy efficiency of the default version of HERTI with a highly customized version (i.e.,

HERTI-C) of HERTI whose hyper-parameters have been tuned for each pair of the inference workload

and its target deadline. Figure 24 reports the energy efficiency of the two versions, normalized to the

HERTI-C version.

We observe that the default version of HERTI achieves the energy efficiency similar to that of the

HERTI-C version. For instance, the average energy consumption of the HERTI-C version is 2.9% lower

than the default version of HERTI. Our experimental results demonstrate that HERTI exhibits strong

generality in that it achieves high efficiency across all of the evaluated inference workloads and scenarios

without requiring per-workload or per-deadline hyper-parameter tuning. HERTI inherits this generality

property from RL, which can be widely applied to various tasks with a set of hyper-parameters tuned for

a single task.

5.5.5 Energy-Delay Product Efficiency

So far, we have evaluated the effectiveness of HERTI in terms of energy efficiency. HERTI is versatile

in that it can perform optimizations in various user-specified metrics. To evaluate the versatility of

HERTI, we configure HERTI to perform optimizations based on the energy-delay product (EDP) metric

while meeting the deadline constraint. For conciseness, Figure 25 shows the EDP of each version,

which is averaged (i.e., geometric mean) across all the inference workloads and normalized to that of

the MOSAIC-EDP version. While MOSAIC is deadline-oblivious, the EDP of the MOSAIC-EDP version is
6While omitted for conciseness, our experimental results show that HERTI outperforms MOSAIC-P and AutoScale by

20.6% and 11.8% when only CPU and GPU are used and by 21.7% and 13.3% when only CPU and NPU are used in terms of
energy efficiency.

46

0

100

200

300

400

500

600

700

IN MN-1.0 MN-1.3 MO-1.3 MO-1.4 RN VGG AVG

Tr
ai

ni
ng

 T
im

e
(H

ou
rs

)

Measurement-Based Estimation-Based (HERTI)

Figure 26: Training time comparison

optimal.

We observe that HERTI achieves the optimal EDP efficiency (i.e., same as the MOSAIC-EDP version)

and significantly outperforms other versions. While the inference latency data is omitted for brevity, our

experimental results demonstrate that HERTI robustly satisfies the deadline constraint across all of the

inference workloads when configured to perform EDP optimizations.

5.5.6 Training Time

HERTI employs the estimation-based approach to significantly reduce the time spent for training the

DQN model. To quantify the effectiveness of this approach, we compare the training time of the

estimation-based approach with that of the measurement-based approach. Since the measurement-based

approach incurs excessively long training time for each inference workload, we were unable to measure

its training time. To estimate the training time of the measurement-based approach, we first conduct

training based on the estimation-based approach. We then compute the estimated training time with

the measurement-based approach by summing the estimated execution times of all the explored states,

which are estimated by the execution and communication cost estimators (Section 5.3.2).

Figure 26 shows the training time of the estimation-based and measurement-based approaches for

deadline-conscious energy optimization. First, the estimation-based approach significantly reduces the

training time in comparison with the measurement-based approach. For instance, the estimation-based

approach (i.e., 48 minutes) incurs 314 times shorter training time than the measurement-based approach

(i.e., 15,088 minutes (251 hours)) on average across the evaluated inference workloads. Because exe-

cuting the inference workload on the heterogeneous embedded system takes drastically longer time than

estimating its execution and communication costs using the lightweight estimators, the estimation-based

approach significantly reduces the training time.

Second, the estimation-based approach leads to more significant reduction in training time with some

inference workloads such as IN and RN. This is mainly because such inference workloads are more

complex than the others, requiring longer execution time on the underlying heterogeneous embedded

47

system with the measurement-based approach.

Overall, our experimental results clearly demonstrate the effectiveness of HERTI in that it achieves

high inference efficiency in terms of both energy and EDP metrics while satisfying the deadline con-

straint, effectively translates longer inference deadlines and a higher degree of heterogeneity of the un-

derlying system into higher efficiency, exhibits strong generality with respect to hyper-parameter tuning,

and significantly reduces the training time through its estimation-based approach across all the evaluated

inference workloads and scenarios.

5.6 Summary

This chapter presents HERTI, a reinforcement learning (RL)-augmented system for efficient real-time

inference on heterogeneous embedded systems. HERTI employs the accurate and efficient execution

and communication cost estimators to significantly accelerate the training process. HERTI builds on

the state-of-the-art RL algorithm (i.e., deep Q-network) to eliminate the state space explosion problem.

HERTI efficiently explores the state space with heterogeneity and constraint awareness and robustly

generates the efficient state for the target inference workload with a strong deadline guarantee through

RL. Our quantitative evaluation based on the widely-used inference workloads and heterogeneous em-

bedded system demonstrates the effectiveness of HERTI in the sense that it achieves high efficiency

and significantly outperforms the deadline-conscious state-of-the-art technique (i.e., AutoScale) in mul-

tiple metrics (i.e., energy, energy-delay product) with a strong deadline guarantee, robustly satisfies the

deadline constraint in contrast to the deadline-oblivious state-of-the-art technique (i.e., MOSAIC), de-

livers larger efficiency gains as the inference deadline and the system heterogeneity increase, exhibits

the strong generality for hyper-parameter tuning, and significantly reduces the training time based on its

estimation-based approach across all the evaluated inference workloads and scenarios.

48

VI Hotness- and Lifetime-Aware Data Placement and Migration for High-
Performance Deep-Learning on Heterogeneous Memory Systems

6.1 Introduction

Heterogeneous memory systems that consist of memory nodes with a wide range of architectural char-

acteristics are rapidly emerging as a promising solution in various computing domains ranging from

embedded [48] to high-performance computing [87]. The key idea behind the heterogeneous mem-

ory systems is to provide useful properties such as performance, energy efficiency, durability, and cost

efficiency that cannot be achieved by solely employing a single type of memory.

For instance, the Intel Xeon Phi KNL architecture consists of high-bandwidth memory (HBM) and

DRAM nodes that are optimized for high bandwidth (i.e., HBM) and large capacity (i.e., DRAM),

respectively. It is the responsibility of the underlying system software and/or hardware to effectively

manage the heterogeneous memory nodes in the underlying system to maximize the metric of interest

such as performance and energy efficiency.

Because deep learning (DL) is one of the representative workloads in a variety of computing do-

mains, it is crucial to investigate efficient system software support to optimize the performance of DL

on heterogeneous memory systems. In particular, as a large number of widely-used DL algorithms em-

ploy advanced network architectures where tensors exhibit significantly different characteristics [158],

the system software support that robustly performs optimizations considering the characteristics of the

tensors and heterogeneous memory nodes is important for high-performance DL. Despite the exten-

sive prior works [26, 45, 75, 108, 158, 171] on the system software and architectural support for high-

performance DL, it still remains unexplored to investigate the design and implementation of the effective

memory management techniques to improve the performance of DL on heterogeneous memory systems.

To bridge this gap, this chapter7 proposes HALO, hotness- and lifetime-aware data placement and

migration for high-performance DL on heterogeneous memory systems. HALO extracts the hotness and

lifetime information on the tensors of the target DL application based on its dataflow graph. HALO

dynamically places and migrates the tensors on heterogeneous memory nodes based on their hotness

and lifetime characteristics. We implement HALO based on the widely-used TensorFlow system [26]

and demonstrate that it significantly improves the performance and energy efficiency of various DL

applications on a real heterogeneous memory system without any hardware modifications.

Specifically, this work makes the following contributions:

• We present an in-depth characterization of widely-used DL applications in terms of the execution

time and tensor characteristics on a full heterogeneous memory system. Our characterization

results show that tensors of the evaluated DL applications exhibit disparate characteristics in terms

of the capacity, hotness, and lifetime.

• Guided by the characterization results, we propose HALO, hotness- and lifetime-aware data place-

7The work presented in this chapter was also published in [60]

49

ment and migration for high-performance DL on heterogeneous memory systems. HALO ana-

lyzes the hotness and lifetime characteristics of the tensors of the target DL application without

requiring any offline profiling.8 We formulate the tensor placement and migration problem as a

variant of the NP-hard knapsack problem with time intervals [34] and propose an efficient algo-

rithm to address it. HALO dynamically places and migrates the tensors across the heterogeneous

memory nodes in a hotness- and lifetime-aware manner based on the proposed algorithm.

• We present the design and implementation of HALO by extending TensorFlow [26], which is one

of the most widely-used machine-learning systems. We demonstrate that the proposed techniques

can be effectively implemented on top of the production-quality machine-learning system.

• We quantify the effectiveness of HALO using a full heterogeneous memory system and repre-

sentative DL applications including the state-of-the-art convolutional neural networks (CNNs), a

recurrent neural network (RNN), and a network with an attention mechanism [3, 10, 12, 22, 89,

142,151,156,170]. Our quantitative evaluation demonstrates the effectiveness of HALO in that it

significantly outperforms various memory management policies (e.g., 28.2% higher performance

than the HBM-Preferred policy) supported by the underlying system software and hardware, de-

livers the performance comparable to that of the ideal case with infinite HBM, incurs small perfor-

mance overheads, and achieves high performance across various application working-set sizes. To

the best of our knowledge, our work is the first to propose, implement, and evaluate the hotness-

and lifetime-aware memory management technique for high-performance DL on heterogeneous

memory systems.

The rest of this chapter is organized as follows. Section 6.2 provides the background information

for this work. Section 6.3 describes the experimental methodology. Section 6.4 investigates the char-

acteristics of deep-learning applications on a full heterogeneous memory system. Section 6.5 presents

the design and implementation of HALO. Section 6.6 quantifies the effectiveness of HALO. Section 6.7

concludes the chapter with a summary.

6.2 Background

6.2.1 TensorFlow Machine-Learning System

TensorFlow is a widely-used machine-learning (ML) system [26]. It allows for programmers to express

their ML algorithms as dataflow graphs. A dataflow graph mainly consists of tensors and operations.

Tensors are multidimensional arrays, whose elements have one of the basic primitive data types such as

float32. An operation takes zero or more input tensors and produces zero or more output tensors [26].

The dataflow graph of the target TensorFlow application is a directed acyclic graph, where the nodes

and edges represent the operations and tensors. The source (or destination) node of an edge represents

8Intuitively, the hotness and lifetime of a tensor represent the number of operations that access the tensor and the difference
between its deallocation and allocation times (see Section 6.2.4).

50

(a) Linear (b) Non-linear

Figure 27: Networks with linear and non-linear connections

the producer (or consumer) of the corresponding tensor. The nodes in ML applications are typically

executed in a sequential manner as the layers in their network architectures are sequentially connected.

The dataflow graph of the target TensorFlow application remains unchanged through the execution

of the application. Therefore, static analysis and optimization techniques based on the dataflow graph

of the target TensorFlow application are widely-used and effective. As discussed in Section 6.5, HALO

also builds on static analysis and optimization techniques.

A recent work classifies network architecture types into linear and non-linear network architec-

tures [158]. Figure 27 shows the network architectures with linear and non-linear architectures. With

the linear network architecture, edges exist only between consecutive nodes in the sequential execution

order of the operations. In contrast, with the non-linear network architecture, edges may exist between

non-consecutive nodes in the sequential execution order. This indicates that the variance in the hotness

and lifetime of the tensors tends to be larger with the non-linear network architecture as some tensors

can be consumed by more operations than the others.

We focus on optimizing the efficiency of the training phase of deep-learning (DL) applications. In

each training epoch (or epoch), a DL application iterates all of the training data to train its model. In

each training step (or step), the DL application processes a batch of the training data. For example, if

70,000 images are used as the training data with a batch size of 100, an epoch consists of 700 steps.

We implement and evaluate HALO by extending TensorFlow owing to its widespread use and well-

established development environment. However, we believe that the design of HALO is sufficiently

generic to be applicable to other ML platforms such as Caffe [75] and PyTorch [123].

6.2.2 NUMA-Aware Memory Policies

Non-uniform memory access (NUMA) systems consist of multiple processor nodes, each of which

having a CPU and local memory with one or more DIMMs. Processor nodes are connected via an

interconnection network (ICN). Modern NUMA systems typically support cache coherence across the

processor nodes to provide an abstraction of a single globally addressable memory space.

Accesses to a memory object on a NUMA system are largely classified into two categories – local

and remote accesses. A local (or remote) access occurs when a processor node accesses a memory object

that is located on the same (or different) processor node. Remote accesses incur a longer latency than

that of local accesses because they generate packets that are transmitted over the ICN. Thus, frequent

remote accesses can significantly degrade the overall performance of NUMA systems [55].

The Linux kernel provides several NUMA-aware memory placement policies including the follow-

51

ing three representative policies – the local, interleave, and preferred policies. The local policy places a

page in the local memory of the processor node where the task that first touches the page is running. The

interleave policy places pages across the processor nodes in a round-robin manner without considering

the physical location of the tasks that access the pages. The preferred policy first attempts to place pages

in the memory of user-specified processor nodes. If there is no sufficient space in the user-specified

nodes, it places pages in other nodes. The local policy generally achieves higher locality, whereas the

interleave policy generally achieves better load balancing across the nodes.

6.2.3 Heterogeneous Memory Systems

Heterogeneous memory systems consist of two or more types of memory nodes (e.g., non-volatile mem-

ory (NVM) and DRAM [9, 52] high-bandwidth memory (HBM) and DRAM [11, 144]) which exhibit

widely-different characteristics. The more detailed background on heterogeneous memory systems can

be found in Chapter II.

In this work, we assume that the underlying system is similar to the Intel Xeon Phi KNL. This is done

because it represents advanced and generic heterogeneous memory systems9 in which the computation

units can directly and simultaneously access the data from each of the heterogeneous memory nodes and

the access to the full software stack (e.g., OS, DL framework) is publicly available.

The Xeon Phi KNL architecture provides the Flat mode (i.e., flat memory organization) in which

the HBM and LBM nodes are mapped to a single physical address space. Among the various Flat

modes supported by the Xeon Phi KNL architecture, we employ the SNC4 mode because it consistently

achieves high performance across a wide range of applications [129]. In the SNC4 mode, the Xeon Phi

KNL architecture exposes four HBM nodes and four LBM nodes to the operating system (OS). The OS

manages the HBM and LBM nodes as eight NUMA nodes.

In addition, the Xeon Phi KNL architecture provides the Cache mode (i.e., tiered memory organi-

zation). In the Cache mode, HBM is fully managed by hardware as a last-level hardware cache and

transparent to the OS. In this work, along with the other representative software-based memory manage-

ment policies, we compare the performance of HALO with the hardware-based memory management

policy based on the Cache mode.

6.2.4 Terminology

In this section, we provide the definitions of the two key concepts (i.e., tensor hotness and lifetime).

The hotness of a tensor is defined as the sum of its consumer count and one (i.e., the producer count).

Intuitively, a tensor with a larger hotness value is expected to generate a larger amount of data transfers

(per byte).

To define the lifetime of a tensor, we consider the linearized execution order of the operations in the

target DL application and assume that each instruction is assigned an index in the execution order. The

9Currently-available GPUs can be considered as a restricted type of heterogeneous memory systems in that the computation
units in GPUs can only access the data from the device memory and the data must be always copied from the host memory to
the device memory before it can be accessed by the computation units in GPUs.

52

Table 8: System specification

Component Description
Processors Intel Xeon Phi Processor 7230 @ 1.3GHz, 64 cores per CPU
L1 I-cache Private, 32KB, 8 ways
L1 D-cache Private, 32KB, 8 ways
L2 cache Private (per tile), 1MB, 16 ways
Memory 192GB DDR4 (LBM) + 16GB MCDRAM (HBM)
TensorFlow 1.4.0
System software Intel MKL 0.9, GCC 5.5.0, Intel Python 2.7.4, CentOS 7, Linux Kernel 3.10.0

Table 9: Evaluated deep-learning applications

Application Dataset Network Depth NOps NTensors Batch size (S, M, L)
AN Synthetic [3] Linear 8 61 112 2950, 11000, N/A
DN CIFAR-10 [88] Non-linear 40 2075 2783 2450, 4000, 8000
GN Synthetic [3] Non-linear 22 366 877 1160, 1800, 2650
INv4 ImageNet [135] Non-linear 75 5185 7750 185, 300, 600
LSTM PTB [102] Non-linear (2, 2400) 3672 2655 150, 4200, 6100
RN ImageNet [135] Non-linear 50 2210 3158 380, 600, 1000
RNv2 ImageNet [135] Non-linear 50 2019 2830 440, 700, 1000
TR WMT14 [21] Non-linear 28 17505 15904 4000, 26000, 47000
VGG Synthetic [3] Linear 11 77 160 205, 720, 820

allocation (i.e., start) time of a tensor is defined as the index of the producer. The deallocation (i.e., end)

time of a tensor is defined as the index of the last consumer (among all the consumers) in the linearized

execution order. The lifetime of a tensor is then defined as the difference between the deallocation and

allocation times.

6.3 Experimental Methodology

6.3.1 System Configuration

To quantify the effectiveness of HALO and various software- and hardware-based memory manage-

ment policies, we employ a 64-core server system equipped with a single Xeon Phi KNL many-core

CPU [144]. Table 8 summarizes the configuration of the evaluated server system. To ensure the high

performance of mathematical primitives that are frequently executed by deep-learning (DL) applica-

tions, we employ the Intel Math Kernel Library (MKL), which is highly optimized for the Xeon Phi

KNL architecture.

6.3.2 Deep-Learning Applications

Table 9 summarizes the evaluated DL applications. Specifically, we use nine widely-used DL applica-

tions including CNNs, an RNN, and a network with an attention mechanism – AlexNet (AN), DenseNet

(DN), GoogLeNet (GN), Inception-v4 (INv4), RNN with LSTM (LSTM), ResNet (RN), ResNet-v2 (RNv2),

53

Transformer (TR), and VGG (VGG) [3, 10, 12, 22, 89, 142, 151, 156, 170]. They exhibit widely-different

characteristics in terms of the network linearity, the operation count, and the tensor count.

For each application, we set the parallelism parameter of TensorFlow to 64, which determines the

number of threads that execute each operation in a parallel manner. This is done because the use of this

value consistently provides the highest performance across the applications. Further, we set the Intel

MKL parallelism parameter, which controls the number of threads used to execute the mathematical

primitive operations implemented in the Intel MKL, to 64 for a similar reason. Our parameter settings

are in line with earlier findings [24].

Table 9 summarizes the batch sizes used for each application. In general, as the batch size increases,

the working-set size of the application also increases. We use three batch sizes (i.e., small, medium, and

large) for the applications. For the performance characterization studies, we use the small batch size to

investigate the performance sensitivity of the applications when most of the data is allocated to LBM or

HBM. To quantify the effectiveness of HALO and the other memory policies, we use all the three batch

sizes.

We collect and analyze various performance and energy consumption data for each DL application

through the performance event counters provided by TensorFlow, Linux, and the Performance Monitor-

ing Counters (PMCs) available in the Intel Xeon Phi KNL architecture.

6.4 Characterization of DL Applications

This section investigates the characteristics of the deep-learning (DL) applications on the evaluated

heterogeneous memory system in terms of the execution time and tensor characteristics. We present

more detailed data with VGG and GN, which represent DL applications that employ the linear and non-

linear networks, respectively. While omitted for conciseness, the other DL applications exhibit the data

trends similar to those of the aforementioned applications.

6.4.1 Execution Time Characteristics

We first analyze the per-operation execution time of the DL applications. Figures 28a and 28b show the

per-operation execution time of VGG when all of the tensors are allocated to LBM and HBM, respec-

tively.10 In addition, Figure 28c shows the per-operation speedup of HBM over LBM when executing

VGG. We observe the following data trends.

First, a small number of operation types account for a majority of the total execution time, which is

in line with the findings from a recent work [27]. To gain a deeper insight into this data trend, Figure 29

shows a breakdown of the execution time of each application, normalized to the execution time with all

the tensors allocated to LBM. We observe that the operations such as the convolution (Conv), MaxPool

(MaxPool), and rectifier (Relu) operations account for a significant portion of the total execution time.

Second, a few operation types (e.g., FusedBatchNorm, Relu, MaxPool) achieve higher speedup with

10In Figure 28 (and also in Figure 30), the top five time-consuming operations are highlighted with different colors and
patterns.

54

40
8

42
9

52
8

40
7

0
100
200
300
400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76Ex
ec

. T
im

e
(m

s)

Operation Index

Conv Relu MaxPool MatMul Softmax Others

(a) LBM

0
100
200
300
400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76Ex
ec

. T
im

e
(m

s)

Operation Index

Conv Relu MaxPool MatMul Softmax Others

(b) HBM

4.
5

4.
1

4.
4

4.
6

 0
 1
 2
 3
 4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Sp
ee

du
p

Operation Index

Conv Relu MaxPool MatMul Softmax Others

(c) Speedup

Figure 28: Per-operation execution time of VGG

HBM than the other operation types. Because such operations perform relatively simple computations

compared with the other operations, the memory access time for such operations accounts for a larger

portion of the total execution time than the other operations, making their performance highly sensitive

to the memory bandwidth.

Third, the execution time data across the operations exhibits symmetric trends from the middle (Fig-

ures 28a and 28b). This occurs mainly because the first half of the operations performed during the

forward path of the training and the second half of the operations are performed during the backpropa-

gation path, which is essentially the inverse of the forward path.

Fourth, the execution time of each operation type tends to decrease towards the end of the forward

path (or the beginning of the backpropagation path). This is mainly because the size of the tensors is

reduced (or increased) as they are processed by operations such as MaxPool in the forward path (or the

backpropagation path). This indicates that operations near the beginning of the forward path and the end

of the backpropagation path account for a large portion of the total execution time.

Figure 30 shows the per-operation execution time of GN, which employs a non-linear network. We

55

0.0

0.2

0.4

0.6

0.8

1.0

LB
M

H
B

M
LB

M
H

B
M

LB
M

H
B

M
LB

M
H

B
M

LB
M

H
B

M
LB

M
H

B
M

LB
M

H
B

M
LB

M
H

B
M

LB
M

H
B

M

AN DN GN INv4 LSTM RN RNv2 TR VGG

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e AddN

AvgPool
Conv
FusedBatchNorm
MatMul
MaxPool
MklConcatV2
MklToTf
Mul
Relu
Softmax
Slice
Transpose
Others

Figure 29: Execution time breakdowns

observe that GN exhibits the per-operation execution time characteristics similar to those of VGG. In

addition, while omitted for conciseness, the other DL applications evaluated in this work exhibit similar

characteristics.

6.4.2 Tensor Characteristics

We investigate the characteristics of tensors of the DL applications in terms of their size, hotness, and

lifetime. Figure 31 shows the tensor characteristics of VGG.

First, we observe that tensors exhibit widely-different hotness characteristics. Some tensors are only

consumed by the subsequent operation in the sequential execution order of operations. In contrast, other

tensors produced by operations in the forward path are consumed not only by the next operation in the

execution order but also by the associated operations in the backpropagation path.

Second, tensors also exhibit great variance in their lifetime characteristics due to the aforementioned

reasons. These observations indicate that data placement and migration techniques for high-performance

DL on heterogeneous memory systems must judiciously consider the hotness and lifetime characteristics

of each tensor to improve the overall performance.

Third, similarly to the per-operation execution time results, the tensor size data shows symmetric

trends from the middle (Figure 31a). This is mainly because the same set of operations in the forward

path are performed in a reverse order in the backpropagation path.

Fourth, the size of the tensors tends to decrease (or increase) as they are allocated near the end (or

beginning) of the forward (or backpropagation) path. This mainly arises because the size of tensors is

significantly reduced (or increased) as they are processed by operations such as MaxPool in the forward

path (or the backpropagation path).

Figure 32 shows the tensor characteristics of GN, which employs a non-linear network. We observe

that GN exhibits the tensor characteristics similar to those of VGG. One notable difference is that GN shows

larger variations in terms of the tensor hotness and lifetime than VGG. GN employs a convolutional neural

network with non-linear connections in which some tensors that are allocated in a path (i.e., forward

56

19
0

16
7

15
1

0

40

80

120

1 51 101 151 201 251 301 351Ex
ec

. T
im

e
(m

s)

Operation Index

Conv Relu MaxPool MklToTf AddN Others

(a) LBM

12
1

12
5

0

40

80

120

1 51 101 151 201 251 301 351Ex
ec

. T
im

e
(m

s)

Operation Index

Conv Relu MaxPool MklToTf AddN Others

(b) HBM

4.
4

4.
2

4.
0

4.
2

 0
 1
 2
 3
 4

1 51 101 151 201 251 301 351

Sp
ee

du
p

Operation Index

Conv Relu MaxPool MklToTf AddN Others

(c) Speedup

Figure 30: Per-operation execution time of GN

or backpropagation) are consumed by multiple operations in the same path, making their hotness and

lifetime characteristics significantly different from those of the other tensors. This observation indicates

that hotness- and lifetime-aware memory management becomes even more crucial for high-performance

DL with more advanced neural network architectures on heterogeneous memory systems.

We summarize the characterization results of the DL applications as follows.

• Tensors exhibit a wide range of characteristics in terms of the hotness and lifetime. Given that

HBM is a highly limited resource in heterogeneous memory systems, it is crucial to place and

migrate the tensors across the heterogeneous memory nodes in a hotness- and lifetime-aware

manner in order to maximize the performance of the target DL application.

• Operations also exhibit widely-different characteristics in terms of the execution time and perfor-

mance sensitivity to the memory bandwidth. Since data-intensive operations are highly sensitive

to the memory bandwidth, it is crucial to identify the tensors associated with the data-intensive op-

erations based on their hotness and lifetime characteristics and efficiently place and migrate these

57

0.0
1.0
2.0
3.0
4.0
5.0

1 21 41 61 81 101 121 141

Te
ns

or
 S

iz
e

(G
B

)

Tensor Index

(a) Size

0

1

2

3

4

1 21 41 61 81 101 121 141

Te
ns

or
 H

ot
ne

ss
(#

 o
f O

pe
ra

tio
ns

)

Tensor Index

(b) Hotness

0
40
80

120
160
200

1 21 41 61 81 101 121 141

Te
ns

or
 L

ife
tim

e
(∆

 O
pe

ra
tio

n
In

de
x)

Tensor Index

(c) Lifetime

Figure 31: Tensor characteristics of VGG

tensors across the heterogeneous memory nodes in order to improve the overall performance of

the target DL application.

6.5 Design and Implementation

HALO is a software-based system that dynamically places and migrates tensors across the heteroge-

neous memory nodes based on their characteristics in order to improve the performance of the target

deep-learning (DL) application. As shown in Figure 45, HALO mainly comprises the following four

components – (1) the tensor hotness analyzer, (2) the tensor lifetime analyzer, (3) the tensor combiner,

and (4) the tensor manager.

6.5.1 Tensor Hotness Analyzer

The tensor hotness analyzer estimates the access frequency (i.e., hotness) of each tensor used by the

target DL application. Section 6.2.4 provides the definition of the tensor hotness.

58

1.
6

1.
2

1.
2

1.
6

0.0
0.2
0.4
0.6
0.8
1.0

1 101 201 301 401 501 601 701 801

Te
ns

or
 S

iz
e

(G
B

)

Tensor Index

(a) Size

0

2

4

6

8

1 101 201 301 401 501 601 701 801

Te
ns

or
 H

ot
ne

ss
(#

 o
f O

pe
ra

tio
ns

)

Tensor Index

(b) Hotness

0

200

400

600

800

1 101 201 301 401 501 601 701 801

Te
ns

or
 L

ife
tim

e
(∆

 O
pe

ra
tio

n
In

de
x)

Tensor Index

(c) Lifetime

Figure 32: Tensor characteristics of GN

Before executing the target DL application, TensorFlow constructs an initial dataflow graph, per-

forms a sequence of optimizations, and generates an optimized dataflow graph. We have extended the

metadata for the tensor to encode the consumer count. In addition, we have added an additional dataflow

graph optimization pass to compute the hotness of each tensor.

6.5.2 Tensor Lifetime Analyzer

The tensor lifetime analyzer estimates the lifetime of each tensor used by the target DL application.

TensorFlow dynamically tracks the usage of each tensor using a reference counting technique. When

the reference counter of a tensor becomes zero, TensorFlow deallocates the memory used by the tensor.

To estimate the lifetime of each tensor, the tensor lifetime analyzer first generates the linearized

execution order of the operations of the target DL application, which is equivalent to the actual lin-

earized execution order produced by the TensorFlow scheduler. The tensor lifetime analyzer assigns

each operation a unique integer value (i.e., index) in the linearized execution order of the operations.

For instance, if the index of an operation is 3, it is the third operation in the linearized execution order.

59

Tensor Hotness Analyzer Tensor Lifetime Analyzer

Tensor Combiner

Tensor Manager

Deep-Learning Application
Dataflow Graph (DFG)

Analyzed DFG

Analyzed DFG with Combined Tensors

Tensor Placement and Migration Plan
Heterogeneous Memory System

Figure 33: Overall architecture of HALO

The tensor lifetime analyzer then computes the lifetime of each tensor based on its definition provided

in Section 6.2.4.

6.5.3 Tensor Combiner

TensorFlow performs an optimization that reuses the memory buffer of an input tensor as the memory

buffer of an output tensor for predefined operations such as MklInputConversion and Mkl2Tf. This

optimization is conducted to eliminate the overheads of deallocating the memory buffer allocated for

an input tensor and allocating the new memory buffer for an output tensor if the dimensions of the two

tensors are identical.

Because tensors affected by this optimization share the same memory buffer, they essentially behave

as a single (virtually) combined tensor in terms of the hotness and lifetime. To accommodate this, the

tensor combiner (virtually) combines all the tensors that share the same memory buffer into a single

tensor and assigns the aggregated hotness and lifetime to the combined tensor.

Specifically, the tensor combiner sets the combined flag of tensors that share the same memory

buffer to true, except for the tensor with the earliest allocation time among the tensors. The tensor

combiner sets the combined flag of the tensor with the earliest allocation time among the tensors that

share the same memory buffer to false. The tensor manager, which will be subsequently discussed in

Section 6.5.4, only considers tensors whose combined flag is set to false to ensure that it places and

migrates tensors with unique memory buffers.

The tensor combiner then aggregates all of the hotness and lifetime data across tensors that share

the same memory buffer. The tensor combiner then assigns the aggregated hotness and lifetime to the

tensor with the earliest allocation time (i.e., with its combined flag set to false) among the tensors. The

aggregated hotness is computed as the sum of the hotness across the tensors. The aggregated allocation

(or deallocation) time is determined as the earliest (or latest) of all the allocation (or deallocation) times

among the tensors.

60

Algorithm 4 The placeAndMigrateTensors function
1: tensorList← initTensorList(LBM-Only)
2: utilization← initArray(numOperations, 0)
3: procedure PLACEANDMIGRATETENSORS

4: generateTensorPlacementPlan()
5: generateTensorPlacementAndMigrationPlan()
6: end procedure

6.5.4 Tensor Manager

Overview: The tensor manager of HALO constructs a plan for each tensor to dynamically place and

migrate it across the heterogeneous memory nodes. Specifically, for each tensor, the tensor manager

determines on which heterogeneous memory node it must be placed and which tensor (if any) must be

migrated to the other heterogeneous memory node to secure sufficient memory space for the newly-

allocated tensor.

Let st, ht and BP be the size of the tensor t, the hotness of the tensor t, and the effective bandwidth

provided by the memory allocation policy P, where P ∈ {LBM-Only, interleave, HBM-Only}.11 We

define the value (vt,P) of the tensor t with the memory allocation policy P using Equation 22. Essentially,

vt,P represents the reduction in the data transfer time if the tensor t was allocated with the memory

allocation policy P instead of the LBM-Only policy.

vt,P =

(st

BLBM
− st

BHBM
) ·ht if P = HBM-Only

(st
BLBM
− st

Binterleave
) ·ht if P = interleave

0 if P = LBM-Only

(22)

We also define the weight (wt,P) of tensor t with memory allocation policy P using Equation 23. In

essence, wt,P denotes the amount of HBM that would be consumed if the tensor t was allocated with

memory allocation policy P.

wt,P =

st if P = HBM-Only

st
2 if P = interleave

0 if P = LBM-Only

(23)

The tensor placement problem itself is a variant of the knapsack problem with time intervals, which is

NP-hard [34]. Thus, we propose an efficient approximate algorithm that addresses the tensor placement

and migration problem. Algorithm 4 shows the top-level function of the proposed algorithm, which

mainly comprises two phases.

Phase 1. Initial Tensor Placement: During the first phase, the tensor manager aims to find an

efficient allocation plan for all the tensors without considering the migration (Line 4 in Algorithm 4).

11On the server system evaluated in this work, BLBM = 80GB/s, BHBM = 480GB/s, and Binterleave = 2 ·min(BLBM ,BHBM) =
160GB/s.

61

Algorithm 5 The generateTensorPlacementPlan function

1: procedure GENERATETENSORPLACEMENTPLAN

2: slices← generateSlices()
3: sortedSliceList← sort(slices,valPerWeight,DEC)
4: for sl in sortedSliceList do
5: if isFeasible(sl) = true then
6: if sl.id = FIRST then
7: setAllocPolicy(sl.t, interleave)
8: else ▷ sl.id = SECOND
9: setAllocPolicy(sl.t, HBM-Only)

10: end if
11: updateUtil(sl.t.size/2, sl.t.start, sl.t.end)
12: end if
13: end for
14: end procedure

Algorithm 6 The isFeasible function
1: procedure ISFEASIBLE(slice)
2: feasibility← true
3: for i in [slice.start, slice.end] do
4: if slice.size > HBM.size − utilization[i] then
5: feasibility← false
6: break
7: end if
8: end for
9: return feasibility

10: end procedure

Algorithm 5 shows the top-level function for the first phase of the tensor manager. The first phase is

based on a greedy algorithm in that it considers all the tensors in the order of their value per weight

(Line 3) and makes a decision to gain the maximum value from each of the considered tensors.

Because the value and weight of each tensor vary depending on which memory allocation policy

(e.g., HBM-Only and interleave) is used to allocate the tensor, we introduce a concept called tensor

slices (Line 2 in Algorithm 5). We assume that each tensor consists of two (virtual) tensor slices.

The first slice of a tensor represents the value (i.e., vt,interleave) and weight (i.e., st
2) associated with

the tensor when the allocation policy for the tensor is set to the interleave policy. The second slice of the

tensor represents the additional value (i.e., vt,HBM-Only− vt,interleave) and weight (i.e., st
2) associated with

the tensor if the allocation policy for the tensor is upgraded from the interleave policy to the HBM-Only

policy. Note that the value per weight of the first tensor slice is always higher than that of the second

slice.

The tensor manager visits each tensor slice in the (decreasing) order of the value per weight (Lines 2–

13 in Algorithm 5). For each tensor slice, the tensor manager invokes (Line 5) the isFeasible function

in Algorithm 6 to check if it can be allocated to HBM without exceeding the HBM capacity.

If the tensor slice can be allocated to HBM, the tensor manager checks whether it is the first slice

62

Algorithm 7 The updateUtil function

1: procedure UPDATEUTIL(size, start, end)
2: for i in [start, end] do
3: utilization[i]← utilization[i] + size
4: end for
5: end procedure

Algorithm 8 The generateTensorPlacementAndMigrationPlan function

1: procedure GENERATETENSORPLACEMENTANDMIGRATIONPLAN

2: sortedTensorList← sort(tensorList, start, INC)
3: for t in sortedTensorList do
4: plan1 ← getCandidatePlan(t, interleave)
5: plan2 ← getCandidatePlan(t, HBM-Only)
6: planbest← maxProfitPlan(plan1, plan2)
7: if planbest.profit > 0 then
8: setAllocPolicy(t, planbest.allocPolicy)
9: if planbest.migrationFlag = true then

10: setVictim(t, planbest.victim)
11: setEvictPolicy(t, planbest.evictPolicy)
12: end if
13: updateUtil(planbest.sizeChange, t.start, t.end)
14: end if
15: end for
16: end procedure

of the associated tensor. If it is the first slice, the tensor manager sets the memory allocation policy of

the associated tensor to the interleave policy (Lines 6–7 in Algorithm 5). Otherwise, the tensor manager

upgrades the memory allocation policy of the associated tensor to the HBM-Only policy (Lines 8–9).

Finally, the tensor manager accordingly updates the HBM usage information (Line 11) by invoking

the updateUtil function in Algorithm 7 and proceeds with the second phase of the tensor manager

by invoking (Line 5 in Algorithm 4) the generateTensorPlacementAndMigrationPlan function in

Algorithm 8.

Phase 2. Refined Tensor Placement and Migration: During the second phase of the tensor man-

ager, it refines the tensor placement plan produced during the first phase. Specifically, when the available

space in HBM is insufficient to allocate a new tensor, placement of the newly allocated tensor in HBM

during the first phase is disallowed. However, if there are currently some tensors in HBM that have

already been accessed by most of their consumers, their values have already been significantly depre-

ciated. Such tensors are good candidates for eviction to secure the sufficient space in HBM for a new

tensor with a high value in order to increase the overall value.

To this end, the tensor manager visits each tensor in the (increasing) order of the allocation time in

the sorted list (Lines 3–15 in Algorithm 8). At the allocation time of each tensor, the tensor manager

reevaluates the current values of all the tensors that have already been allocated in HBM and selects the

victim tensor that maximizes the profit (Lines 4–6). Specifically, the profit is defined as the value of

the newly-allocated tensor minus the remaining value and migration (i.e., from HBM to LBM) cost of

63

the victim tensor. If the value of the newly allocated tensor is higher than the cost of the victim tensor,

the tensor manager evicts the victim tensor and places the newly allocated tensor in HBM (Lines 7–12)

because it increases the overall value. Finally, the tensor manager accordingly updates the HBM usage

information (Line 13).

6.5.5 Discussion

Asymptotic Time Complexity Analysis: The time complexity of the first phase of the tensor manager is

O(NT · logNT +NT ·NO) because the most time-consuming part consists of Line 3 (i.e., O(NT · logNT))

or Lines 4 and 11 (i.e., O(NT ·NO)) in Algorithm 5.12 The time complexity of the second phase of

the tensor manager is O(NT
2 +NT ·NO) because the most time-consuming part is Lines 3 and 4 (i.e.,

O(NT
2)) or Lines 3 and 13 (i.e., O(NT ·NO)) in Algorithm 8. Therefore, the overall time complexity of

the tensor manager is O(NT
2+NT ·NO). As quantified in Section 6.6.2, HALO incurs small performance

overheads.

Implementation: We have implemented HALO by extending the TensorFlow 1.4.0. Specifically,

we have added or modified 39 files and 3,726 lines of code (C++ and Python) in TensorFlow to imple-

ment HALO. Most of the code for HALO is DL framework-independent as it implements high-level

optimizations based on the dataflow graph and can be widely applied to other DL frameworks (e.g.,

PyTorch [123]).

Memory Allocation Ratios: For clarity and conciseness, we have discussed HALO with the as-

sumption that the underlying heterogeneous memory system provides the three memory allocation ra-

tios (i.e., LBM-Only, HBM-Only, and interleave). However, HALO can be readily extended to support

heterogeneous memory systems with four or more memory allocation ratios.

Specifically, if the underlying heterogeneous memory system provides N (non-zero) memory alloca-

tion ratios, HALO can be extended to logically decompose each tensor into N−1 (virtual) slices. HALO

then sorts the slices of all the tensors in the order of the value per weight and places each slice in the

same order if there is sufficient space for the slice. If M slices (M ≤ N− 1) of a tensor are allowed to

be placed in HBM, the tensor can be allocated across the heterogeneous memory nodes in a way to em-

ploy the (N−M)-th highest memory bandwidth that can be provided by the underlying heterogeneous

memory system.

6.6 Evaluation

This section quantifies the effectiveness of HALO. Specifically, we aim to investigate the following

– (1) the performance and energy consumption of HALO and various memory management policies,

(2) the performance overheads of HALO, (3) the performance sensitivity of HALO to the application

working-set size, and (4) the performance impact of the individual optimization techniques of HALO.

12NT and NO denote the total number of the tensors and the operations in the target DL application, respectively.

64

0.0

0.2

0.4

0.6

0.8

1.0

LBM HBM IL BWA HC IDEAL HALO

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 34: Overall performance results

6.6.1 Performance and Energy Results

To quantify the performance and energy consumption impact of HALO and various software- and

hardware-based memory management policies, we run each of the nine deep-learning (DL) applications

summarized in Table 9 with the following seven versions – (1) LBM-Preferred (LBM), (2) HBM-Preferred

(HBM), (3) interleave (IL), (4) bandwidth aware (BWA), (5) hardware cache (HC), (6) ideal case with infi-

nite HBM (IDEAL), and (7) HALO. With regard to the first three versions, we employ the corresponding

memory policies in Linux with the Flat mode on the Xeon Phi KNL architecture.

For the BWA version, we employ a bandwidth-aware memory management policy similar to the ones

proposed in [28, 166] with the Flat mode. When allocating the memory buffer for each tensor, the

bandwidth-aware memory management policy aims to employ pages from the HBM and LBM nodes

with the optimal allocation ratios of BHBM
BHBM+BLBM

and BLBM
BHBM+BLBM

, which are mathematically proven to

maximize the effective bandwidth across the heterogeneous memory nodes [28, 166]. If there is insuffi-

cient space in HBM required for a tensor, the BWA version uses all the available space in HBM that can

accommodate a portion of the tensor and allocates the remaining portion of the tensor to LBM.

Regarding the HC version, we employ the interleave memory policy in Linux with the Cache mode

on the Xeon Phi KNL architecture. Note that, in the Cache mode, HBM is fully managed by hardware

as a last-level cache (i.e., transparent to the OS).

For the IDEAL version, we estimate the ideal performance that can be potentially achieved on an

imaginary system that has HBM with infinite capacity. To this end, we execute each layer of the target

DL application by allocating all the tensors of the layer to HBM and add the execution times of all the

layers. Finally, regarding the HALO version, we employ HALO with the Flat mode. Unless specified

otherwise, we use the medium batch size for each application.

We first analyze the overall performance results of HALO and the other memory management poli-

cies. Figure 34 shows the execution time of each version, which is the average across all the evaluated

applications. Each bar denotes the execution time of each version, normalized to the LBM-Preferred

version.

65

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

LB
M

H
B

M IL
B

W
A

H
C

ID
EA

L
H

A
LO

AN DN GN INv4 LSTM RN RNv2 TR VGG

N
or

m
. E

xe
cu

tio
n

Ti
m

e
AddN AvgPool Conv FusedBatchNorm MatMul
MaxPool MklConcatV2 MklToTf Mul Relu
Softmax Slice Transpose Others

Figure 35: Execution breakdowns with HALO and various memory management policies

We observe that HALO significantly outperforms the other memory management policies. Specif-

ically, HALO outperforms the LBM-Preferred, HBM-Preferred, IL, BWA, and HC versions by 36.9%,

28.2%, 27.7%, 28.7%, and 30.4%, respectively, across the evaluated applications on average (i.e., geo-

metric mean). In addition, HALO achieves the performance comparable to the IDEAL version. Specif-

ically, HALO exhibits 4.2% lower performance on average than the IDEAL version, which assumes an

imaginary system equipped with infinite HBM. In summary, the overall performance results clearly

demonstrate the effectiveness of HALO.

To gain a deeper insight into the overall performance trends, Figure 35 shows a breakdown of the

execution time of each version of the applications, normalized to the LBM-Preferred version. Each bar

consists of the times spent for executing the most time-consuming operations.

We observe that HALO significantly outperforms the other memory management policies across

all of the evaluated DL applications. In particular, HALO provides larger performance gains over the

other memory management policies with the applications (e.g., DN and RNv2) that employ non-linear

neural networks. With sophisticated neural networks, the diversity of the tensors increases in terms

of the hotness and lifetime. Because HALO effectively places and migrates tensors based on their

characteristics, it delivers larger performance gains with the applications with non-linear networks.

We also observe that HALO significantly reduces the execution times of bandwidth-sensitive op-

erations (e.g., FusedBatchNorm, MaxPool, Relu) by effectively placing the tensors in a hotness- and

lifetime-aware manner. In contrast, because the other software-based memory management policies

place less critical tensors to HBM since they cannot utilize the hotness and lifetime characteristics on

the tensors, they are significantly outperformed by HALO.

In addition to the aforementioned reasons, the bandwidth-aware memory management policy achieves

lower performance than HALO because the working-set size of the evaluated applications is larger than

the capacity of HBM, making it impossible to maintain the optimal memory allocation ratio when allo-

cating tensors across the HBM and LBM nodes. Further, since the bandwidth of LBM is significantly

lower than that of HBM (i.e., BLBM = 80GB/s, BHBM = 480GB/s), it has relatively small impact on the

overall performance.

The HC version achieves lower performance than HALO because it allocates the data in a hotness-

66

0

20

40

60

80

100
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

AN DN GN INv4 LSTM RN RNv2 TR VGG

M
em

o
ry

 T
ra

ff
ic

 (
G

B
/s

)

MCDRAM DRAM

Figure 36: Memory traffic

and lifetime-oblivious manner. Further, since HBM is managed as a hardware cache with the HC version,

it incurs extra traffic for the data to be cached and for secondary operations [46], degrading its overall

performance.

The IDEAL version slightly outperforms HALO as it places all the data in HBM with infinite capacity.

Nevertheless, HALO, which employs HBM with a finite capacity, achieves the performance comparable

(i.e., 4.2% lower on average) to that of the IDEAL version through hotness- and lifetime-aware tensor

placement and migration. This data trend clearly demonstrates the effectiveness of HALO.

As shown in Figure 36, the performance differences between HALO and the other memory manage-

ment policies can also be explained in terms of memory traffic. HALO dynamically places and migrates

tensors in a hotness- and lifetime-aware manner, achieving high memory traffic. In contrast, because

the software-based memory management policies (i.e., LBM-Preferred, HBM-Preferred, IL, and BWA)

place tensors without considering the hotness and lifetime characteristics of the tensors, they incur low

memory traffic, achieving significantly lower performance than HALO.

The HC version on some applications incurs relatively high memory traffic (e.g., AN, VGG). This is

mainly due to the extra memory traffic caused by the data placed in or evicted to LBM in a hotness-

and lifetime-oblivious manner and the secondary operations for cache management [46]. The increased

memory traffic incurs significant performance overheads. In contrast, HALO effectively utilizes the off-

chip memory bandwidth by placing and migrating the tensors in a hotness- and lifetime-aware manner,

significantly outperforming the HC version.

We also analyze the overall energy consumption results of HALO and the other memory manage-

ment policies. Figure 37 shows a breakdown of the energy consumption of each version of the applica-

tions. Each bar denotes the energy consumption normalized to the LBM-Preferred version and consists

67

0.0

0.2

0.4

0.6

0.8

1.0

1.2
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

L
B

M
H

B
M IL

B
W

A
H

C
H

A
L

O
L

B
M

H
B

M IL
B

W
A

H
C

H
A

L
O

AN DN GN INv4 LSTM RN RNv2 TR VGG

N
o

rm
al

iz
ed

 E
n

er
g

y

Package (CPU + MCDRAM) DRAM

Figure 37: Energy consumption breakdowns

of the energy consumption of the package (i.e., CPU and MCDRAM) and DRAM.13

First, similarly to the performance results, HALO consumes significantly less energy than the other

memory management policies, demonstrating the effectiveness of HALO. Specifically, HALO consumes

34.6%, 25.8%, 24.9%, 23.3%, and 24.0% less energy than the LBM-Preferred, HBM-Preferred, IL,

BWA, and HC versions, respectively. Given that one of the major factors determine the overall energy

consumption of each version is its execution time, the energy consumption data trends are similar to the

performance data trends.

Second, interestingly, the DRAM energy consumption accounts for a smaller portion of the total

energy consumption across all the DL applications with HALO than the software-based memory man-

agement policies (i.e., LBM-Preferred, HBM-Preferred, IL, and BWA). Since HALO reduces the traffic

to LBM (i.e., DRAM) by allocating frequently-accessed tensors to HBM, it reduces the DRAM en-

ergy consumption. In contrast, as the software-based memory management policies send more traffic

to LBM by allocating tensors in a hotness- and lifetime-oblivious manner, they exhibit higher DRAM

energy consumption.

The HC version exhibits relatively low DRAM energy consumption because the data is frequently

copied from LBM to HBM and accessed from HBM, which is managed as a hardware cache. However,

because the HC version achieves lower performance than HALO, its overall energy consumption is higher

than HALO.
13Since the evaluated system lacks the capability of separately monitoring the energy consumption of the CPU and MC-

DRAM in the package, we present the combined energy consumption (i.e., the package energy consumption) data for the CPU
and MCDRAM. Considering the DRAM energy consumption data trends and the data-intensive nature of the DL applications,
we conjecture that the MCDRAM energy consumption would account for a considerable portion of the total package energy
consumption.

68

0.00

0.01

0.02

0.03

0.04

0.05

0.06

AN DN GN INv4 LSTM RN RNv2 TR VGG AVG

O
ve

rh
ea

ds
 (%

 T
ot

al
 E

xe
c.

 T
im

e)

Figure 38: Performance overheads of HALO

6.6.2 Performance Overheads

We investigate the performance overheads of the tensor placement and migration planning of HALO.

Figure 38 shows the percentage of the time spent to generate the tensor placement and migration plan

out of the total execution time for each application.

First, the performance overheads of HALO are small across all the evaluated applications. For in-

stance, the average performance overhead of HALO across the evaluated applications is 0.010% of the

total execution time, which is small. Because HALO employs the efficient algorithm to generate the

tensor placement and migration plan, it incurs small performance overheads. Second, some applications

(e.g., INv4) incur larger (but still small) overheads than the other applications. Since their dataflow

graphs in terms of the operation and tensor counts are larger than those of the other applications, HALO

spends a longer time to find the efficient placement and migration plan for the tensors with such appli-

cations. Nevertheless, the overall performance overheads of HALO are small across all the evaluated

applications, demonstrating its efficiency.

6.6.3 Performance Sensitivity

We investigate the performance sensitivity of HALO to the application working-set size. Figure 39

shows the execution time ratio of the HALO version of each application to the HBM-Preferred version

with different batch sizes (i.e., small, medium, large).14 Note that the application working-set size

increases as the batch size increases. We observe the following data trends.

First, HALO consistently outperforms the HBM-Preferred policy across various working-set sizes,

demonstrating its effectiveness. Second, the execution time ratio of HALO to the HBM-Preferred policy

tends to decrease as the application working-set size increases. With a larger working-set size of the

target DL application, only a small portion of the tensors can be accommodated by HBM. Because the

HBM-Preferred policy places the tensors without considering their hotness and lifetime characteristics,

14AN is excluded because it fails to run with the large batch size on the evaluated server system.

69

0.0

0.2

0.4

0.6

0.8

1.0

S M L S M L S M L S M L S M L S M L S M L S M L S M L
DN GN INv4 LSTM RN RNv2 TR VGG GMEAN

Ex
ec

. T
im

e
R

at
io

 (t
_H

A
LO

/t_
H

B
M

)

Figure 39: Sensitivity to the application working-set size

0.5

0.6

0.7

0.8

0.9

1.0

Hotness-Aware Tensor
Placement

Hotness- and Lifetime-
Aware Tensor Placement

Hotness- and Lifetime-
Aware Placement and

Migration (HALO)

Ex
ec

. T
im

e
R

at
io

Figure 40: Impact of the optimization techniques

it frequently places inefficient tensors in HBM, resulting in low performance. In contrast, HALO dynam-

ically places and migrates the tensors in a hotness- and lifetime-aware manner, achieving significantly

higher performance than the HBM-Preferred policy.

Overall, our quantitative evaluation demonstrates the effectiveness of HALO in that it achieves sig-

nificantly higher performance and lower energy consumption than the representative five software- and

hardware-based memory management policies, delivers the performance comparable to the ideal case

with infinite HBM, incurs small performance overheads, and exhibits high performance across a wide

range of the application working-set sizes when executing various DL applications.

6.6.4 Impact of the Optimization Techniques

Finally, we quantify the performance impact of the individual optimization techniques of HALO. To this

end, we create two intermediate versions of HALO that only perform hotness-aware tensor placement

and hotness- and lifetime-aware tensor placement, respectively. Figure 40 shows the ratio of the average

(i.e., geometric mean across the evaluated applications) execution time of the two intermediate versions

70

of HALO and the full version (i.e., hotness- and lifetime-aware tensor placement and migration) of

HALO to the intermediate version, which only performs hotness-aware tensor placement.

We observe that each optimization technique constructively composes with the other optimization

techniques in that the performance of HALO continues to improve as more techniques are applied.

Further, each optimization technique considerably contributes to improving the overall performance,

demonstrating the effectiveness of HALO.

6.7 Summary

In this chapter, we investigate the characteristics of various deep-learning (DL) applications on a real

heterogeneous memory system. Guided by the characterization results, we propose HALO, hotness-

and lifetime-aware data placement and migration for high-performance DL on heterogeneous memory

systems. HALO dynamically analyzes the hotness and lifetime characteristics of the tensors of the

target DL application and places the tensors across the heterogeneous memory nodes in a hotness- and

lifetime-conscious manner. Our experimental results demonstrate the effectiveness of HALO in that

it significantly outperforms various memory management policies supported by the underlying system

software and hardware, achieves the performance comparable to the ideal case with infinite HBM, incurs

small performance overheads, and delivers high performance across a wide range of the application

working-set sizes.

71

VII Coordinated Management of Cores, Memory, and Compressed Mem-
ory Swap for QoS-Aware and Efficient Workload Consolidation for
Memory-Intensive Applications

7.1 Introduction

The memory demands in cloud computing systems and datacenters are explosively growing because

of the rise of emerging memory-intensive applications such as machine learning and big data appli-

cations [131, 169]. In addition, DRAM scaling has slowed down [94, 100] and there have been large

fluctuations in DRAM prices [160]. As a result, DRAM has become one of the most critical and expen-

sive components in cloud computing systems and datacenters [160].

The compressed memory swap (CMS) [134] is a promising technique to host memory-intensive ap-

plications without increasing the memory capacity of the underlying server system [93,160]. With CMS,

pages selected as victim pages by the memory reclaim algorithm in the OS are compressed and evicted

to the CMS instead of the disk swap. The CMS incurs overheads when compressing and decompressing

pages when pages are transferred between the memory and CMS. However, since the page compression

and decompression operations are performed using CPU cores and memory, the CMS is significantly

faster than the disk swap, which incurs expensive disk I/O operations [160]. The CMS is supported by

widely-used OSes such as Windows [18], Linux [25], and macOS [19] and employed in commercial

cloud computing systems and datacenters [93, 160].

Workload consolidation is an effective technique to improve the resource efficiency of cloud com-

puting systems and datacenters [40,99]. Without workload consolidation, dedicated servers are allocated

to latency-critical (LC) applications that have soft or hard deadlines in order to satisfy their quality-of-

service (QoS) requirements, drastically degrading the resource efficiency of cloud computing systems

and datacenters. Workload consolidation significantly improves the resource efficiency by colocating

the LC and batch applications on the same physical server. The key challenge for the resource manager

with regard to workload consolidation is to find the right amounts of resources allocated to each of the

LC and batch applications in order to maximize the resource efficiency while providing QoS guarantees.

Prior works have extensively investigated system software support for workload consolidation [40,

59, 65, 99, 111, 113, 119, 121, 163, 172]. However, most of the prior works present system software

techniques that mitigate the performance interference caused by the contention on cores, caches, and

memory bandwidth [59, 65, 99, 111, 113, 119, 121, 163, 172] but lack the capability of controlling the

contention on memory capacity. While the resource manager proposed in [40] provides memory capacity

partitioning, it lacks the capability of dynamic management of the CMS, which is crucial for meeting the

QoS requirements of the LC application and improving the throughput of the consolidated applications

with the limited memory capacity.

To bridge this gap, this chapter15 characterizes the impact of cores, memory, and CMS on the QoS

15The work presented in this chapter was also published in [62]

72

and the throughput of the consolidated applications. Based on the characterization results, we propose a

system called COSMOS for coordinated management of cores, memory, and CMS for QoS-aware and

efficient workload consolidation for memory-intensive applications. We quantify the effectiveness of

COSMOS with various LC and batch applications in various scenarios.

Specifically, this work makes the following contributions:

• We present the in-depth characterization of the impact of cores, memory, and CMS on the LC ap-

plication’s QoS and throughput of the consolidated memory-intensive LC and batch applications.

Through our characterization study, we derive guidelines to effectively find an efficient system

state that can significantly improve the overall throughput of the consolidated applications while

satisfying the QoS.

• Guided by the characterization results, we propose COSMOS, a software-based system for coor-

dinated management of cores, memory, and CMS for QoS-aware and efficient workload consoli-

dation for memory-intensive applications. COSMOS dynamically collects the runtime data from

the consolidated applications and the underlying system and allocates cores, memory, and CMS in

a way that significantly improves the throughput of the consolidated applications while satisfying

the LC application’s QoS.

• We design and implement a prototype of COSMOS as a user-level runtime system on Linux.

COSMOS is lightweight and readily applicable to various commodity systems without requiring

the specialized hardware support or the modifications of the underlying operating systems.

• We quantify the effectiveness of COSMOS using widely-used memory-intensive LC and batch

benchmarks on a real server system. Our experimental results demonstrate that COSMOS pro-

vides strong QoS guarantees and achieves high throughput across all the workload mixes with

various loads for the LC application and memory overcommit ratios. In addition, COSMOS sig-

nificantly reduces the number of explored system states by skipping the inefficient system states.

To the best of our knowledge, our work is the first to present the in-depth characterization of the

impact of cores, memory, and CMS on the QoS and throughput of the consolidated applications

and design, implement, and evaluate a coordinated resource manager for cores, memory, and CMS

for QoS-aware and efficient workload consolidation for memory-intensive applications on a full

commodity server system.

The rest of this chapter is organized as follows. Section 7.2 provides background information. Sec-

tion 7.3 describes the experimental methodology. Section 7.4 characterizes the impact of cores, memory,

and CMS on the QoS and throughput of consolidated applications. Section 7.5 presents the design and

implementation of COSMOS. Section 7.6 quantifies the effectiveness of COSMOS. Section 7.7 con-

cludes the chapter with a summary.

73

7.2 Background

7.2.1 Memory Reclaim and CMS

When the memory usage exceeds one of the thresholds, the operating system (OS) performs memory

reclaim operation to secure free space in memory. During memory reclaim, the OS determines a set of

victim pages that need to be evicted from memory based on various metrics (e.g., recency, hotness) and

moves the victim pages from memory to the swap area to reserve free space.

Memory reclaim can be conducted in a foreground or background manner. When a user-level pro-

cess requests the OS to allocate a free page but the current memory usage exceeds a threshold, the OS

conducts a foreground memory reclaim. Because the requesting process is blocked during the fore-

ground memory reclaim, this process can drastically degrade the latency-critical (LC) application’s QoS

because of the significantly increased tail latency.

When the memory usage exceeds another threshold (typically set to a smaller value than that for the

foreground memory reclaim), a background memory reclaim can be triggered by the OS or user-level

processes even without any pending page allocation requests. One of the major advantages of back-

ground memory reclaim is that user-level processes can continue their execution during the background

memory reclaim.

With the conventional disk swap, victim pages that are evicted from memory are stored in the swap

area in the disk. The disk swap incurs significant performance overheads due to the I/O operations that

are executed to transfer pages between the memory and disk.

The compressed memory swap (CMS) mitigates the page swapping overhead by storing the victim

pages in the in-memory swap area instead of the disk. While the CMS incurs overheads for compressing

and decompressing pages, it is still significantly faster than the disk swap because it does not require

expensive disk I/O operations. Widely-used OSes (e.g., zswap in Linux [25], memory compression in

Windows [18], and compressed memory in macOS [19]) support CMS. While this work focuses on

Linux and zswap, we believe that the findings of this work can be applied to other OSes and implemen-

tations of CMS.

zswap provides various compression and decompression algorithms and memory pools for victim

pages [25]. Among the compression and decompression algorithms and memory pools, we use the

Lempel–Ziv–Oberhumer (LZO) algorithm [16] and the zbud memory pool [73], which are the default

algorithm and memory pool for zswap.

7.2.2 Workload Consolidation

Workload consolidation enables the colocation of latency-critical (LC) and batch applications on a sin-

gle physical server. LC applications are user-facing and interactive applications with latency constraints.

The target tail latency of an LC application is its inherent property, which determines its latency con-

straint (e.g., the 99th percentile latency must be lower than one millisecond) which must be satisfied to

enable user-facing and interactive services. The load for an LC application is defined as the number of

74

incoming requests per second.

In contrast, batch applications are background applications without any latency constraints. The

common metric used to evaluate the performance of batch applications is throughput such as the number

of executed iterations of the main loop per second and the amount of the input data processed per second.

The main objective of workload consolidation is to maximize the throughput of the consolidated

applications while providing strong QoS guarantees for the LC application. When resources are allo-

cated in an unmanaged manner, the LC application is likely to violate its QoS due to the performance

interference caused by the contention on the resources (e.g., cores, memory capacity) shared by the

consolidated LC and batch applications.

To eliminate or mitigate the performance interference, the resource manager for workload consol-

idation partitions resources between the consolidated LC and batch applications. Production-quality

operating systems provide support for core and memory capacity partitioning. For instance, Linux pro-

vides core and memory capacity partitioning through control groups (cgroups) [2]. A cgroup is a set

of processes that can be allocated their own resources. Cores and memory can be partitioned between

the consolidated LC and batch applications by associating each application with its own cgroup and

allocating disjoint sets of cores and memory to each cgroup. Linux also allows to dynamically change

the amounts of the resources allocated to each cgroup.

7.3 Experimental Methodology

7.3.1 System Configuration

In this work, we use two systems, each of which is used as the server or client system. The server system

runs the consolidated latency-critical (LC) and batch applications. The server system is equipped with

the 16-core Intel Xeon Gold 6226R CPU, 64 GB memory (4 × 16 GB DIMMs), a 1 TB Samsung 970

EVO Plus NVM-e SSD, and a 100 Gb NIC. 4 GB out of the 64 GB is reserved for the OS. The server

system is installed with Ubuntu 22.04 and Linux kernel 6.1.11.

Cgroups is used to partition cores and memory between the LC and batch applications. In addi-

tion, sysfs is used to dynamically (1) control the amount of the compressed memory swap (CMS)

allocated to the LC container (i.e., /sys/module/zswap/parameters/max_pool_percent) and (2)

track the compression ratio, which is computed by collecting the number of pages stored in the CMS

(i.e., /sys/kernel/debug/zswap/stored_pages) and the actual amount of memory used by the CMS

(i.e., /sys/kernel/debug/zswap/pool_total_size).

The client system runs the load generator for each of the evaluated LC applications. The client

system is equipped with two 32-core Intel Xeon Gold 6338 CPUs, 64 GB memory (4× 16 GB DIMMs),

a 1 TB Samsung 870 EVO SATA SSD, and a 100 Gb NIC. The client system is installed with Ubuntu

22.04 and Linux kernel 5.15.0. The client and server systems are directly connected through the 100 Gb

Ethernet.

75

Table 10: Loads for the LC benchmarks

Benchmark Low, medium, and high loads (QPS)
memcached 37,500, 75,000, and 150,000
silo 1,000, 2,000, and 4,000

7.3.2 Benchmarks

We use two latency-critical (LC) benchmarks – memcached [17, 54] and silo [79, 154], which are in-

memory key-value store and in-memory database, respectively. The QoS target of memcached is that

the 99th percentile latency must be lower than 200 microseconds [90, 133]. We use Lancet, which is an

open loop-based load generator for memcached [86]. In line with the prior works [40, 90], we configure

the key and value sizes to 30 and 200 bytes and the query type to read-only. In addition, we configure

the key popularity to follow a Zipfian distribution [137] with a skewness parameter of 0.99 and the query

inter-arrival time to follow an exponential distribution in order to emulate the access [33,164] and traffic

(e.g., micro-bursts) [79, 105] patterns commonly observed in datacenters.

The QoS target of silo is that the 99th percentile latency must be lower than one millisecond [41,

126]. We use the load generator included in TailBench for silo [79]. The load generator for silo

also generates queries with an exponential inter-arrival time distribution based on the observations (e.g.,

micro-bursts) from the prior works [79, 105].

We also use five batch benchmarks – betweenness centrality (BC) [36], breath-first search (BFS) [36],

canneal [38], connected components (CC) [36], and stream [104]. The metric used to quantify the

throughput of the batch benchmarks is the number of executed iterations of the main loop per second.

We use the aforementioned LC and batch benchmarks because they are memory-intensive and are

widely used for cloud computing systems and datacenter research [40, 41, 59, 65, 126, 160, 164]. The

thread count of each benchmark is set to 16, which is identical to the number of cores in the CPU on the

evaluated server system.16

In this work, we refer to a container that contains the LC application as the LC container. In addition,

we refer to a container that consists of one or more batch applications as the batch container.

We investigate the impact of cores, memory, and compressed memory swap on the QoS of through-

put of the consolidated containers and evaluate the effectiveness of COSMOS with various loads for the

LC container. Table 10 summarizes low, medium, and high loads (in queries per second (QPS)) for the

LC benchmarks.

We also conduct experiments with various memory overcommit ratios (MORs). The MOR is defined

in Equation 24, where M is the total memory capacity (excluding the amount of the memory reserved for

16There are mainly two widely-used mechanisms to control the concurrency of applications – (1) dynamic thread-
ing [127,149] and (2) thread packing [47,120,139]. With dynamic threading, the concurrency of an application is controlled by
dynamically adjusting the number of threads of the application. With thread packing, the concurrency of an application is con-
trolled by dynamically adjusting the number of cores allocated to the application. A major disadvantage of dynamic threading
is the limited applicability because numerous applications lack the support for dynamic threading. In contrast, thread packing
can be applied to all applications regardless of whether they support dynamic threading or not. Because of the advantage of
thread packing, we consider it as a mechanism for dynamic concurrency control. To ensure the cores in the evaluated CPU can
fully be utilized, we configure the thread count of each benchmark to 16.

76

Table 11: Working-set sizes

Benchmark Working-set sizes with low, medium, and high MORs (GB)
memcached 42.1, 45.0, and 51.1
silo 42.1, 45.2, and 51.3
BC 22.5, 24.0, and 27.0
BFS 22.6, 24.1, and 27.3
canneal 22.5, 24.2, and 27.1
CC 22.6, 24.1, and 27.3
stream 22.5, 24.0, and 27.0

the OS) of the underlying server system and wLC and wBatch represent the working-set size of the LC and

batch containers, respectively. Table 11 summarizes the working-set sizes of the evaluated benchmarks

with low (i.e., 1.075), medium (i.e., 1.15), and high (i.e., 1.3) MORs in GB. For example, if we consider

the workload mix of memcached and BC with the medium MOR, the working-set sizes of memcached and

BC are 45.0 GB and 24.0 GB, respectively. The MOR is then computed to be 1.15 (i.e., 45.0+24.0
M = 1.15,

where M is 60 GB) on the evaluated server system using Equation 24.

Memory overcommit ratio =
wLC +wBatch

M
(24)

7.4 Characterization

In this section, we characterize the impact of cores, memory, and compressed memory swap (CMS) on

the QoS and the throughput of the consolidated containers. While we only present the experimental

results with memcached (i.e., the latency-critical (LC) container) and stream (i.e., the batch container)

for conciseness, other benchmarks exhibit similar data trends. We execute the consolidated containers

using the following configurations – (1) low load and low memory overcommit ratio (MOR), (2) low

load and high MOR, (3) high load and low MOR, and (4) high load and high MOR.

In each of the configurations, we vary the number of cores and the amounts of the memory and CMS

allocated to the LC container and analyze their impact on the QoS and throughput of the consolidated

containers. We denote the core count, the amount of memory, and the amount of the CMS allocated to

the LC container as rLC,Cores, rLC,M, and rLC,CMS, respectively. In addition, we denote the working-set

size of the LC container and the average compression ratio of the pages stored in the CMS as wLC and

γLC.

The upper bound of rLC,CMS is then computed using Equation 25. Intuitively, Equation 25 indicates

that there is no need to increase rLC,CMS further once it becomes large enough to fit wLC in memory and

CMS or rLC,CMS cannot exceed rLC,M because CMS consumes the memory allocated to the LC container.

rLC,CMS,max = min
(wLC− rLC,M

γLC−1
,rLC,M

)
(25)

In line with the prior works on workload consolidation [40,59,99], we use effective machine utiliza-

tion (EMU), which is a system-wide metric that quantifies the throughput of the consolidated containers.

77

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(a) EMU with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(b) EMU with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(c) EMU with rLC,CMS = 0

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(d) DSR with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)
 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(e) DSR with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(f) DSR with rLC,CMS = 0

Figure 41: Impact of cores, memory, and CMS allocated to the LC container with low load and low
MOR

If the LC container violates its QoS, EMU becomes zero.

In contrast, if the LC container satisfies its QoS, EMU is computed to be a positive value. A larger

EMU value indicates that the consolidated containers achieve higher throughput. To compute EMU,

first we compute the normalized throughput of each of the consolidated applications by dividing the

throughput of the application with workload consolidation (i.e., the hardware resources are shared by

the consolidated applications) by the solo-run throughput of the application when it is allocated all of

the hardware resources. We then compute EMU by summing up the normalized throughput of each of

the consolidated applications.

Figure 41 shows the EMU and disk swap rates (DSRs) of memcached and stream with low load

and low MOR. Each cell in the heat maps represents a single data point. Each heat map reports 20 data

points collected from 20 configurations.

First, when a sufficient amount of the CMS (e.g., rLC,CMS = rLC,CMS,max) is allocated to the LC

container, its QoS is satisfied (i.e., EMU ̸= 0) across wide ranges of rLC,Cores and rLC,M. This is mainly

because the LC container requires a relatively small amount of memory with a low MOR and a relatively

small number of cores with a low load.

Even when a sufficient amount of the CMS is allocated to the LC container, its QoS is violated (i.e.,

EMU = 0) with insufficient cores and memory (e.g., rLC,Cores = 2, rLC,M = 35.7 GB, and rLC,CMS =

rLC,CMS,max in Figure 41a). This is mainly arises due to the contention on the cores shared by the threads

of the LC container and the memory reclaim threads. When a smaller amount of memory is allocated to

the LC container, more of its data is transferred between the memory and CMS. This increases the CPU

utilization of the memory reclaim threads, causing the contention on cores with the threads of the LC

container.

Second, when a sufficient amount of the CMS (e.g., rLC,CMS = rLC,CMS,max) is allocated to the LC

container, the EMU tends to increase as the number of cores and the amount of memory allocated to

the LC container decreases. The EMU is maximized when the number of cores and the amount of

78

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(a) EMU with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(b) EMU with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(c) EMU with rLC,CMS = 0

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(d) DSR with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)
 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(e) DSR with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(f) DSR with rLC,CMS = 0

Figure 42: Impact of cores, memory, and CMS allocated to the LC container with low load and high
MOR

memory allocated to the LC container are small yet just enough to satisfy the LC container’s QoS (e.g.,

rLC,Cores = 4, rLC,M = 37.3 GB, and rLC,CMS = rLC,CMS,max in Figure 41a).

We also observe that the EMU gradually increases as the LC container’s core count decreases. For

example, Figure 41b shows that the EMU increases from 66.3% to 82.5% as the LC container’s core

count decreases from 10 to 4 when rLC,M = 37.3 GB. This is mainly because the batch container gradu-

ally achieves higher throughput as it is allocated more cores.

In contrast, the EMU abruptly increases only when the amount of the memory allocated to the LC

container is small enough to make the working-set of the batch container fit in memory. Except for

this abrupt change, the EMU minimally changes as the amount of the memory allocated to the LC

container decreases. This is mainly because the hotness among the data accessed by the batch container

(i.e., stream) is uniform. With the uniform memory access pattern, the batch container exhibits high

performance only when its entire working set fits in memory. The EMU changes more gradually when

the batch container includes applications (e.g., BC) that exhibit non-uniform memory access patterns.

Third, when a relatively small amount of the CMS is allocated to the LC container, its QoS is

satisfied with fewer configurations. For example, when rLC,CMS =
rLC,CMS,max

2 , the QoS is satisfied with

only eight configurations (c.f., 18 configurations when rLC,CMS = rLC,CMS,max) out of 20 configurations.

This mainly stems from the fact that more memory is needed to make the working set of the LC container

fit in memory when a smaller amount of the CMS is allocated to the LC container. When the working set

of the LC container does not fit in memory by being allocated with insufficient amounts of the memory

and CMS, victim pages are evicted to the disk swap. This leads to the QoS violation of the LC container

due to frequent I/O operations.

In an extreme case where rLC,CMS = 0, the LC container’s QoS is violated across all the configura-

tions. This indicates that the use of the CMS is required to satisfy the QoS when its working-set size

exceeds its allocated memory size.

Figure 42 shows the EMU and disk swap rates (DSRs) of memcached and stream with the low load

79

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(a) EMU with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(b) EMU with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(c) EMU with rLC,CMS = 0

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(d) DSR with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)
 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(e) DSR with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

35.7

37.3

38.9

40.4

r L
C

,M
 (

G
B

)

 0
 50
 100
 150
 200
 250
 300

D
S

R
 (

M
B

/s
)

(f) DSR with rLC,CMS = 0

Figure 43: Impact of cores, memory, and CMS allocated to the LC container with high load and low
MOR

and high MOR. First, the overall EMU data trends are similar to the case with the low load and low

MOR in that the EMU tends to increase when the number of cores and the amount of memory allocated

to the LC container are smaller.

Second, the highest EMU achieved with the low load and high MOR (e.g., rLC,Cores = 6, rLC,M =

30.6 GB, and rLC,CMS = rLC,CMS,max in Figure 42a) is similar to the highest EMU achieved with the

low load and low MOR (e.g., rLC,Cores = 4, rLC,M = 37.3 GB, and rLC,CMS = rLC,CMS,max in Figure 41a).

This is mainly because the load for the LC container is same and the batch container achieves similar

performance when allocated a sufficient amount of memory.

Third, in comparison with the case with the low load and low MOR, the LC container needs to be

allocated a larger number of cores and a smaller amount of memory to achieve the highest EMU (e.g.,

rLC,Cores = 4, rLC,M = 37.3 GB, and rLC,CMS = rLC,CMS,max in Figure 41a vs. rLC,Cores = 6, rLC,M =

30.6 GB, and rLC,CMS = rLC,CMS,max in Figure 42a). Because the working-set size of the batch container

increases with the high MOR, the LC container needs to be allocated a smaller amount of memory in

order to make the working set of the batch container fit in memory. As a result, a larger portion of the

data of the LC container is transferred between the memory and CMS, increasing the CPU utilization

of the memory reclaim threads. To mitigate the contention on the cores shared by the threads of the LC

container and the memory reclaim threads, more cores need to be allocated to the LC container.

Fourth, in comparison with the case with the low load and low MOR, the LC container requires a

larger amount of the CMS to satisfy its QoS. For instance, the LC container’s QoS is violated across all

the configurations when rLC,CMS =
rLC,CMS,max

2 with the low load and high MOR (Figure 42b), whereas it is

satisfied with eight configurations when rLC,CMS =
rLC,CMS,max

2 with low load and low MOR (Figure 41b).

Since the working-set size of the LC container increases with the high MOR, the LC container requires

a larger amount of the CMS to make its working set fit in memory.

Figure 43 shows the EMU and disk swap rates (DSRs) of memcached and stream with the high

load and low MOR. First, the overall EMU data trends are similar to the aforementioned cases in that

80

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(a) EMU with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(b) EMU with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 20
 40
 60
 80
 100
 120

E
M

U
 (

%
)

(c) EMU with rLC,CMS = 0

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(d) DSR with rLC,CMS = rLC,CMS,max

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)
 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(e) DSR with rLC,CMS =
rLC,CMS,max

2

ARG1 matrix

2 4 6 8 10
rLC,Cores

30.6

35.7

40.8

45.9

r L
C

,M
 (

G
B

)

 0
 100
 200
 300
 400
 500
 600
 700

D
S

R
 (

M
B

/s
)

(f) DSR with rLC,CMS = 0

Figure 44: Impact of cores, memory, and CMS allocated to the LC container with high load and high
MOR

the EMU tends to increase as the core count and the amount of the memory allocated to the LC container

decrease.

Second, the highest EMU achieved with the high load and low MOR is higher than that with the

cases with the low load. Since the LC container is applied with the high load, the portion of the EMU

contributed by the LC container increases in comparison with the cases with the low load.

Figure 44 shows the EMU and disk swap rates (DSRs) of memcached and stream with the high

load and high MOR. First, the overall EMU trends are similar to the aforementioned cases. Second, the

LC container’s QoS is satisfied in fewer configurations than the other cases. This occurs because the LC

container requires larger amounts of resources to satisfy its QoS with the high load and high MOR.

Third, the highest EMU achieved with the high load and high MOR is higher than those achieved

with the cases with the low load. Because the throughput of the LC container increases with the high

load, the overall EMU also increases.

In contrast, the highest EMU achieved with the high load and high MOR is lower than that achieved

with the high load and low MOR. Since the working-set size of the batch container increases with

the high MOR, the LC container needs to be allocated with a smaller amount of memory. To make

its working set fit in memory, the LC container requires a larger amount of the CMS. Because the

CPU utilization of the memory reclaim threads increases with more frequent data transfers between the

memory and CMS, the LC container requires a larger number of cores, decreasing the highest EMU

achieved with the high load and high MOR.

Our characterization results clearly motivate the need for coordinated management of cores, mem-

ory, and CMS to significantly improve the EMU with strong QoS guarantees. The findings learned from

the characterization study are summarized as follows.

• Impact of resources (C1): Cores, memory, and CMS have significant impact on the LC con-

tainer’s QoS and the throughput of the consolidated containers in that EMU varies greatly de-

pending on how the resources are allocated to the consolidated containers.

81

COSMOS

Resource Allocator

Profiler System State
Space Explorer

Memory-Intensive Applications
LC Container Batch Container

Resources
CPU

C C C C
C C C C

Memory

CMS

Disk
Disk Swap

Figure 45: Overall architecture of COSMOS

• Impact of loads and MORs (C2): There is no single configuration of cores, memory, and CMS

that delivers high EMU across various loads and MORs in that the configuration of cores, memory,

and CMS resulting in high EMU widely varies across various loads and MORs.

• Allocation of memory and CMS (C3): The EMU of the consolidated container is significantly

improved (i.e., satisfying the QoS and achieving high throughput) when the amount of the memory

allocated to the LC container is small enough to make the working-set of the batch container fit in

memory but the amounts of the memory and CMS allocated to the LC container are large enough

to make its working-set fit in memory.

• Allocation of cores (C4): With a smaller amount of the memory and a larger amount of the CMS

allocated to the LC container, the LC container requires a larger number of cores that are sufficient

to execute not only its threads but also the memory reclaim threads for satisfying its QoS.

7.5 Design and Implementation

Our characterization study shows that resources, loads, and memory overcommit ratios have significant

impact on the latency-critical (LC) container’s QoS and the throughput of the consolidated containers

(i.e., C1 and C2 in Section 7.4). Based on the characterization results, we propose COSMOS, a software-

based runtime system that dynamically allocates cores, memory, and compressed memory swap (CMS)

to the consolidated LC and batch containers to achieve high throughput while satisfying the QoS for

given load and memory overcommit ratio. COSMOS consists of three components – the (1) profiler, (2)

system state space explorer, and (3) resource allocator. Figure 45 illustrates the overall architecture of

COSMOS.

7.5.1 Profiler

The profiler of COSMOS dynamically collects the runtime data that the system state space explorer uses

to make resource allocation decisions. Specifically, it collects the load and tail latency data from the

latency-critical (LC) container and the throughput data from the batch container.

82

Phase 1: Exploration
Sub-Phase 1:
Memory and

CMS Allocation

Sub-Phase 2:
Core Allocation

Re-Adaptation

Phase 2:
Idle

Efficient
System State

Figure 46: Execution flow of the system state space explorer

In addition, the profiler dynamically collects the working-set sizes of the LC and batch containers,

which are available through procfs on Linux. Further, it collects the average compression ratio of the

pages stored in the CMS through sysfs at runtime.

7.5.2 System State Space Explorer

The system state space explorer (SSSE) of COSMOS dynamically explores the system state space to

discover a system state that delivers high throughput while providing strong QoS guarantees for the

latency-critical (LC) container. It uses effective machine utilization (EMU), which is defined in Sec-

tion 7.4, as the throughput metric.

As shown in Equation 26, we define a system state (i.e., s) as a vector of three elements (i.e., rLC,Cores,

rLC,M, and rLC,CMS), which denote the number of cores, the amount of memory, and the amount of CMS

allocated to the LC container (see Section 7.4 for the definitions of rLC,Cores, rLC,M, and rLC,CMS). Note

that the remaining resources are allocated to the batch container. We then define the system state space

as the set of all the valid system states.

s = (rLC,Cores,rLC,M,rLC,CMS) (26)

Figure 46 shows the execution flow of the SSSE. In addition, Algorithm 9 shows the top-level func-

tion (i.e., exploreSystemStateSpace) executed by the SSSE. It operates in a periodic manner. In each

period, the SSSE first allocates the resources to the consolidated containers (Lines 9–10 in Algorithm 9)

based on the resource allocation plan encoded in the current system state through the resource allocator

(Section 7.5.3).17 It then collects the runtime data (Lines 11–17 in Algorithm 9) – the load for the LC

container, the tail latency of the LC container, the throughput of the batch container, the working-set

sizes of the consolidated containers, and the average compression ratio of the pages stored in the CMS

based on the profiler (Section 7.5.1). If the current system state satisfies the LC container’s QoS and

achieves higher throughput than the highest throughput that has been discovered so far, it updates the

best system state (i.e., sbest) to the current system state (Lines 24–27 in Algorithm 9). It comprises two

phases – the (1) exploration and (2) idle phases.

Exploration Phase: During the exploration phase, it gradually explores the system state space to

find an efficient system state that achieves high throughput while satisfying the LC container’s QoS.

Specifically, in each period, it invokes the getNextSystemState function (Line 31 in Algorithm 9),

17The period is set to one second in this work.

83

Algorithm 9 The exploreSystemStateSpace function
1: phase← exploration; subphase← memoryAndCMS
2: L← 0; Q← 0; T ← 0; wLC← 0; wBatch← 0; γLC← 1
3: sbest← sinvalid; Tbest← 0
4: isBatchThroughputIncreased← false
5: procedure EXPLORESYSTEMSTATESPACE

6: createReclaimThreads()
7: snext← getInitialState()
8: while true do
9: scurr← snext

10: applySystemState(scurr)
11: sleep(τ) ▷ Period: one second
12: L← getLoad()
13: Q← getTailLatency()
14: T ← getBatchThroughput()
15: wLC ← getLCWorkingSetSize()
16: wBatch ← getBatchWorkingSetSize()
17: γLC← getCompressionRatio()
18: if needToReadapt() = true then
19: resetVariables()
20: snext← getInitialState()
21: phase← exploration
22: else
23: if phase = exploration then
24: if isQoSSatisfied(Q) = true and T > Tbest then
25: sbest← scurr
26: Tbest← T
27: isBatchThroughputIncreased← true
28: else
29: isBatchThroughputIncreased← false
30: end if
31: snext ← getNextSystemState(scurr)
32: if snext = scurr then
33: snext ← sbest
34: phase← idle
35: end if
36: end if
37: end if
38: end while
39: end procedure

which is shown in Algorithm 10.

The getNextSystemState function determines the system state, which is explored in the next pe-

riod and expected to satisfy the LC container’s QoS and achieve higher throughput than the current

system state. The exploration phase consists of two sub-phases – (1) memory and CMS allocation sub-

phase (Lines 3–13 in Algorithm 10) and (2) core allocation sub-phase (Lines 14–24). It begins with the

memory and CMS allocation sub-phase.

84

Algorithm 10 The getNextSystemState function

1: procedure GETNEXTSYSTEMSTATE(scurr)
2: snext← scurr
3: if subphase = memoryAndCMS then
4: if isInitialState(scurr) = true then
5: snext← setLCMemory(scurr, max(M − wBatch, wLC/γLC))
6: else
7: if isQoSViolated(Q) = true then
8: snext ← increaseLCMemory(scurr) ▷ Granularity: 5% of the working-set size
9: else

10: subphase← core
11: snext ← decreaseLCCore(scurr) ▷ Granularity: 1 core
12: end if
13: end if
14: else
15: if isQoSSatisfied(Q) = true then
16: if isBatchThroughputIncreased = true then
17: snext ← decreaseLCCore(scurr)
18: else
19: snext ← scurr
20: end if
21: else
22: snext← increaseLCMemory(scurr)
23: end if
24: end if
25: if isMemoryChanged(scurr, snext) = true then
26: rLC,CMS,max← getCMSMax(snext, wLC, γLC)
27: snext← setLCCMS(snext, rLC,CMS,max)
28: end if
29: return snext
30: end procedure

The SSSE builds on the third and fourth observations (i.e., C3 and C4 in Section 7.4) from the char-

acterization study. The third observation is that the throughput of the consolidated containers is likely

to significantly improve when the working-sets of the consolidated containers fit in memory through the

use of the CMS. Guided by this observation, it attempts to directly allocate the memory and CMS to the

LC container in a way that satisfies the following requirements – (1) R1: the amounts of the memory

and CMS allocated to the LC container are sufficient to hold the working-set of the LC container and

(2) R2: the amount of the remaining memory is just enough to hold the working-set of the batch con-

tainer (Lines 4–5 and 25–28 in Algorithm 10).18 This design approach has an advantage of reducing the

number of explored system states by skipping inefficient system states.

The SSSE then checks if the LC container’s QoS is satisfied with this state. If the QoS is satisfied,

18If it is impossible to satisfy both R1 and R2 because the working-set sizes of the LC and batch containers are too large for
the total memory capacity even with the use of the CMS, the SSSE utilizes the entire memory allocated to the LC container
as the memory pool of the CMS in order to maximize the amount of the remaining memory, which is allocated to the batch
container.

85

it completes the memory and CMS allocation sub-phase and transitions to the core allocation sub-phase

(Lines 9–12 in Algorithm 10).

If the LC container’s QoS is violated, the SSSE gradually (i.e., 5% of the working-set size of the

LC container) increases the amount of the memory and accordingly adjusts the amount of the CMS

allocated to the LC container (Lines 7–8 and 25–28 in Algorithm 10). It repeats this process until the

QoS is satisfied.

The SSSE transitions to the core allocation sub-phase after completing the memory and CMS alloca-

tion sub-phase. During the core allocation sub-phase, it gradually reclaims cores from the LC container

and determines the right number of cores for the LC container, which is just enough to satisfy the QoS.

Specifically, the SSSE reduces the LC container’s core count by one in each period (Lines 16–17 in

Algorithm 10). If the LC container’s QoS is satisfied even when allocated with the minimum number

of cores or reducing the LC container’s core count provides no throughput gain, it terminates the core

allocation sub-phase and transitions to the idle phase (Lines 18–19 in Algorithm 10).

If the LC container’s QoS is violated with the current core count, the SSSE keeps increasing the

amount of the memory (Lines 21–23 in Algorithm 10) and accordingly decreasing the amount of the

CMS (Lines 25–28) allocated to the LC container until the QoS is satisfied again. We have made this

design decision based on the fourth observation from the characterization study. The observation is that

the LC container tends to require a smaller number of cores when allocated with a larger amount of

memory and a smaller amount of the CMS because of the decreased CPU utilization of the memory

reclaim threads. If the size of the hot data of the batch container is smaller than its working-set, the

throughput can be improved by allocating more cores to the batch container (and reducing the amount

of the memory allocated to the batch container).

If the LC container’s QoS is satisfied with an increased amount of memory and a decreased amount

of the CMS, the SSSE attempts to reduce the LC container’s core count. It repeats the aforementioned

process and then transitions to the idle phase.

Idle Phase: As the SSSE enters the idle phase, it first sets the system state to the best system

state (i.e., sbest) that achieves the highest throughput while satisfying the QoS among all the explored

system states (Lines 32–35 in Algorithm 9). During the idle phase, it keeps monitoring the consolidated

containers and the server system but performs no adaptation activities. If a change is detected (e.g., a

significant change in the load for the LC container), it transitions to the exploration phase and re-triggers

the adaptation process (Lines 18–21 in Algorithm 9).

7.5.3 Resource Allocator

The resource allocator of COSMOS dynamically allocates the resources based on the system state de-

termined by the system state space explorer. The resource allocator builds on cgroups to dynamically

allocate cores and memory to the consolidated containers. In addition, the resource allocator uses sysfs

to adjust the amount of the CMS allocated to the latency-critical container at runtime.

86

Table 12: Evaluated workload mixes

Mix Benchmarks Mix Benchmarks
1 memcached and BC 6 silo and BC
2 memcached and BFS 7 silo and BFS
3 memcached and canneal 8 silo and canneal
4 memcached and CC 9 silo and CC
5 memcached and stream 10 silo and stream

7.6 Evaluation

In this section, we evaluate the effectiveness of COSMOS. Specifically, we aim to investigate the fol-

lowing – (1) QoS and throughput, (2) the sensitivity to the load and memory overcommit ratio, (3) the

number of explored system states, and (4) the effectiveness of dynamic resource management.

7.6.1 QoS and Throughput

We quantify the effectiveness of COSMOS in terms of QoS and throughput. To keep the discussion

focused, we first report the experimental results collected with the medium load and medium memory

overcommit ratio (MOR) that represent a common scenario in this section. We then report the experi-

mental results collected with all the loads and MORs in Section 7.6.2.

Based on the two latency-critical (LC) benchmarks and five batch benchmarks discussed in Sec-

tion 7.3.2, we create ten workload mixes. Each workload mix consists of the LC and batch containers,

which contain the LC and batch benchmarks, respectively. Table 12 summarizes the ten workload mixes

evaluated in this work.

For each of the ten workload mixes in Table 12, we execute it using the following resource allocation

policies – (1) Linux default (LD), which employs the default resource allocation policy (i.e., no core or

memory partitioning and compressed memory swap (CMS) enabled with the memory pool size of 20%

of the total memory capacity) of Linux, (2) core allocation (CA), which dynamically allocates cores to

the consolidated containers, (3) core and memory allocation (CMA), which dynamically allocates cores

and memory to the consolidated containers and represents the approach adopted by PARTIES [40] with

respect to memory management, (4) exhaustive, which executes the workload mix with a system state,

which is discovered by exhaustively exploring the system state space through extensive offline profiling

and exhibits the highest throughput while satisfying the QoS among all the explored system states,19

and (5) COSMOS, which dynamically allocates cores, memory, and CMS to the consolidated containers

based on COSMOS.

Figure 47 shows the normalized tail latency of the LC container in each of the ten workload mixes

19Note that the exhaustive version is impractical because it requires highly time- and resource-consuming extensive offline
profiling for each workload mix. Furthermore, the exhaustive version still requires separate extensive offline profiling for each
of the datasets even for the same workload mix. This is because workload mixes tend to exhibit different characteristics with
different datasets. Despite the impracticality of the exhaustive version, we compare COSMOS with the exhaustive version
to demonstrate that COSMOS can achieve high throughput with strong QoS guarantees without requiring extensive offline
profiling.

87

28
.9

29
.2

27
.7

29
.3

29
.6

1.
4

1.
3

1.
2

1.
6

1.
6

19
5.

8

20
9.

2

19
9.

9

21
9.

9

23
5.

5

7.
5

7.
3

5.
8

9.
0

8.
2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 2 3 4 5 6 7 8 9 10N
or

m
al

iz
ed

 T
ai

l L
at

en
cy

Workload Mix

LD CA CMA Exhaustive COSMOS

Figure 47: Quality of service

with the medium load and medium MOR. Each bar in Figure 47 reports the tail latency normalized to

the target tail latency of the LC container. We observe the following data trends.

First, the LD and CA versions fail to satisfy the LC container’s QoS across all the workload mixes.

The LD version violates the QoS owing to the contention on the cores that are shared by the consolidated

containers.

Since insufficient amounts of the memory and CMS are allocated to the LC container with the CA

version, the working-set of the LC container does not fit in memory and the victim pages are evicted

to the disk swap. Because of the frequent accesses to the disk swap, the CA version violates the LC

container’s QoS.

Second, the CMA version satisfies the LC container’s QoS across all the workload mixes. Because

the number of cores and the amount of memory allocated to the LC container are sufficient, it satisfies

the QoS. However, achieving tail latency that is significantly lower than the target tail latency is sub-

optimal because it indicates that the LC container is allocated excessive resources, some of which could

have been reallocated to the batch container to improve the overall throughput. As discussed later in

this section (i.e., Figure 48), the CMA version delivers low throughput due to the excessive amount of

resources allocated to the LC container.

Third, COSMOS robustly satisfies the LC container’s QoS across all workload mixes. By dynami-

cally analyzing the resource requirements of the LC container and allocating cores, memory, and CMS

in a coordinated and efficient manner, COSMOS provides strong QoS guarantees for the LC container.

Fourth, the tail latency of COSMOS is closer to the target tail latency than that of the CMA version.

COSMOS allocates a smaller amount of memory to the LC container through the use of the CMS than

the CMA version in order to secure a sufficient amount of memory to the batch container. While it makes

the tail latency of COSMOS closer to the target tail latency, it is an effective trade-off in that COSMOS

still satisfies the LC container’s QoS and significantly improves the throughput (as discussed later).

Figure 48 shows the EMU of various versions of the workload mixes. The rightmost bars denote

the geometric mean of each version. First, the EMU of the LD and CA versions across all the workload

mixes is zero. EMU is computed to be zero for the LD and CA versions because they fail to satisfy the

88

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 GM

EM
U

 (%
)

Workload Mix

LD CA CMA Exhaustive COSMOS

Figure 48: Effective machine utilization

LC container’s QoS across all workload mixes.

Second, the CMA version delivers low throughput across the workload mixes. Since it lacks the

capability of dynamically allocating the CMS to the LC container, it allocates a larger amount of memory

to the LC container than the case in which the CMS is also used. Therefore, it allocates an insufficient

amount of memory to the batch container, achieving low throughput.

The CMA version of the workload mixes 1 and 6, which include BC in the batch container, exhibits

higher EMU than other workload mixes. With BC, some of the nodes in the graph are accessed more

frequently than others. Even if the CMA version allocates an insufficient amount of memory to BC, pages

that contain more frequently accessed nodes are likely to remain in the memory without being evicted

to the disk swap by the memory reclaim algorithm. This makes the CMA version of the workload mixes

1 and 6 access the disk swap less frequently, resulting in higher EMU.

Third, COSMOS consistently achieves high throughput across all the evaluated workload mixes.

Specifically, COSMOS delivers 351.1% higher (on average) throughput than the CMA version and the

throughput similar (i.e., 0.31% lower on average) to the exhaustive version, which uses a system state

that is discovered through extensive offline profiling and achieves the highest throughput while satisfying

the QoS. Our experimental results demonstrate the effectiveness of COSMOS by showing that it is

capable of dynamically finding an efficient system state with high throughput and QoS guarantees for

each workload mix without the need for offline profiling.

COSMOS delivers higher EMU with the workload mixes that include silo (i.e., the workload mixes

6–10) in the LC container and BFS or CC (i.e., the workload mixes 2, 4, 7, and 9) in the batch container.

As for silo, since it requires fewer cores to satisfy its QoS than memcached, COSMOS achieves higher

EMU by allocating more cores to the batch container.

With regard to BFS and CC, they exhibit high throughput even when the amount of the memory

allocated to them is smaller than their working-set size because some of the nodes are not accessed owing

to the connectivity of the graph. COSMOS dynamically identifies their characteristics and allocates a

larger amount of the memory and a smaller amount of the CMS to the LC container. This reduces

the CPU utilization of the memory reclaim threads because of less frequent data transfers between the

89

0

20

40

60

80

100

120

Low Medium High

EM
U

 (%
)

Memory Overcommit Ratio

CMA Exhaustive COSMOS

Figure 49: Sensitivity to the memory overcommit ratio

memory and CMS. Because the LC container requires a smaller number of cores with the reduced CPU

utilization of the memory reclaim threads, COSMOS achieves higher EMU by allocating more cores to

the batch container (i.e., BFS or CC).

7.6.2 Sensitivity

We investigate the sensitivity of the QoS and throughput achieved by COSMOS to the load for the

latency-critical (LC) and the memory overcommit ratio (MOR) of the consolidated containers. We first

analyze the sensitivity to the MOR. Figure 49 shows the EMU of the CMA and exhaustive versions and

COSMOS, which is averaged (using geometric mean) across all of the 10 workload mixes. The data

reported in Figure 49 is collected with the medium load and by sweeping the MOR from low to high.

First, COSMOS robustly satisfies the LC container’s QoS across all the workload mixes and MORs.

Note that it would be impossible to compute the average EMU using geometric mean if COSMOS failed

to satisfy the QoS with any of the workload mixes and MORs because EMU would be computed as zero.

Second, COSMOS consistently achieves high throughput across all the workload mixes and MORs.

Specifically, COSMOS significantly outperforms the CMA version and delivers the throughput similar to

the exhaustive version which executes each of the workload mixes with a system state that is discovered

through extensive offline profiling and achieves the highest throughput.

Third, the throughput of COSMOS gradually decreases as the MOR increases. This is mainly be-

cause COSMOS allocates a smaller amount of memory and a larger amount of CMS to the LC container

with a higher MOR to make the working-set of the batch container fit in memory. With a larger amount

of the CMS allocated to the LC container, relatively more cores are required because the CPU utilization

of the memory reclaim threads increases. Consequently, COSMOS allocates a smaller number of cores

to the batch container with a higher MOR, resulting in lower throughput.

We now investigate the sensitivity to the load for the LC container. Figure 50 shows the EMU of

the CMA and exhaustive versions and COSMOS, which is averaged (using geometric mean) across the

workload mixes. The data reported in Figure 50 is collected by sweeping the load from low to high with

90

0

20

40

60

80

100

120

Low Medium High

EM
U

 (%
)

Load

CMA Exhaustive COSMOS

Figure 50: Sensitivity to the load for the LC container

0

20

40

60

80

100

120

(L,L) (L,M) (L,H) (M,L) (M,M) (M,H) (H,L) (H,M) (H,H)

EM
U

 (%
)

Load and Memory Overcommit Ratio

CMA Exhaustive COSMOS

Figure 51: Sensitivity to the load and memory overcommit ratio

the medium MOR.

First, similarly to the sensitivity data trends with the MOR, COSMOS robustly satisfies the LC

container’s QoS and achieves high throughput across all the workload mixes and loads. Specifically,

COSMOS significantly outperforms the CMA version and delivers the EMU similar to the exhaustive

version which discovers an efficient system state through extensive offline profiling.

Second, the throughput of COSMOS gradually increases as the load for the LC container increases.

Because the portion of the EMU contributed by the LC container increases with a higher load, the overall

EMU also increases.

For completeness, we report the EMU of the CMA and exhaustive versions and COSMOS across all

the loads and MORs in Figure 51. L, M, and H in Figure 51 indicate low, medium, and high, respectively.

We observe that COSMOS exhibits similar sensitivity trends when the load or MOR is fixed at low or

high to the ones (i.e., the load or MOR is fixed at medium) shown in Figures 49 and 50. In addition,

COSMOS consistently achieves high throughput across all the evaluated loads and MORs.

91

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 AVG#
of

 E
xp

lo
re

d
Sy

st
em

 S
ta

te
s

Workload Mix

Iterative Search COSMOS

Figure 52: Number of the explored system states

7.6.3 Explored System States

We investigate the impact of the optimization (i.e., skipping inefficient system states) applied to COS-

MOS on the number of explored system states. To this end, we create a synthetic version of COSMOS

that iteratively explores the system state space without applying the optimization (Section 7.5.2).

Figure 52 shows the number of the system states explored by the synthetic version and COSMOS

with the medium load and medium memory overcommit ratio (MOR). The optimization applied to

COSMOS is effective for reducing the number of the explored system states. Specifically, the full

version of COSMOS explores 79.6% fewer system states on average than the synthetic version.

7.6.4 Dynamic Resource Management

We investigate the effectiveness of dynamic resource management supported by COSMOS. We use

memcached (i.e., the latency-critical (LC) container) and stream (i.e., the batch container) with the

medium memory overcommit ratio (MOR). The load that the load generator applies to the LC container

dynamically varies over the time between the low and high loads in Table 10 by following the diurnal

pattern, which is commonly observed in production datacenters [32, 98, 105, 164]. The load generator

simulates a 24-hour period. Specifically, the load generator is configured to make each hour in the

24-hour diurnal pattern correspond to four minutes so as to keep the total experiment time manageable.

We execute the consolidated containers using four resource allocation policies – (1) EX-L, which

statically allocates cores, memory, and compressed memory swap to the consolidated containers based

on a system state that is discovered through exhaustive search (with extensive offline profiling) when

the LC container is applied with the low load, (2) EX-M, which statically allocates resources based on

a system state discovered through exhaustive search with the medium load, (3) EX-H, which statically

allocates resources based on a system state discovered through exhaustive search with the high load, and

(4) COSMOS, which dynamically allocates resources using COSMOS. Figure 53 shows the EMU of the

four versions. We observe the following data trends.

First, the EX-L and EX-M versions fail to satisfy the LC container’s QoS (i.e., EMU = 0) as the load

92

-1.0E+04
1.0E+04
3.0E+04
5.0E+04
7.0E+04
9.0E+04
1.1E+05
1.3E+05
1.5E+05

0

20

40

60

80

100

120

0 4 8 12 16 20 24

Q
ue

rie
s

pe
r S

ec
on

d

EM
U

 (%
)

Time (Simulated Hours)

EX-L EX-M EX-H COSMOS Load

Figure 53: Effectiveness of dynamic resource management

applied to the LC container increases. Since the EX-L (or EX-M) version statically allocates resources

based on a system state discovered through exhaustive search with the low (or medium) load, it allocates

insufficient resources to the LC container when the load is relatively high. This results in QoS violations

with relatively high loads. Second, the EX-H version exhibits relatively low throughput as the load

applied to the LC container decreases. Because the EX-H version statically allocates resources based on

a system state discovered through exhaustive search with the high load, it allocates excessive resources

to the LC container and delivers low throughput when the load is relatively low.

Third, COSMOS robustly satisfies the LC container’s QoS and achieves high throughput across all

the evaluated loads. When COSMOS detects a change in the load, it re-triggers the adaptation process

to find a system state that leads to high throughput while satisfying the QoS with the changed load and

dynamically allocates resources to the consolidated containers based on the newly-discovered system

state. With its re-adaptation capability, COSMOS achieves high throughput with strong QoS guarantees

across all the evaluated loads.

Overall, our results demonstrate the effectiveness of COSMOS in that it robustly satisfies the LC

container’s QoS and delivers high throughput of the consolidated containers across all the evaluated

workload mixes, loads, and MORs and significantly reduces the number of explored system states.20

7.7 Summary

In this chapter, we present the in-depth characterization of the impact of cores, memory, and com-

pressed memory swap (CMS) on the QoS and throughput of the consolidated applications. Guided by

the characterization results, we propose COSMOS, a software-based runtime system for QoS-aware and

efficient workload consolidation for memory-intensive applications. Our quantitative evaluation based

on a real system and widely-used benchmarks demonstrates that COSMOS robustly satisfies the QoS

and achieves high throughput across all the evaluated workload mixes and scenarios and significantly

reduces the number of explored system states by skipping inefficient system states.

20Our experimental results also show that the performance overhead of COSMOS is small. Specifically, its CPU utilization
is 0.27% on average, which is low.

93

VIII Conclusion

In this dissertation, we investigate heterogeneity-aware resource management techniques for signifi-

cantly improving the performance and efficiency of data-intensive applications by effectively exploiting

heterogeneous computing and memory resources. Modern computing systems employ heterogeneous

computing and memory devices to accommodate the ever-growing computational and memory demands

of data-intensive applications. Heterogeneous computing and memory have great potential to lead to

dramatic improvements in the performance and efficiency of data-intensive applications. Nevertheless,

taking full advantage of the capabilities of heterogeneous computing and memory poses significant

challenges to system software, as it is the responsibility of the underlying system software to effec-

tively schedule computations on heterogeneous computing devices and manage data placement properly

across heterogeneous memory nodes. This dissertation presents system software techniques to tackle

the aforementioned challenges through heterogeneity-aware resource management.

First, we present MOSAIC, heterogeneity-, communication-, and constraint-aware model slicing

and execution for accurate and efficient inference on heterogeneous embedded systems. MOSAIC uses

accurate models for estimating the execution and communication costs of the target inference workload

and generates the efficient model slicing and execution plan with low time complexity. Our quantitative

evaluation with the widely-used inference workloads and real heterogeneous embedded system shows

that MOSAIC significantly reduces inference latency and energy, achieves high estimation accuracy, and

incurs small overheads.

Second, we present HERTI, a reinforcement learning (RL)-augmented system for efficient real-time

inference on heterogeneous embedded systems. HERTI employs accurate and efficient execution and

communication cost estimators to significantly accelerate the training process. HERTI efficiently ex-

plores the state space with heterogeneity and constraint awareness and robustly generates the efficient

state for the target inference workload with a strong deadline guarantee through RL. Our quantitative

evaluation demonstrates the effectiveness of HERTI by showing that it achieves high efficiency with a

strong deadline guarantee, delivers larger efficiency gains as the inference deadline and the system het-

erogeneity increase, exhibits the strong generality for hyper-parameter tuning, and significantly reduces

the training time based on its estimation-based approach across all the evaluated inference workloads

and scenarios.

Third, we investigate the characteristics of various deep-learning applications on a real heteroge-

neous memory system. Guided by the characterization results, we propose HALO, hotness- and lifetime-

aware data placement and migration for high-performance deep-learning on heterogeneous memory sys-

tems. HALO dynamically analyzes the hotness and lifetime characteristics of the tensors of the target

deep-learning application and places the tensors across the heterogeneous memory nodes in a hotness-

and lifetime-conscious manner. Our experimental results demonstrate the effectiveness of HALO in that

it significantly outperforms various memory management policies supported by the underlying system

software and hardware, achieves performance comparable to the ideal case with infinite HBM, incurs

small performance overheads, and delivers high performance across a wide range of the application

94

working-set sizes.

Finally, we investigate the system software technique for QoS-aware and efficient workload con-

solidation on heterogeneous memory systems based on software-defined far memory. We present the

in-depth characterization of the impact of cores, memory, and compressed memory swap (CMS) on the

QoS and throughput of the consolidated applications. Guided by the characterization results, we pro-

pose COSMOS, a software-based runtime system for QoS-aware and efficient workload consolidation

for memory-intensive applications. COSMOS dynamically collects the runtime data from the consoli-

dated applications and the underlying system and allocates the resources to the consolidated applications

in a way that achieves high throughput with strong QoS guarantees. Our quantitative evaluation based

on a real system and widely-used benchmarks demonstrates that COSMOS robustly satisfies the QoS

and achieves high throughput across all the evaluated workload mixes and scenarios and significantly

reduces the number of explored system states by skipping inefficient system states.

95

References

[1] Ai chip - aws inferentia. https://aws.amazon.com/machine-learning/inferentia.

[2] cgroups(7) - linux manual page. https://man7.org/linux/man-pages/man7/cgroups.7.

html.

[3] Convnet benchmarks. https://github.com/soumith/convnet-benchmarks.

[4] Embedded systems developer kits and modules from nvidia jetson. http://www.nvidia.com/

object/embedded-systems-dev-kits-modules.html.

[5] Exynos 2200 mobile processor. https://semiconductor.samsung.com/processor/

mobile-processor/exynos-2200/.

[6] Hbm3 icebolt. https://semiconductor.samsung.com/dram/hbm/hbm3-icebolt/.

[7] High voltage power monitor. https://www.msoon.com/.

[8] Hikey970 - 96boards. https://www.96boards.org/product/hikey970/.

[9] Intel optane persistent memory. https://www.intel.com/content/www/us/en/products/

docs/memory-storage/optane-persistent-memory/overview.html.

[10] Intel optimized tensorflow wheel now available. https://software.intel.com/en-us/

articles/intel-optimized-tensorflow-wheel-now-available.

[11] Intel xeon cpu max series - ai, deep learning, and hpc processor. https://www.intel.com/

content/www/us/en/products/details/processors/xeon/max-series.html.

[12] Introducing dnn primitives in intel® math kernel library. https://software.intel.com/

en-us/articles/introducing-dnn-primitives-in-intelr-mkl.

[13] iphone 15 pro and 15 pro max - technical specifications. https://www.apple.com/

iphone-15-pro/specs/.

[14] Kirin 9000. https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/

Kirin-9000.

[15] Kirin 970. https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/

Kirin-970.

96

[16] Lzo real-time data compression library. http://www.oberhumer.com/opensource/lzo/.

[17] memcached - a distributed memory object caching system. https://memcached.org/.

[18] Memory compression in windows 10 rtm. https://learn.microsoft.com/en-us/shows/

seth-juarez/memory-compression-in-windows-10-rtm.

[19] Os x mavericks core technologies overview. https://images.apple.com/media/us/osx/

2013/docs/OSX_Mavericks_Core_Technology_Overview.pdf.

[20] Qualcomm snapdragon 888 5g mobile platform. https://www.qualcomm.com/products/

snapdragon-888-5g-mobile-platform.

[21] Tensor2tensor - transformer. https://github.com/tbd-ai/tbd-suite/tree/master/

MachineTranslation-Transformer/Tensorflow.

[22] Tensorflow benchmarks. https://github.com/tensorflow/benchmarks.

[23] Tensorflow lite. https://www.tensorflow.org/lite/.

[24] Tensorflow optimizations on modern intel® architecture. https://software.intel.com/

en-us/articles/tensorflow-optimizations-on-modern-intel-architecture.

[25] zswap. https://www.kernel.org/doc/html/v4.18/vm/zswap.html.

[26] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,

Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), OSDI ’16, pages 265–283, GA, 2016. USENIX Association.

[27] R. Adolf, S. Rama, B. Reagen, G. y. Wei, and D. Brooks. Fathom: reference workloads for

modern deep learning methods. In 2016 IEEE International Symposium on Workload Character-

ization (IISWC), pages 1–10, Sept 2016.

[28] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and Stephen W. Keckler. Page

placement strategies for gpus within heterogeneous memory systems. In Proceedings of the Twen-

tieth International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’15, pages 607–618, New York, NY, USA, 2015. ACM.

[29] Andrew Anderson and David Gregg. Optimal dnn primitive selection with partitioned boolean

quadratic programming. In Proceedings of the 2018 International Symposium on Code Genera-

tion and Optimization, CGO 2018, pages 340–351, New York, NY, USA, 2018. ACM.

97

[30] Shaahin Angizi, Zhezhi He, and Deliang Fan. Dima: A depthwise cnn in-memory accelerator.

In Proceedings of the International Conference on Computer-Aided Design, ICCAD ’18, pages

122:1–122:8, New York, NY, USA, 2018. ACM.

[31] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R. Stanley

Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy, and Dejan S.

Milojicic. Puma: A programmable ultra-efficient memristor-based accelerator for machine learn-

ing inference. In Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 715–731, New

York, NY, USA, 2019. ACM.

[32] Dan Ardelean, Amer Diwan, and Chandra Erdman. Performance analysis of cloud applications.

In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages

405–417, Renton, WA, April 2018. USENIX Association.

[33] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-

load analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Com-

puter Systems, SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Association for Com-

puting Machinery.

[34] Mark Bartlett, Alan M. Frisch, Youssef Hamadi, Ian Miguel, S. Armagan Tarim, and Chris

Unsworth. The temporal knapsack problem and its solution. In Proceedings of the Second

International Conference on Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, CPAIOR’05, pages 34–48, Berlin, Heidelberg, 2005.

Springer-Verlag.

[35] S. Bateni, H. Zhou, Y. Zhu, and C. Liu. Predjoule: A timing-predictable energy optimization

framework for deep neural networks. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages

107–118, Dec 2018.

[36] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite, 2015.

[37] Richard Ernest Bellman. Dynamic Programming. Dover Publications, Inc., New York, NY, USA,

2003.

[38] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite:

Characterization and architectural implications. In Proceedings of the 17th International Confer-

ence on Parallel Architectures and Compilation Techniques, PACT ’08, pages 72–81, New York,

NY, USA, 2008. ACM.

[39] Ruobing Chen, Haosen Shi, Yusen Li, Xiaoguang Liu, and Gang Wang. Olpart: Online learning

based resource partitioning for colocating multiple latency-critical jobs on commodity computers.

98

In Proceedings of the Eighteenth European Conference on Computer Systems, EuroSys ’23, page

347–364, New York, NY, USA, 2023. Association for Computing Machinery.

[40] Shuang Chen, Christina Delimitrou, and José F. Martínez. Parties: Qos-aware resource parti-

tioning for multiple interactive services. In Proceedings of the Twenty-Fourth International Con-

ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’19, page 107–120, New York, NY, USA, 2019. Association for Computing Machinery.

[41] Shuang Chen, Angela Jin, Christina Delimitrou, and José F. Martínez. Retail: Opting for learning

simplicity to enable qos-aware power management in the cloud. In 2022 IEEE International

Symposium on High-Performance Computer Architecture (HPCA), pages 155–168, 2022.

[42] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier

Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-

learning. In Proceedings of the 19th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’14, pages 269–284, New York, NY,

USA, 2014. ACM.

[43] X. Chen, D. Z. Chen, and X. S. Hu. modnn: Memory optimal dnn training on gpus. In 2018 De-

sign, Automation Test in Europe Conference Exhibition (DATE), DATE’18, pages 13–18, March

2018.

[44] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient

dataflow for convolutional neural networks. In Proceedings of the 43rd International Symposium

on Computer Architecture, ISCA ’16, pages 367–379, Piscataway, NJ, USA, 2016. IEEE Press.

[45] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:

Building an efficient and scalable deep learning training system. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pages 571–

582, Berkeley, CA, USA, 2014. USENIX Association.

[46] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Bear: Techniques for mitigating

bandwidth bloat in gigascale dram caches. In Proceedings of the 42Nd Annual International

Symposium on Computer Architecture, ISCA ’15, pages 198–210, New York, NY, USA, 2015.

ACM.

[47] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. Pack & cap: Adaptive dvfs

and thread packing under power caps. In 2011 44th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 175–185, 2011.

[48] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-interference-

free hardware-software debugger for intermittent energy-harvesting systems. In Proceedings of

the Twenty-First International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’16, pages 577–589, New York, NY, USA, 2016. ACM.

99

[49] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware cluster

management. In Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’14, pages 127–144, New York, NY,

USA, 2014. ACM.

[50] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang. Dracc: A dram based

accelerator for accurate cnn inference. In Proceedings of the 55th Annual Design Automation

Conference, DAC ’18, pages 168:1–168:6, New York, NY, USA, 2018. ACM.

[51] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gurumurthi, and Ada

Gavrilovska. Kleio: A hybrid memory page scheduler with machine intelligence. In Proceedings

of the 28th International Symposium on High-Performance Parallel and Distributed Computing,

HPDC ’19, pages 37–48, New York, NY, USA, 2019. Association for Computing Machinery.

[52] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Ra-

jesh Sankaran, and Jeff Jackson. System software for persistent memory. In Proceedings of the

Ninth European Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15, New York,

NY, USA, 2014. ACM.

[53] Amin Firoozshahian et al. Mtia: First generation silicon targeting meta’s recommendation sys-

tems. In Proceedings of the 50th Annual International Symposium on Computer Architecture,

ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[54] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5, August 2004.

[55] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra Fedorova, and

Vivien Quéma. Large pages may be harmful on numa systems. In Proceedings of the 2014

USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages 231–

242, Berkeley, CA, USA, 2014. USENIX Association.

[56] J. Gaur, M. Chaudhuri, P. Ramachandran, and S. Subramoney. Near-optimal access partitioning

for memory hierarchies with multiple heterogeneous bandwidth sources. In 2017 IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA), pages 13–24, Feb

2017.

[57] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir Yazdanbakhsh, Jongse Park, Nam Sung

Kim, Doug Burger, and Hadi Esmaeilzadeh. Mixed-signal charge-domain acceleration of deep

neural networks through interleaved bit-partitioned arithmetic. In Proceedings of the ACM In-

ternational Conference on Parallel Architectures and Compilation Techniques, PACT ’20, page

399–411, New York, NY, USA, 2020. Association for Computing Machinery.

[58] Myeonggyun Han and Woongki Baek. Herti: A reinforcement learning-augmented system for

efficient real-time inference on heterogeneous embedded systems. In 2021 30th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 90–102, 2021.

100

[59] Myeonggyun Han and Woongki Baek. Sdrp: Safe, efficient, and slo-aware workload consolida-

tion through secure and dynamic resource partitioning. IEEE Transactions on Services Comput-

ing, 15(4):1868–1882, 2022.

[60] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, and Woongki Baek. Hotness- and lifetime-

aware data placement and migration for high-performance deep learning on heterogeneous mem-

ory systems. IEEE Transactions on Computers, 69(3):377–391, 2020.

[61] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and Woongki Baek. Mosaic:

Heterogeneity-, communication-, and constraint-aware model slicing and execution for accurate

and efficient inference. In 2019 28th International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 165–177, 2019.

[62] Myeonggyun Han, Eunseong Park, Youngsam Shin, Deok-Jae Oh, Yeongon Cho, and Woongki

Baek. Cosmos: Coordinated management of cores, memory, and compressed memory swap for

qos-aware and efficient workload consolidation for memory-intensive applications. IEEE Access,

11:133199–133214, 2023.

[63] Myeonggyun Han, Jinsu Park, and Woongki Baek. Chrt: A criticality- and heterogeneity-aware

runtime system for task-parallel applications. In Proceedings of the Conference on Design, Au-

tomation & Test in Europe, DATE ’17, pages 942–945, 3001 Leuven, Belgium, Belgium, 2017.

European Design and Automation Association.

[64] Myeonggyun Han, Jinsu Park, and Woongki Baek. Design and implementation of a criticality-

and heterogeneity-aware runtime system for task-parallel applications. IEEE Transactions on

Parallel and Distributed Systems, 32(5):1117–1132, 2021.

[65] Myeonggyun Han, Seongdae Yu, and Woongki Baek. Secure and dynamic core and cache parti-

tioning for safe and efficient server consolidation. In 2018 18th IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing (CCGRID), pages 311–320, 2018.

[66] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.

Dally. Eie: Efficient inference engine on compressed deep neural network. In Proceedings of the

43rd International Symposium on Computer Architecture, ISCA ’16, pages 243–254, Piscataway,

NJ, USA, 2016. IEEE Press.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual

networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision –

ECCV 2016, ECCV’16, pages 630–645, Cham, 2016. Springer International Publishing.

[68] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-based deep

learning framework for continuous vision applications. In Proceedings of the 15th Annual Inter-

national Conference on Mobile Systems, Applications, and Services, MobiSys ’17, pages 82–95,

New York, NY, USA, 2017. ACM.

101

[69] Jeaho Hwang, Jinkyu Jeong, Hwanju Kim, Jeonghwan Choi, and Joonwon Lee. Compressed

memory swap for qos of virtualized embedded systems. IEEE Transactions on Consumer Elec-

tronics, 58(3):834–840, 2012.

[70] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Centaur: A chiplet-based,

hybrid sparse-dense accelerator for personalized recommendations. In Proceedings of the

ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA ’20, page

968–981. IEEE Press, 2020.

[71] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt

Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.

CoRR, abs/1602.07360, 2016.

[72] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist: Efficient data encoding

for deep neural network training. In 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA), pages 776–789, June 2018.

[73] Seth Jennings. Transparent memory compression in linux, 2013.

[74] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. Ionn: Incremental

offloading of neural network computations from mobile devices to edge servers. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC ’18, pages 401–411, New York, NY, USA,

2018. ACM.

[75] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature em-

bedding. In Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14,

pages 675–678, New York, NY, USA, 2014. ACM.

[76] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit. In Pro-

ceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pages

1–12, New York, NY, USA, 2017. ACM.

[77] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George

Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma

Prasad, Cliff Young, Zongwei Zhou, and David Patterson. Ten lessons from three generations

shaped google’s tpuv4i : Industrial product. In 2021 ACM/IEEE 48th Annual International Sym-

posium on Computer Architecture (ISCA), pages 1–14, 2021.

[78] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and

Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. In

Proceedings of the Twenty-Second International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’17, pages 615–629, New York, NY,

USA, 2017. ACM.

102

[79] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark suite and evaluation methodology

for latency-critical applications. In 2016 IEEE International Symposium on Workload Character-

ization (IISWC), pages 1–10, 2016.

[80] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

[81] Jongseok Kim, Cheolgi Kim, and Euiseong Seo. ezswap : Enhanced compressed swap scheme

for mobile devices. IEEE Access, 7:139678–139691, 2019.

[82] Kyu Yeun Kim and Woongki Baek. Blpp: Improving the performance of gpgpus with hetero-

geneous memory through bandwidth- and latency-aware page placement. In 2018 IEEE 36th

International Conference on Computer Design (ICCD), pages 358–365, Oct 2018.

[83] Seontae Kim, Nguyen Pham, Woongki Baek, and Young-ri Choi. Holistic vm placement for

distributed parallel applications in heterogeneous clusters. IEEE Transactions on Services Com-

puting, pages 1–1, 2018.

[84] Y. G. Kim and C. J. Wu. Autoscale: Energy efficiency optimization for stochastic edge infer-

ence using reinforcement learning. In 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 1082–1096, 2020.

[85] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Selecta: Heterogeneous cloud storage con-

figuration for data analytics. In Proceedings of the 2018 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’18, page 759–773, USA, 2018. USENIX Association.

[86] Marios Kogias, Stephen Mallon, and Edouard Bugnion. Lancet: A self-correcting latency mea-

suring tool. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 881–896,

Renton, WA, July 2019. USENIX Association.

[87] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. High-

performance transactions for persistent memories. In Proceedings of the Twenty-First Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’16, pages 399–411, New York, NY, USA, 2016. ACM.

[88] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Proceedings of the 25th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran

Associates Inc.

[90] Neeraj Kulkarni, Feng Qi, and Christina Delimitrou. Pliant: Leveraging approximation to im-

prove datacenter resource efficiency. In 2019 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 159–171, 2019.

103

[91] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and Dean M.

Tullsen. Single-isa heterogeneous multi-core architectures: The potential for processor power

reduction. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 36, pages 81–, Washington, DC, USA, 2003. IEEE Computer Society.

[92] Youngeun Kwon and Minsoo Rhu. Beyond the memory wall: A case for memory-centric hpc

system for deep learning. In Proceedings of the 51st Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-51, pages 148–161, Piscataway, NJ, USA, 2018. IEEE Press.

[93] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw Burny,

Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, Greg Thelen,

Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan. Software-defined far memory

in warehouse-scale computers. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, page

317–330, New York, NY, USA, 2019. Association for Computing Machinery.

[94] Seok-Hee Lee. Technology scaling challenges and opportunities of memory devices. In 2016

IEEE International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.8, 2016.

[95] Changlong Li, Liang Shi, Yu Liang, and Chun Jason Xue. Seal: User experience-aware two-level

swap for mobile devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 39(11):4102–4114, 2020.

[96] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-

perband: Bandit-based configuration evaluation for hyperparameter optimization. In 5th Interna-

tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[97] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang,

Qi Chen, Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. Autosys: The design and operation of

learning-augmented systems. In 2020 USENIX Annual Technical Conference (USENIX ATC 20),

pages 323–336. USENIX Association, July 2020.

[98] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos Kozyrakis. To-

wards energy proportionality for large-scale latency-critical workloads. In 2014 ACM/IEEE 41st

International Symposium on Computer Architecture (ISCA), pages 301–312, 2014.

[99] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis.

Heracles: Improving resource efficiency at scale. In Proceedings of the 42Nd Annual Interna-

tional Symposium on Computer Architecture, ISCA ’15, pages 450–462, New York, NY, USA,

2015. ACM.

[100] Chris A. Mack. Fifty years of moore’s law. IEEE Transactions on Semiconductor Manufacturing,

24(2):202–207, 2011.

104

[101] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh,

and Angela Hung Byers. Big data: The next frontier for innovation, competition, and produc-

tivity. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/

big-data-the-next-frontier-for-innovation.

[102] Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor. Treebank-3.

https://catalog.ldc.upenn.edu/ldc99t42.

[103] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pallab Bhat-

tacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia, and Prakash Chauhan. Tpp:

Transparent page placement for cxl-enabled tiered-memory. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 3, ASPLOS 2023, page 742–755, New York, NY, USA, 2023. Association for

Computing Machinery.

[104] John D. McCalpin. Memory bandwidth and machine balance in current high performance com-

puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newslet-

ter, pages 19–25, December 1995.

[105] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and Thomas F.

Wenisch. Power management of online data-intensive services. In Proceedings of the 38th Annual

International Symposium on Computer Architecture, ISCA ’11, pages 319–330, New York, NY,

USA, 2011. ACM.

[106] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate,

portable and fast basic block throughput estimation using deep neural networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning (ICML), volume 97 of Proceedings of Machine Learning Research, pages

4505–4515, Long Beach, California, USA, Jun 2019. PMLR.

[107] Charith Mendis, Cambridge Yang, Yewen Pu, Dr.Saman Amarasinghe, and Michael Carbin.

Compiler auto-vectorization with imitation learning. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 32, pages 14625–14635. Curran Associates, Inc., 2019.

[108] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,

Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement opti-

mization with reinforcement learning. In Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, ICML’17, pages

2430–2439, 2017.

[109] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-

tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan

105

Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, February 2015.

[110] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani, Tulika Mitra,

and Sanjay Vishin. Hierarchical power management for asymmetric multi-core in dark silicon era.

In Proceedings of the 50th Annual Design Automation Conference, DAC ’13, pages 174:1–174:9,

New York, NY, USA, 2013. ACM.

[111] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios Karakostas, Georgios

Goumas, and Nectarios Koziris. Dicer: Diligent cache partitioning for efficient workload consol-

idation. In Proceedings of the 48th International Conference on Parallel Processing, ICPP ’19,

New York, NY, USA, 2019. Association for Computing Machinery.

[112] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell. Hipster: Hybrid task manager for latency-

critical cloud workloads. In 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA), HPCA ’17, pages 409–420, Feb 2017.

[113] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander. Twig: Multi-agent task management

for colocated latency-critical cloud services. In 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 167–179, 2020.

[114] Young H. Oh, Quan Quan, Daeyeon Kim, Seonghak Kim, Jun Heo, Sungjun Jung, Jaeyoung Jang,

and Jae W. Lee. A portable, automatic data qantizer for deep neural networks. In Proceedings of

the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT

’18, pages 17:1–17:14, New York, NY, USA, 2018. ACM.

[115] Prasanna Pandit and R. Govindarajan. Fluidic kernels: Cooperative execution of opencl programs

on multiple heterogeneous devices. In Proceedings of Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization, CGO ’14, pages 273:273–273:283, New York, NY,

USA, 2014. ACM.

[116] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkate-

san, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally. Scnn: An accelerator

for compressed-sparse convolutional neural networks. In Proceedings of the 44th Annual Inter-

national Symposium on Computer Architecture, ISCA ’17, pages 27–40, New York, NY, USA,

2017. ACM.

[117] Jinsu Park and Woongki Baek. Hap: A heterogeneity-conscious runtime system for adaptive

pipeline parallelism. In Proceedings of the 22Nd International Conference on Euro-Par 2016:

Parallel Processing - Volume 9833, Euro-Par ’16, pages 518–530, New York, NY, USA, 2016.

Springer-Verlag New York, Inc.

106

[118] Jinsu Park and Woongki Baek. Rchc: A holistic runtime system for concurrent heterogeneous

computing. In 2016 45th International Conference on Parallel Processing (ICPP), ICPP ’16,

pages 211–216, Aug 2016.

[119] Jinsu Park, Seongbeom Park, and Woongki Baek. Copart: Coordinated partitioning of last-level

cache and memory bandwidth for fairness-aware workload consolidation on commodity servers.

In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 10:1–10:16, New

York, NY, USA, 2019. ACM.

[120] Jinsu Park, Seongbeom Park, Myeonggyun Han, and Woongki Baek. Palm: Progress- and

locality-aware adaptive task migration for efficient thread packing. In 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 330–339, 2021.

[121] Jinsu Park, Seongbeom Park, Myeonggyun Han, Jihoon Hyun, and Woongki Baek. Hypart: A

hybrid technique for practical memory bandwidth partitioning on commodity servers. In Proceed-

ings of the 27th International Conference on Parallel Architectures and Compilation Techniques,

PACT ’18, pages 5:1–5:14, New York, NY, USA, 2018. ACM.

[122] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning library. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

[123] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. In NIPS-W, 2017.

[124] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika Mitra. Power-performance

modelling of mobile gaming workloads on heterogeneous mpsocs. In Proceedings of the 52Nd

Annual Design Automation Conference, DAC ’15, pages 201:1–201:6, New York, NY, USA,

2015. ACM.

[125] A. Prakash, Siqi Wang, A.E. Irimiea, and T. Mitra. Energy-efficient execution of data-parallel

applications on heterogeneous mobile platforms. In Computer Design (ICCD), 2015 33rd IEEE

International Conference on, ICCD ’15, pages 208–215, Oct 2015.

[126] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low tail latency for

microsecond-scale networked tasks. In Proceedings of the 26th Symposium on Operating Systems

Principles, SOSP ’17, page 325–341, New York, NY, USA, 2017. Association for Computing

Machinery.

[127] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread reinforcer: Dynamically

determining number of threads via os level monitoring. In 2011 IEEE International Symposium

on Workload Characterization (IISWC), pages 116–125, 2011.

107

[128] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural

networks. In ICLR, 2017.

[129] S. Ramos and T. Hoefler. Capability models for manycore memory systems: A case-study

with xeon phi knl. In 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 297–306, May 2017.

[130] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. Hemem: Scalable

tiered memory management for big data applications and real nvm. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, pages 392–407, New

York, NY, USA, 2021. Association for Computing Machinery.

[131] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,

Minjia Zhang, Dong Li, and Yuxiong He. ZeRO-Offload: Democratizing Billion-Scale model

training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 551–564.

USENIX Association, July 2021.

[132] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. vdnn:

Virtualized deep neural networks for scalable, memory-efficient neural network design. In The

49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-49, pages 18:1–

18:13, Piscataway, NJ, USA, 2016. IEEE Press.

[133] Francisco Romero and Christina Delimitrou. Mage: Online and interference-aware scheduling

for multi-scale heterogeneous systems. In Proceedings of the 27th International Conference on

Parallel Architectures and Compilation Techniques, PACT ’18, New York, NY, USA, 2018. As-

sociation for Computing Machinery.

[134] S. Roy, R. Kumar, and M. Prvulovic. Improving system performance with compressed memory.

In Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001,

pages 7 pp.–, 2001.

[135] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-

Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115(3):211–252,

December 2015.

[136] Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. A case for granularity aware page migration. In

Proceedings of the 2018 International Conference on Supercomputing, ICS ’18, pages 352–362,

New York, NY, USA, 2018. ACM.

[137] A.I. Saichev, Y. Malevergne, and D. Sornette. Theory of Zipf’s Law and Beyond. Lecture Notes

in Economics and Mathematical Systems. Springer Berlin Heidelberg, 2009.

108

[138] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), CVPR’18, June 2018.

[139] Hiroshi Sasaki, Satoshi Imamura, and Koji Inoue. Coordinated power-performance optimization

in manycores. In Proceedings of the 22nd International Conference on Parallel Architectures and

Compilation Techniques, pages 51–61, 2013.

[140] Satyabrata Sen and Neena Imam. Machine learning based design space exploration for hybrid

main-memory design. In Proceedings of the International Symposium on Memory Systems,

MEMSYS ’19, page 480–489, New York, NY, USA, 2019. Association for Computing Machin-

ery.

[141] Ankit Sethia and Scott Mahlke. Equalizer: Dynamic tuning of gpu resources for efficient execu-

tion. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO ’14, pages 647–658, Washington, DC, USA, 2014. IEEE Computer Society.

[142] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2014.

[143] Avinash Sodani. Knights landing (knl): 2nd generation intel® xeon phi processor. In 2015 IEEE

Hot Chips 27 Symposium (HCS), pages 1–24, 2015.

[144] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sundaram

Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights landing: Second-

generation intel xeon phi product. IEEE Micro, 36(2):34–46, March 2016.

[145] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. C-brain: A deep

learning accelerator that tames the diversity of cnns through adaptive data-level parallelization.

In Proceedings of the 53rd Annual Design Automation Conference, DAC ’16, pages 123:1–123:6,

New York, NY, USA, 2016. ACM.

[146] M. Song, Y. Hu, H. Chen, and T. Li. Towards pervasive and user satisfactory cnn across gpu

microarchitectures. In 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 1–12, Feb 2017.

[147] Taejoon Song, Myeongseon Kim, Gunho Lee, and Youngjin Kim. Prediction-guided perfor-

mance improvement on compressed memory swap. In 2022 IEEE International Conference on

Consumer Electronics (ICCE), pages 1–6, 2022.

[148] Z. Song, F. Wu, X. Liu, J. Ke, N. Jing, and X. Liang. Vr-dann: Real-time video recognition

via decoder-assisted neural network acceleration. In 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 698–710, 2020.

109

[149] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: Power-

efficient and high-performance execution of multi-threaded workloads on cmps. In Proceedings

of the 13th International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XIII, page 277–286, New York, NY, USA, 2008. Association for

Computing Machinery.

[150] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford

Book, Cambridge, MA, USA, 2018.

[151] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), CVPR’15, pages 1–9, June 2015.

[152] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,

inception-resnet and the impact of residual connections on learning. In AAAI, AAAI’17, pages

4278–4284. AAAI Press, 2017.

[153] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. MnasNet: Platform-Aware Neural

Architecture Search for Mobile. ArXiv e-prints, July 2018.

[154] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy trans-

actions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, page 18–32, New York, NY, USA, 2013. Association

for Computing Machinery.

[155] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer. Schedul-

ing heterogeneous multi-cores through performance impact estimation (pie). In Proceedings of

the 39th Annual International Symposium on Computer Architecture, ISCA ’12, pages 213–224,

Washington, DC, USA, 2012. IEEE Computer Society.

[156] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[157] H. Wang, J. Zhang, S. Shridhar, G. Park, M. Jung, and N. S. Kim. Duang: Fast and lightweight

page migration in asymmetric memory systems. In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 481–493, March 2016.

[158] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,

and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural

networks. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’18, pages 41–53, New York, NY, USA, 2018. ACM.

[159] X. Wang, J. Yu, C. Augustine, R. Iyer, and R. Das. Bit prudent in-cache acceleration of deep

convolutional neural networks. In 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 81–93, Feb 2019.

110

[160] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise Sanouillet,

Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dimitrios Skarlatos. Tmo: Trans-

parent memory offloading in datacenters. In Proceedings of the 27th ACM International Confer-

ence on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’22, page 609–621, New York, NY, USA, 2022. Association for Computing Machinery.

[161] Shasha Wen, Lucy Cherkasova, Felix Xiaozhu Lin, and Xu Liu. Profdp: A lightweight profiler to

guide data placement in heterogeneous memory systems. In Proceedings of the 2018 International

Conference on Supercomputing, ICS ’18, pages 263–273, New York, NY, USA, 2018. ACM.

[162] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble page management

for tiered memory systems. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, pages

331–345, New York, NY, USA, 2019. ACM.

[163] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise online qos

management for increased utilization in warehouse scale computers. In Proceedings of the 40th

Annual International Symposium on Computer Architecture, ISCA ’13, pages 607–618, New

York, NY, USA, 2013. ACM.

[164] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of hundreds of in-memory

cache clusters at twitter. In 14th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 20), pages 191–208. USENIX Association, November 2020.

[165] Vinson Young, Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Accord: Enabling

associativity for gigascale dram caches by coordinating way-install and way-prediction. In Pro-

ceedings of the 45th Annual International Symposium on Computer Architecture, ISCA ’18, pages

328–339, Piscataway, NJ, USA, 2018. IEEE Press.

[166] Seongdae Yu, Seongbeom Park, and Woongki Baek. Design and implementation of bandwidth-

aware memory placement and migration policies for heterogeneous memory systems. In Pro-

ceedings of the International Conference on Supercomputing, ICS ’17, pages 18:1–18:10, New

York, NY, USA, 2017. ACM.

[167] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srinivas Devadas. Ban-

shee: Bandwidth-efficient dram caching via software/hardware cooperation. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, pages

1–14, New York, NY, USA, 2017. ACM.

[168] Jaeyoung Yun, Jinsu Park, and Woongki Baek. Hars: A heterogeneity-aware runtime system for

self-adaptive multithreaded applications. In Proceedings of the 52Nd Annual Design Automation

Conference, DAC ’15, pages 107:1–107:6, New York, NY, USA, 2015. ACM.

111

[169] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,

Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.

USENIX Association.

[170] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.

CoRR, abs/1409.2329, 2014.

[171] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang

Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication architecture for dis-

tributed deep learning on GPU clusters. In 2017 USENIX Annual Technical Conference (USENIX

ATC 17), pages 181–193, Santa Clara, CA, 2017. USENIX Association.

[172] Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for latency-critical tasks on shared mul-

ticore systems. In Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’16, pages 33–47, New

York, NY, USA, 2016. ACM.

112

Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor, Professor Woongki Baek. His

dedicated guidance and generous support have always encouraged me throughout my graduate studies.

His invaluable advice and inspiration guided me to dive into important research problems and pointed

me in the right direction during my research. This dissertation would not have been possible without his

mentorship. It was a great honor to be advised by him.

I would also like to thank the committee members of my dissertation, Professor Young-ri Choi,

Professor Myeongjae Jeon, Professor Seulki Lee, and Professor Jongeun Lee. They provided valuable

comments and feedback to improve the quality of this dissertation.

I am grateful to all my lab colleagues in the Intelligent System Software Lab (ISSL) for being great

colleagues, supporting my research, and enabling a productive working environment. I have learned

a lot from my lab colleagues and collaboration with them has been an excellent research experience.

I would also like to thank my fellow graduate students in the Center for Innovative System Software

Research (CISSR) group for sharing their insights on a range of systems software research topics.

I would like to express my sincere gratitude to my family for their unconditional love and support

during my graduate studies. I am grateful to my parents for always believing in me and encouraging me

with their optimism to pursue my dreams. They have made all of this happen.

Last but not least, I am truly grateful to my beloved wife, Gyeongjin Lee, for her deep love and

unwavering support for me. She has provided the emotional support that I needed to overcome all the

difficulties I had. She has always been my source of happiness. I am truly lucky to have her be with me

and make my life bright. Without her, I could not have done all of this.

113

	목차
	I Introduction 1
	1.1 Contributions 2
	1.2 Organization 3
	II Background 4
	2.1 Heterogeneous Embedded Systems and Inference 4
	2.2 Heterogeneous Memory Systems 5
	III Related Work 7
	3.1 Model Slicing and Execution for Efficient Deep Learning Inference 7
	3.2 Data Placement and Migration for High-Performance Deep Learning 8
	3.3 Resource Management for QoS-Aware and Efficient Workload Consolidation 9
	IV Heterogeneity-, Communication-, and Constraint-Aware Model Slicing and Execution for Accurate and Efficient Inference 11
	4.1 Introduction 11
	4.2 Experimental Methodology 12
	4.3 Need for Heterogeneity-, Communication-, and Constraint-Aware Inference 13
	4.4 Design and Implementation 16
	4.5 Evaluation 22
	4.6 Summary 29
	V Reinforcement Learning-Augmented System for Efficient Real-Time Inference on Heterogeneous Embedded Systems 30
	5.1 Introduction 30
	5.2 Background: Deep Q-Network 31
	5.3 Design and Implementation 33
	5.4 Experimental Methodology 39
	5.5 Evaluation 40
	5.6 Summary 48
	VI Hotness- and Lifetime-Aware Data Placement and Migration for High-Performance Deep-Learning on Heterogeneous Memory Syste ms 49
	6.1 Introduction 49
	6.2 Background 50
	6.3 Experimental Methodology 53
	6.4 Characterization of DL Applications 54
	6.5 Design and Implementation 58
	6.6 Evaluation 64
	6.7 Summary 71
	VII Coordinated Management of Cores, Memory, and Compressed Memory Swap for QoS-Aware and Efficient Workload Consolidation for Memory-Intensive Applications 72
	7.1 Introduction 72
	7.2 Background 74
	7.3 Experimental Methodology 75
	7.4 Characterization 77
	7.5 Design and Implementation 82
	7.6 Evaluation 87
	7.7 Summary 93
	VIII Conclusion 94
	References 96
	Acknowledgements 113

