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1. Introduction

There have been many developments in invariant theory and coding theory with various
applications [5, 13, 16-21,27]. There are connections between invariants and weight enumerators for
self-dual codes over various rings and fields [1-4,7-12,14]. Gleason [17] says the weight enumerators
for binary Type II codes are invariant by a certain finite group of order 192. In [6], the authors prove
that elliptic modular forms can be obtained from homogeneous weight enumerators of binary Type II
codes by using specific Jacobi theta series. For a finite ring Z,,,, a Jacobi form of the full Jacobi group
is suggested by complete weight enumerator of Type II codes over the ring [10]. Recently, in [23], the
authors determine some Jacobi forms from Type II codes over Z,», and they also use shadow codes.
Bannai et al. [2], construct Hermitian modular form by using Type II codes over F, + uF, with u? = 0.
They suggest invariants concerning the symmetrized biweight enumerators, i.e., the genus is equal
to 2, of Type II codes over the ring. In many works, a Jacobi form is studied over totally real fields
(see [3,11,25]). For this reason, in this work, we figure out a Jacobi form which is not over a totally
real field. We establish a connection between Jacobi forms and codes over R = F, + uF, (1> = 0). Since
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the ring R is described using the ring of integers in the quartic field K = Q( V5, i), we should consider
Jacobi forms over the field K, which is not totally real. The notion of Jacobi forms over arbitrary
number fields was defined by Skogman in [24]. In this paper, we add examples of Jacobi forms over K
by modifying theta series of the lattices associated to codes over R.

We focus on the ring Fy4 + uF, with > = 0 in this paper. This ring is a finite commutative local
Frobenius ring of order 16. A Frobenius ring is one of the most significant part in coding theory since
we get the result that |C||C*| = |R"| for a code C of length n over a Frobenius ring; this fact is connected
to MacWilliams identity directly. Furthermore, for rings of order 16, we already know about their
generating characters from [13]. This means that we can adjust this information to our studies when
finding MacWilliams identity. MacWilliams identity is one of significant results in coding theory that
describes how the weight enumerator of a linear code and the weight enumerator of the dual code relate
to each other. MacWilliams identity give various application in coding theory. For example, in [13],
the author presents an upper bound for the minimum distances of divisible codes through their dual
distances. In [21], the authors study Type II codes over F4+ ulF4 and in particular the Gray map, the Lee
weight, the construction of lattices and invariants. Actually, in [21], there are no results for invariants
in higher genus.

In this paper, we suggest a Jacobi form from a linear code C over R := Fy + uF,, where u> = 0
(Theorem 3.1). This Jacobi form is not over totally real field, and it is related to complete weight
enumerator of the code C. We introduce MacWilliams identities for both, complete weight enumerator
and symmetrized weight enumerator in higher genus g > 1 of a linear code over R. Finally, we give
invariants via a self-dual code of even length over R (Theorem 4.4).

2. Preliminaries

Throughout this paper, we use the following notations.

Notation
K an algebraic number field
r the number of real embeddings of K
r the number of conjugate pairs of complex embeddings of K
Ok the different of K
Ok the ring of integers of K
Q the full ring of quaternions{x + yx : x,y € C, k* = -1, ak = ka, Ya € C)
ba {x+ykeQ:y€eR.}

llu+vkllc wu+ivforu+vke@
lu+ vkl u+ivforu+vke@

R a Frobenius ring F4 + uF,, where w> =0
X the generating character of R

wity, the Lee weight in Fy

witr the Lee weight in R

N the cardinality of R

‘M the transpose of a matrix M

L, an m X m identity matrix
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diag(vy,...,v,)  an m X m diagonal matrix, where an (i, i)-th component is v;

(1<i<m)
GL(m, F) the general linear group of degree m over F
AX B the Kronecker product of two matrices A and B
e[ Z] eZﬂiZ

Let K be an algebraic number field, and Q be the full ring of quaternions {x + yk : x,y € C, k* =
—1, ak = ka, Ya € C}; the set of all the elements of Q is equal to {a + bi + cj +dk : a,b,c,d € R, i* =
=« =-1,ij =« jk =1 ji =—«} (see [22, p. 220]). For an element a € K, we denote the
real conjugates of @ by @V, ..., """, and the complex conjugates of @ by a"'*V, ..., @"*22), where
¥t =aWforry +1 < j<r +r,.

We set I'V(K) = I'< O%, where I' = S L(2, Ok); the group I'/(K) is called the Jacobi group of K. The
group law of I'V(K) is given by

(A,X)-(B,Y)=(AB,XB+Y) (A,BeT, X,Y € 0%).

Let ) be the upper half plane, and g = {x + yx € Q | x € C,y € R*} be the quaternionic
upper half plane. Let H be the space b x h; x C" x Q?; an element of H is written as (7,2) :=
(Tl’ s T Ly e e v s Zr1+r2)-

The group I'V(K) acts on 9, and the action is given as follows: For elements (;{;) €
SL(22,0k) and [, u] € O%,

(42)0 @2
1 1 (r) (r1)
_ ! )7-1 +IB( ) a1, +p" 1) e e U
A (1) A1) (r)’(a/ Tri+1 +pB )y Trsl + ),
YT +6 YT, + 6

(ri+r2) (F1+72)\ (/1 +72) (ri+r2)y-1 <1
o (@ Trior, + )(y Tyior, +0 ), v UL
Zry

1 Dy—-1 -1
m, (')’(rl+ )Tr1+l + 00 )) VA (7(r1+r2)Tr1+r2 + 5(rl+r2)) Zr1+r2) )
ri

and
(Aplo (@D =@z + 1AV + 1V, L 2, + Ty, AT 4 1),
Fory,6,4 € K and (7,2) € H, set

T () 2
A g = 1. —~(j) Y <
Tr( MAy? + 6y 'yiM) = > w0 ———
4 YD + 6W)
j=1 J
ri+nr
n Z ||[n_i(j)(uj+v_jk)()/(j)‘rj +6(',))_1y(j>(uj+VjK)n_’)l(j)||C
Jj=ri+1
ri+nr
. . . D1 (i .
4 Z ”z,ﬁm(uj +ij)(,y(J)Tj + 69 yo)(uj +ij),71(;>||@
j=ri+1

3!
Tr(M(ATA +20)M) = Y w1, +2497)
j=1
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ri+nr

" Z ||’n_i(j)(/l(j)7'j/l(j) + Zﬂ(j)Zj)%(j)||c
j:r1+1
ri+r
+ Z ||tﬁ(])(ﬂ(J)Tjﬂ(]) + 2/1(J)Zj)n—,’l(J)”@
j:r1+]
where
e zi=uj+vikforj=ri+1,....r +n.
o " vectors in C"**" (1 < i < ry + 2r,) such that mY*"» = @ for j=r + 1,...,r + .
o M =@V .o AT an (r) + 2ry) X (1) + 2r;)-matrix over C.

o 1) = DB

Next, we need to present a multiplier system for S L(2,Ok). For doing this, we set the following:
ForA=(3%)eSLQ2,0x)and Z = (11,....7,.p,) € " X 2,

M (1 ) ()
> a Ty +ﬁ a Ty +ﬁ (r1+1) (r1+1) (r1+1) (ri+1)y—1
AoT—(W,--.,W,(a Tr+1 0 Ny Tye1 + 0 L
e, (a,(rl +r2)TV1 . +Br1 +r2)(,y(r1 +r2)_1_rl+r2 " 5r1+r2)_1) ’
and
JA,D) = Ny? + ),
where
il ri+r
. , . _ .
N7 +06) := n(y(f)rj +6Y) l_[ (Y x; + 6P + Y0P,
j:l j:r1+l
and 7; = x; + yjk for j = r +1,...,r1 + ro. A multiplier system for S L(2,0Ok) is a function y :

SL(2,0k) — C such that
XABJ(AB, D) = x(A)\J(A, Bo?)*x(B)\J(B,?)?

forall A, B € SL(2,0) and 7 € )" X D,.
The next definition is about a Jacobi form of weight k and index m with an index vector for a number
field.

Definition 2.1. [22,24] Let K be an algebraic number field, k € %Z, and m € Og. Let y be a multiplier
system for S L(2, Ok), and it be a vector in C" such that "mm" = mY for j = 1,...,n. A Jacobi form
of weight k, index m, index vector m and the multiplier system y for the number field K is a function
® : H — C satisfying

? ((C; /;) o 23) o ((C; /;)) NOZ + 6 el Tr( MAYT + 8) yZM)ID(E. )

and
O([A, 4] o (7,2)) = e[-Tr(' M(ATA + 22 M) D(7, 2)

forall (%) € SL(2,0k).[A,ul € 0%, Z€ b X b3 and 7€ C" x Q™.
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A Frobenius ring is a finite commutative ring R satisfying that the R-module R is injective. We
consider the number field Q( V3, i) which has the ring of integers Z[ 1+2‘E, i]. Let u be the residue class
of x + 1 in the quotient ring

1+ 5
2

R:=F,+uF, =7[ ,x1/42, (x + 1)?),
i.e., > = 01in R. On the other side, the ring R is isomorphic to F,[u, v]/{v* + v+ 1,u?). This ring R is a
finite commutative local Frobenius ring of order 16 (cf. [13]).

A code C of length n over R is an R-submodule of R", and an element ¢ = (¢y,...,c,) in C is called a
codeword in C. The dual code C* of Cis {c € R" : ¢-¢ = 0 for all ¢ € C} with respect to the Euclidean
inner product. If C C C* (resp. C = C*), then C is a self-orthogonal (resp. self-dual) code.

The Lee weight wt;(a) of an element a in F, = {0, 1, w, @} is given as follows:

0 ifa=0,
wir(a) =<1 ifa=wora,
2 ifa=1.
For a vector w = (wy, ..., w,) € I, the Lee weight wt, (w) of wis X1, wi (w;).

Definition 2.2 gives the Lee weight of an element in R = Fy + uF,.

Definition 2.2. For an element @« = a + bu in R (a,b € F;), the Lee weight wt;(a) of « in R is
wtr (@) = wtp(b) + wtr(a + b),

where wty is the Lee weight in F,. For a vector v = (vy,...,v,) in R", the Lee weight wt;(v) of v is
2y Wi (v).

In the following Table 1, we suggest the Lee weights of all the elements in R.

Table 1. Lee weights of all the elements « of R.

a  wi (@) a wir (@) a wir (@) a wir (@)
0 0 1 2 w 1 @ 1

u 4 1+u 2 w+u 3 O+u 3
wu 2 1+ wu 2 w + wu 1 O+ wu 3
ou 2 1+ ou 2 w + @u 3 o + ou 1

Proposition 2.3. [21] Let us define a map ¢ from R" to F" as follows:

b R" — F2
(a; + bu,...,a, +bu) +— (by,a,+by,...,b,,a,+b,),

where a;,b; € Fy (1 < i < n). The map ¢ preserves the Lee weight from R" to }Fi”, it means that, the
map ¢ is a Gray map.

For a self-dual code C over R, C is a Type II code if the Lee weight of every codeword is divisible
by 4. If not, the code C is called a Type I code.
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Lemma?2.4. [13,21] Let C be a linear code of length n over R.

(i) We have that |C||C*| = |R"|.
(i1) There is a Type Il code of length n over R if and only if n is even.

From now on, we suggest some weight enumerators for a code C over R: A complete weight
enumerator and a symmetrized weight enumerator of C. Let C be a linear code of length n over R, and
v =(v,...,v,) be acodeword in C. Let n,(v) be the number of coordinates v; such that v; = a, where
a € Rand 1 <i < n. We define the complete weight enumerator cwec of C as

N
ng;(v)

. —_ J
cwec(Xy,...,Xy) = Z nxj ,

veC j=1

where x; is an indeterminate and a; € Rfor 1 < j < N.

Let U be a fixed subgroup of the unit group of R. We note that the group U acts on R by the
multiplication. We denote a ~ b if a = ub for some u € U, it is an equivalence relation in R.
Moreover, § = {s1,..., 85} 1s a set of representatives of the distinct orbits of U. The symmetrized
weight enumerator swec of C in R" is

IS1

s r(€)
SW€c(X1,---,X|5|):Zr|Xj T

ceC j=1
3. A Jacobi form from a linear code over R

We figure out a Jacobi form for a number field via a linear code over R. Before we do this, we first
give a theta function as follows.

Let K be a number field, and A be a lattice in K", i.e., A is a free Og-module of rank n. Now, for
each Y in A, we define a theta function @, y : H — C as

| ritr
L, o N | . : .
®A,Y(7_-)’ Z) = Z e |:Z (EZX(J)X(])T]' + ZX(J) Y(J)Zj) + Z _tx(J)zj(J) + tx(])ZjY(j)
xeA | j=1 J=ri+l ©
ri+r 1
n Z .t x(j)Tj PONRNG) 2 y
, 2 c
j=ri+l

In this section, let K = Q( V3, i), and then Ox = Z[(1 + V5)/2,i]; so r; = 0 and r, = 2. Here, we
can check that R = Fy[u, v]/(u* + u + 1,v?) = Ok /20k; the first equivalence is introduced in Section 2,
and the second equivalence is from the ring isomorphism Fy[u, v]/{u* + u + 1,v*) — Og/20k,where
u+ P +u+ 1,07 - (1+ V5)/2+ 20k, and v + (@ + u + 1,12y > 1 + i + 20x.

Let & : O — R be the reduction map by modulo 2, and h O’I’( — R" be defined as (xq,...,x,) —
(h(x1), ..., h(x,)). For a linear code C over R, the lattice A(C) is %ﬁ‘l(C).

In the following theorem, we obtain the relation between the theta function and complete weight
enumerator for a linear code under the previous settings.

AIMS Mathematics Volume 7, Issue 5, 8235-8249.
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Theorem 3.1. Let C be a linear code of length n over R. Then we get

.....

where
(J) . . .
w @) = XY e[Zr-‘_ (r T’+F(’)Z1)+Z;'+ﬁ] [ 0r? + Pz

redy, J=1
r=pu (mod 2)
T Wt ” 10z, + r(j)zj”@] i
2 efllrtr e e 0,
r 71,
rzye(rlr(\od 2)

+ | £ 07 D 4 F(I)ZIHE + || 1@, ® + ,,<2)Zz||6] _

Proof. Letv be a codeword (vy, ..., v,) in C, and v be a vector (vy,...,V,) € E‘l(v). We easily check &
is a ring homomorphism, thus 4~ '(v) = A71(0) + V. Then we obtain that

2 e [”l(xﬁl)r xﬁl) v D Dy (x(l) v ))Zlnc
eh\(v)
P 00+ 60 o+ D0
A It p
+ ||4(x(2)‘r 22 @@ (P )22” ]
= 2 efllpinal a2z 3.1
1 s e s P
3 el w6 |+ [0 + 5P|
Xp €20k +V,
)+ Pzl [P 2]
= le,,u(?’ Z)n“(v);

HER

we only consider 7, and 7, because r; = 0 and r, = 2 as we mentioned before. And the second equation
is from that

Iy +vik) + (U2 + vo)lle = (uy +vii) + (U + vai) = |lug + vikllc + |luz + vakllc,
Gy +vik) + (2 + vallz = (ur + Vi) + (uy + Vi) = [lug + vikllg + lluz + vakllz

for all u; + vk, ur + vok € Q. Therefore, we have that

.....

1
N ‘ RN
c] ’

1
+ ‘ E’x(z)rzx(z) + Pz, Y®

1
Z e[ Etx(l)Tlx(l)+’x(l)zlY(l)
xeA(C)
1

C C

+

Sy g D 41Dy

1
n “ FOMINVCI NG el
c 12

1
Z e[ E’x(l)ﬁx(l) + xWz, y®

1 p-1
X€ ﬁh ©)

C C
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1

+ ‘ Etx(l)ﬁx(l) + Dz, y®

55

veC ye %Fz lv)

1
N Hitxa)mm + x5, y®

C

]

1
n Hit XD7, 3@ 4 13 @ Y@

]

1
szu)ﬁx<1> + 1Dz, YD

C C

1
+ ‘ E‘x(l)nx(l) + Dz, y®

Y o2,

veC uER
= Cwec(wl,y(‘?,z) | 1 € Ok /[20k);

1
+ Hitx(z)rzx(z) + XDz Y@

C

the fourth equation is from (3.1), where n,(v) := [{j : v; = u}| for each u € Ok/20k. The result is

proved. m|
We fix an Og-basis {vi,...,v,} for a lattice A, and set L to be an n X n-matrix (v{,...,v,). The
matrix Q := 'LL is a symmetric matrix, and QY := 'L;L;, where L; = (v(lj), v forl < j<n.

Morevoer, Q' is positive definite for 1 < j < ry.
In [24], for b € O, the function 6y (7, 7) is defined as

r ritr
op(F,2) = Z g[(Z(Q(j)[x(j)]Tj + 220 QB0 + Z [ L LD + 22 Lz L b

x€0y j=1 j=ri+l

ri+nr
+ Z ||t XL LY + 20X Lz, ijw”C)] .
j:r| +1

The next theorem says that we can obtain a Jacobi form by using a linear code of length n over R.

Theorem 3.2. We use the same notations as above. Let C be a linear code of length n over R, and b
an element of Z[a, i]" with & = (1 + V5)/2. Then we get a Jacobi form of weight 5, index 4n and index
vector (2,...,2) as follows:

Z 00.5(7,2) + cwec (wl,ﬂ(47_", 47) | u € OK/2OK) ’
P+ ++pi+ai=4n
pe#2, qe=0 for all 1<t<n

where Lb = (p1 + qia, ..., p, + q,@) € Z[a]" (in particular, w, (7, 2) is introduced in Theorem 3.1).

Proof. First, we claim that Lb is in Z[«a]". We set an n-tuple Lb = (t,...,t,) satisfying ‘(Lb)Lb =
1+ -+t = 4n, and (Lb)Lb = |t + --- + |t,/* = 4n; the {-th component #, can be written as
Pe + qea + 1ol + seai, where pe, qe, e, S¢ € Z (1 < € < n). It means that

(P +qa+rii+ slozi)2 + o+ (P gua + 10+ s,,ai)2 =4n, (3.2)
(p1 + qla)2 +(r + sla)2 +- 4+ (p, + qna/)2 + (r, + sncx)2 = 4n. 3.3)

Let o be the complex embedding of K such that o : V5 — — V5 and i - i. Applying o to (3.3), we
have (p, + q10(@))? + (r1 + 510(@))> + - - + (pn + guo(@))* + (1, + 5,0(@))* = 4n. It follows that

(ap; — q1)2 + (ar; — s1)2 +---+(ap, - qn)2 + (ar, — sn)2 = 4na’ = 4n + 4na. 3.4)

AIMS Mathematics Volume 7, Issue 5, 8235-8249.
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We get that combining (3.3) and (3.4), we see that
2, 2 2 2 2, 2 2 2 2, 2, .2, 2 2, 2, .2, 2.
pitaqi—ri=site APy tg -, — s, =An=pi gt syt A Pyt s

the first equality is obtained by expanding (3.2), and the second equality is from combining (3.3)
and (3.4). Thus r, = s, = O since ry, 5, € Z for £ = 1,...,n. Hence we proved the first claim.

By using [24, p. 41], we can say that

Oo.(7,2)
beZla.il",
Lb=(p1+q1@,....pn+qn@)<Z[a]",
PLHa APt =4n
is a Jacobi form of weight %, index 4n and index vector (2,...,2).
Next, when Lb = (2,...,2), 6y, L-1(2 ,,,,, 2)(7 Z’) is obtained from the complete weight enumerator of
the code C; in this case, the condition p1 + ‘11 -+ p? + ¢* = 4n is satisfied. In detail, we have that

.....

where b = L7!(2, ..., 2); the first equation can be checked easily, and the second equation follows by
the below reasoning

®ﬁ*1(C),(2,...,2>(27_'), 22)

r ritr

- Z e th(j) X7+ 21Xy 0z 4 Z ||tx(j)zj(./) n 2‘x(j)ij(”||C
xeh=1(C) J=1 j=ri+l
ri+nr
+ Z X7 + 2’x(f>ij(f)||6
j=ri+1
ri+r
- Z Zr DL+ 2 XD Lz + Z ||fx(”’L TLixD 42Xz L b(j)”c
xeOy Jj=ri+1
ri+nr
+ Z ||’x(j)’LjTijx(j) + 2tx(j)tszijb(j)||@
j=ri+1
ry+nr
- Z Z OV XDz + 2 XV QU7 + Z ||’x(’)’L TLx? + 2 XLz L bm”C
xe0y Jj=r1+1
ri+nr
+ Z ||l.x(j)leTijx(j) + 2’x(’)’LszLJb(])||6 .
j=ri+1
= 9QL 12,.., 2)(7' 2)
(here Y = (2,...,2)). This implies the second claim, thus this is the result here. O

We close this section with an examlple.
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Example 3.3. Let C be the linear code over R of length 2 generated by the following 1 X 2 matrix

(a 1+a+i)

(here & = (1 + V5)/2). By using Table 1, we can check that the code C is a Type II code over R.
Meanwhile, ™' (C) is generated by (a, 1 +a+1i),(2,0) and (0, 2) over Ok. And then {(«, 1 +a+1i), (0, 2)}
is a basis for h~'(C); since (a,1 + a + i) and (0,2) are linearly independent over Ok, and (2,0) =
(2+2a0)(a,1+a+1i)+ (—a+1i—ai)0,2). Thus the matrix L is obtained as

a 0
L_(1+a+i 2)’

and the matrix Q = 'LL. We note that

L‘l—i 2 0 _l 20 -2 0
T 2a\-1—-a-i a) 2\-a+i-ai 1)

As a result, by Theorem 3.2, we have a Jacobi form of weight 1, index 8 and index vector (2,2) as
follows:

Z GQ,b(?,Z) = Z eQ,L_l(pl‘HJI(I)(‘?’Z))

+gra
beZ[a,i)?, P1,91-P2,42€Z, P2t
Lb=(p1+q10.p2+qra)eZ]al?, PIHE+P3+45=8
PIHaT+Py+45=8
=01 202 0y«2220\(T D+ 60, 1/ 20-2 0y+2\(T,2)
Q.5( G A Q.5( ()

—a+i-ai 1 —a+i—-ai 1

Q’%(—afzzi—zai (1))( +_22(1/)( ¢ Q’%( —(%a+i—2oti (l))( _+22[Z)( <
) 3

= -
_ + 7,2)+0 _ T, 7
4202 022y (T +bp 1 202 0y o y(T.2),

= cwec (w1 ,(47,42) | 1 € Og[20x) + 04, (2. 2) + g, (7. D)
+ 005, (T, 2) + 00, (T,2) + 00,55 (T, 2) + O (T, 2) + O, (T, 2),

where by = (3372, 0) (), b2 = (23572, 9) (21), bs = £ (352, 9) (L),

by = (292, D) (E), bs = (292, 0) (59, be = (L2972, 0) (Z0), by = (L2972, 0) (L)

(in detail , HQ 1( 202 o)(g)(‘?,Z) term is equal to cwec (wl,y(4?, 42) | u € OK/ZOK)).
2

2\ —a+i-ai 1

4. Invariants via a self-dual code over R

In this section, we study invariants by using self-dual codes over R. First, we give definition for
some weight enumerators in higher genus g > 1.

Definition 4.1. Let C be a code of length n over R.

(1) The complete weight enumerator in genus g is

where ny(cy, ..., cg) is the number of i such that a = '(cy;, . . . , Cgj).
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(i) The symmetrized weight enumerator in genus g is

swec g(Xjq with [a] € §8) = Z 1—[ x?;‘i](cl""%),

c1,...cg€C [aleSs

where S is the set introduced in Section 2, and ny,(ci, . .., cg) is the number of i satisfying [a] =
[t(Cli,, cees Cgi)]-

The following lemma says the MacWilliams identity for linear codes over R. For this, we give that
an n X n matrix M = (m;;) over C acts on C[x;, ..., x,] as follows:

M-h(xi,...,x,)=h Z miiXxp, ..., Z my;x; |,

1<i<n 1<i<n

where h(x,...,x,) € Clxy,...,x,].
As we mentioned before, the ring R is a finite commutative local Frobenius ring of order 16. We
note that the generating character y of R = F»[u, v]/{(v* + v + 1, 1u%) is

y(a+ bu+ cv + duy) := (=1)*rbrerd,

where a, b, c,d € F,.

Lemma 4.2 is about the MacWilliams identity for a linear code over R with weight enumerators in
genus g. We recall that S is a set of representatives of the distinct orbits of a fixed unit subgroup U
in R.

Lemma4.2. Let C be a linear code of length n over R, and y be the generating character of R. Let a;

(resp. b;) be an element of R (resp. S ) with any ordering for 1 <i < N (resp. 1 < j <|S]).

(i) Let T\ be a N X N-matrix such that (i, j)-th component of T is x(a,a;) with 1 < i,j < N. For
complete weight enumerator, we have

1 g

cwecer o(xg) = @ (® T1) ccwec g(xg).

(i1) Let T, be a |S| X |S|-matrix such that (i, j)-th component of T, is Y\ yer Tuw, Where [a] = b; and
v={a" € R:d = bj}. For symmetrized weight enumerator, we get

1 8
sweCL,g(x[a]) = @ (® Tz) . swec’g(x[a]).

Proof. We give an equivalence relation as a = b if a = bu, where u € U, and U 1is a unit subgroup in R.
By the equivalence relation, the generating character for the ring R, and [28, Theorem 8.4], we obtain
the result.

O

For an arbitrary unit subgroup for the ring R, we can suggest a symmetrized weight enumerator for
a code over R. In the following remark, we show a symmterized weight enumerator and MacWilliams
identity for a certain unit group of R.
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Remark 4.3. Let U be a subgroup of the unit group of R. There are eight subgroups of the unit
group of R. For example, let U = (w). Then we get the set S = {0,1,u,1 + u,1 + wu,u + w}
which is the set of representatives of the distinct orbits of U. We note that the equivalence classes
are [0] = {0}, [1] = {l,w,1 + w}, [u] = {u,wu,u + wu}, [1 +u]l = {1 +u,w + wu,1 + w + u + wu},
[MT+owul={1+wu,w+u+wu,l +w+uland [u+w] ={u+w,1 +w+wu, 1 +u+ wu}. The ordering
inS is givenas0,1,u, 1 +u,1 + wu,u + w. In this case, we obtain the following matrix T, as follows:

T, =

— o e e e
|
—_
O8]
|
—_
|
—_
|
—_

For the genus g = 1, the MacWilliams identity for a linear code C of length n over R is

1
sSwec. (X[O], X[11> X[ul> X[1+ul> X[1+wuls x[u+w]) = —swec(Y1,¥2, Y3, Y4, Y5, V6)

ICI

where
yi = X0+ 3xpy + 3x0) + 3X0140 + 3X110u T 3X(utw)s

Y2 = Xjo] — X[{1] — X[u] T 3x[l+u] — Xl+wu] — Xu+w]»

Y3 = X — Xt 3X[u] — X[1+u] — X[1+wu] ~ Xut+w]>
Ya = X1+ 3X[1] = Xy = X[1+u] — Xl+owu] = Xurw]s
Y5 = X[0] — X[1] — X[u] = X[1+u] — X[1+wu] T 3X[u+w],

Y6 = X[0] = X[1] — X[u] =~ X[1+u] T 3x[l+wu] — Xu+w]>

x;) and y; are indeterminates.

Finally, we will show invariants by the complete weight enumerator and symmetrized weight
enumerator for a self-dual code over R. First, we define a subgroup G, of GL(N¢,C) as
G, := (M4, M;, —Iy: : J is any integer Symmetric matrix),
where M, = (\_/_;’v)g Q¢ T, and M, = diag((—=1)“’* with a € R®). Similarly, let us a subgroup Gg of
GL(|S|%,C) as
Gg = (Mg, M;, —Isic 1 J is any integer symmetric matrix),

where M, = (<£) ®* T, and M, = diag((~1)* with a € §%).

Especially, for a self-dual code of even length over R, we obtain the result of invariant.

Theorem 4.4. Let C be a self-dual code of even length n over R. The complete weight enumerator
cwecg of Cin genus g is invariant under the action of the group G,. Similarly, the symmetrized weight
enumerator swecg of C in genus g is invariant under the action of the group Gg.

Proof. We prove the statement for the complete weight enumerator for the code C. We can easily
check that —I,; and M, invariant for cwec(x;); first, —Iys - cwec(x;) = cwec(x;) since cwec(x;) =
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Fece 07 = Fe((=1)x;)" by 2 | n. Second, M, - ewec(x;) = cwec(x;) is from the MacWilliams
identity Lemma 4.2. Now, we claim that M} is in G,. We note that

.....

In detail,

Yaere 'aJa - ng(cr,. .., ¢) = Xy J((Clis- o5 Cgi)),

= Di<i<n (lekSg Jia(Cki)® + 2 X 1<ctemsg Jlmclicmi) ,

= Dickeg Jrk ZlSiSn(Cki)z + 2 Yt <iemsg Jim 2a<i<n CliCmi
the right hand side value is divisible by 2 since the code C is self-dual over R.

Thus, we have
M; - cwec(x,) = Z l—[ X = ewee(x,),
C1,..,Cg€C a€ERS

by the above equations. We proved the statement. For symmetrized weight enumerator for C, the proof
is similar with the previous case. O

If a linear code C is Type II of length n over R, then the length » is automatically even. Thus, we
obtain the following corollary.

Corollary 4.5. For a Type Il code C of length n over R, cwec, and swec, are invariant under the
action of the group G, and Gg, respectively.

Proof. By Lemma 2.4 (ii), for a Type II code of length n over R, n is even. So by using Theorem 4.4,
the result follows. o

5. Conclusions

We suggested a Jacobi form from a linear code C over R := F, + uF,, where u?> = 0. This Jacobi
form is not over totally real field, and it is related to complete weight enumerator of the code C.
We introduced MacWilliams identities for both, complete weight enumerator and symmetrized weight
enumerator in an arbitrary genus g > 1 of a linear code over R. Moreover, we presented invariants
via a self-dual code of even length over R. In the future work, we can consider another finite ring for
linear codes and their various weight enumerators. From these results, we can also establish a new
Jacobi form.
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