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Abstract: In the automobile manufacturing industry, inspecting the quality of heat staking points
in a door trim involves significant labor, leading to human errors and increased costs. Artificial
intelligence has provided the industry some aid, and studies have explored using deep learning
models for object detection and image classification. However, their application to the heat staking
process has been limited. This study applied an object detection algorithm, the You Only Look Once
(YOLO) framework, and a classification algorithm, residual network (ResNet), to a real heat staking
process image dataset. The study leverages the advantages of YOLO models and ResNet to increase
the overall efficiency and accuracy of detecting heat staking points from door trim images and classify
whether the detected heat staking points are defected or not. The proposed model achieved high
accuracy in both object detection (mAP of 95.1%) and classification (F1-score of 98%). These results
show that the developed deep learning models can be applied to the real-time inspection of the heat
staking process. The models can increase productivity and quality while decreasing human labor
cost, ultimately improving a firm’s competitiveness.

Keywords: object detection; classification; deep learning; Artificial Intelligence; heat staking process;
manufacturing industry

1. Introduction

Technological advancement has enabled the development of various practical deep
learning methodologies. Deep learning frameworks and architectures, such as YOLO (You
Only Look Once) or ResNet, provide highly accurate and precise real-time identifications
of objects [1]. These models have been used in solving on-site issues in diverse fields. This
study attempts to further test the validity of recent deep learning models by identifying
and classifying the quality of heat staking points. This study specifically focuses on the
heat staking process of points on automobile door trims.

Employing deep learning-based quality prediction in the manufacturing process is
particularly valuable because there are over sixty staking points in a single door trim and
inspecting the quality of all points in a limited takt time is difficult. Furthermore, human
errors are inevitable during measurements [2]. Because of these errors, acceptable product
points are sometimes rejected (also known as “overkilled”), and defective product points
are accepted as acceptable product points (also known as “escaped”). Both overkilling and
escaping lead to tragic results, as overkill increases production costs and escape causes
critical customer dissatisfaction.

One solution to partially alleviate these hurdles is to employ a machine vision system.
The idea is to set up an environment for machine vision, take vision images, and run
rule-based tests to check the quality of products. However, applying rule-based methods in
a heat staking process is difficult because the locations and sizes of staking points vary from
product to product. Therefore, it is recommended to employ a deep learning framework
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that is relatively free from the problems of rule-based algorithms. In this manner, studies
have employed various deep learning frameworks and discuss the results.

The problems of the current inspection process of heat staking points in the automotive
industry are that the process fully relies on the human labor and that human labor often
incorporates inspection errors. That is, due to various reasons such as immature work
level, tiredness, and so on, inspection errors exist. Therefore, this study tried to employ
various deep learning models to determine whether the artificial intelligence technology is
an effective strategy to enhance the inspection process of heat staking points. In terms of
the methodology, this paper tried to apply two different objectives—object detection and
classification—and combine them into one deep learning model to apply in the inspection
process. For the object detection, this study applied the YOLO methodology as it is a
powerful algorithm and one frequently used in object detection problems. Using the YOLO
network, this study detected all heat staking points, regardless of their quality. From the
detected heat staking points, the study then used the ResNet classification model to further
classify whether the detected heat staking point was defected or not. This process, all
connected into one algorithm, can be a powerful alternative for heat staking manufacturing
firms that have problems in inspection processes.

The advent of AlexNet was a huge turning point in deep learning applications [3].
Since the introduction of the AlexNet framework, models have been applied to various
fields including the manufacturing industry [4,5]; however, slow detection rate was a
practical problem when applying deep learning to the manufacturing industry. The YOLO
series are representative one-stage detectors, and fast detection speed, a critical index in
real-time application, is their most prominent feature [6–11].

Among the YOLO series, this study used the most recent, YOLOv5, for detecting
staking points from automobile door trims and the ResNet classification model for classify-
ing the quality of detected staking points. This study ensembled two different methods
to increase both the efficiency and accuracy of the given task. In this study, the func-
tion of YOLOv5 was to localize the abnormal regions surrounding staking points. The
advantage of using ResNet is in avoiding gradient explosion problems in deep learning
for classification. Using both models, this study dynamically filtered the result from the
YOLOv5 and ResNet models. Because of several advantages, prior studies have well-used
object detection models and classification models simultaneously in solving specific given
tasks [1,12–21].

Following prior findings, this study used YOLOv5 with ResNet and obtained robust
results. Using 2400 training door trim images (100,310 staking points labeled) and 600 test
images, this study first found that the training result of the YOLOv5x model was signifi-
cantly accurate; the mAP was 0.951, precision was 0.934, and recall was 0.939. The highly
accurate result showed the good ability of the YOLO model to detect the heat staking
points in the door trim image. Furthermore, the ResNet classification model also showed
a noteworthy result; the accuracy of the model was 0.98, and the F1-score (the harmonic
mean of the precision and recall) was 0.98. These results imply that the ResNet model
classified the quality of the staking points detected by the YOLOv5 model effectively. The
high F1-scores also showed that the results were relatively free from type 1 or type 2 errors.

This paper highlights a technical innovation in the deep learning field. By joining the
YOLO and ResNet models, it provides a novel method to more accurately simultaneously
detect inspection points and classify their quality both accurately and reliably.

This research makes the following contributions: first, it applies a deep learning
framework to a real-time problem, particularly in the heat staking process. Inspecting
the quality of a manufactured product and guaranteeing high quality for customers are
critical for a business’s sustainable growth. Manual inspection has long encompassed
problems. Immature work skills because of frequent labor changes and increased process
complexity are typical examples that lead to human errors in the inspection process [4].
With the necessity to employ a deep learning-based vision system into the manufacturing
process, this paper shows that the combination of the YOLO and ResNet frameworks



Sustainability 2022, 14, 15892 3 of 14

can reduce costs and ultimately increase productivity. This paper also contributes to the
literature on applying ensemble methods, particularly by combining objection detection
and classification methodologies. It shows that the model’s performance is improved to
the extent that it could be used on a real-time heat staking process.

The rest of this paper is organized as follows: In Section 2, it reviews relevant studies
to this system and discusses key takeaway messages. It outlines the object detection and
classification framework in Section 3. It provides the experimental results, consisting of
object detection and quality classification on a real dataset, in Section 4. Finally, Section 5
discusses the results and provides potential recommendations for future research.

2. Related Work
2.1. YOLO Framework

The YOLO framework, a popular object detection model, was introduced in 2016.
YOLO refers to the ability of the human visual system to immediately detect objects. There-
fore, the YOLO framework was designed to detect objects similarly to the human visual
system. The first YOLO consisted of a 24-layer convolutional neural network for feature
extraction and two fully connected layers for predicting the probability and coordinates of
objects. The latest version, YOLOv5, outperforms previous YOLO versions.

Because of its intuitiveness and innovativeness, the framework is renowned for its
fast speed and accuracy. The YOLO framework introduces a new structure for object
recognition systems and has received much attention; accordingly, it has been widely used
and applied in various applications [22–43].

2.2. ResNet Framework

The ResNet framework is a residual neural network, which is a gateless or open-
gated variant of the HighwayNet, a deep feedforward neural network with hundreds of
layers [44]. The ResNet classification models are implemented with double layer skips that
contain nonlinearities (ReLU) and batch normalization in between. Like the long short-
term memory (LSTM) model, ResNet skips connections to avoid the gradient vanishing
problem (leading to easier optimization of neural networks) or to mitigate the degradation
problem [45]. Accuracy saturates when additional layers in a neural network increase
training errors [44].

This skipping effectively simplifies and lightens the neural network, and the neural
network learns by reducing the impact of vanishing gradients, as there are fewer layers
to propagate through. The network then gradually restores the skipped layers. When all
layers are expanded, it stays closer to the manifold. A neural network without residual
parts explores more of the feature space. This is more vulnerable to perturbations, and
it thus necessitates additional training to recover. Because of its advantages, ResNet is
widely used and is one of the most cited neural network frameworks. Specifically, it is
widely accepted in industries where takt time and accuracy are two important criteria.
As ResNet is lighter than other deep learning-based classification models but a powerful
classification learner, researchers and practitioners have long developed and employed it
in their domain [10,11,14,15,46–52].

3. Proposed System
3.1. Shortcomings of Existing Models

There are small, multiple points in each door trim that require heat staking. In fact,
in this sample dataset, although the number of points varied among automobile types,
each image had approximately over sixty points. Multiple object detection and recognition
tasks are important topics in manufacturing. Figure 1a shows the outline of the model
for applying YOLO to heat staking process inspection. If this study employed only the
YOLO model, then for each input door trim image it would search for points and show
bounding boxes with a confidence level. Final detection results would be shown accordingly.
However, YOLO frameworks have shortcomings in identifying positions of multiple objects
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accurately. Furthermore, the accuracy of classifying multiple small objects is low, which
also reduces the recall rate, ultimately causing problems with adopting YOLO models on
real heat staking process sites. Figure 1b illustrates the outline of the classification model
ResNet. If this study only employed the ResNet model to the problem, then it would be
able to classify whether the door trim image was of a defect or not, but the classification
model has difficulties in illustrating where the defect parts are. Thus, for industrial usage
where the workers must understand where the defects are located, classification models
are hard to use.
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Figure 1. (a) YOLO flowchart for detecting quality of heat staking points in door trim images and
(b) ResNet flowchart for classifying the quality of heat staking points.

To mitigate the issue to an extent, this study used the improved and modified YOLOv5
model by adding a deep ResNet framework with the same number of layers as the Darknet
network in the feature extraction part of YOLOv5 [53]. Afterwards, the mean value was
reduced to generate feature graphs of three scales after outputting the two feature extraction
models. This process enabled more efficient information extraction of heat staking points
in the door trim images and was more efficient in conducting object detection. Figure 2a
shows an example of a full door trim image, and Figure 2b illustrates the real door trim
images with heat staking points boxed around. Note that the heat staking points take a
small portion of the entire door trim image.
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Figure 2. Example image of a (a) full door trim and (b) detected heat staking points.

Figure 3 illustrates the larger size of the heat staking points grouped by quality. For
the classification, this study manually grouped the images into three different categories.
The images were collected with a camera with a resolution of 5 M and an effective number
of pixels (H × V) of 2592 × 1944: Figure 3a shows good quality points, Figure 3b shows
defected points, and Figure 3c shows unknown points. Unknown points consist of points
that are either partially covered by other cables, or out-of-focus and blurred images. Because
the images are small-sized and the differences between defects and non-defects are not
large, deepening the neural network will lead to the gradient vanishing problem. Therefore,
this study chose ResNet, as it has the advantage of solving the gradient vanishing problem
while deepening the network. This is typically important in the inspection of the heat
staking process because the heat staking points are extremely small compared with the
door trim images.
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3.2. Suggested YOLO-ResNet Model

Figure 4 shows the flowchart of the proposed network that combines YOLOv5 and
ResNet. Based on the Darknet network structure for feature extraction, ResNet was added
for feature extraction, which solved the problem of poor accuracy in object detection.
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The model is composed of six main parts: a deep fully convolutional network, region
proposal network, ROI pooling and fully connected networks, bounding box regressor,
classifier for object detection and ResNet classifier. For consistency, this paper employed
a deep fully convolutional network. The input image was put into the initial stage and
extracted to 256 × n × n feature map, which is the input of region proposal network and
ROI pooling layer. In the region proposal network, there are k anchors with different scales
and ratios for each point on feature map. There will be n × n × k candidate windows that
are ranked according to the score, and then 2000 candidate windows are obtained through
non-maximum suppression. Overall, complexity is O(Nˆ2/2), which is consistent with the
classic YOLO model. This is because the ResNet classifier was attached as a final layer to
the current YOLO network.

Furthermore, in terms of the industrial usage, this proposed network is useful. That is,
using solely the YOLO model results in difficulties in classifying points by their quality,
and using only the image classification model results in difficulties in visualizing where
the defect points are located. In this manner, taking only the advantages of both the object
detection and the classification models enables to first detect the heat staking points, and
then use the classifier to classify whether the detected points are defected or not.
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4. Experimental Results
4.1. Experimental Dataset

This study used a novel and rich dataset provided by SEOYON E-HWA, from South
Korea. The company’s main products are interior parts such as door trims, consoles, head
linings, and package trays inside automobiles. They also manufacture exterior parts such
as bumpers and seats for commercial vehicles. Thanks to their cooperation, this study was
able to retrieve 3000 door trim images that had over sixty heat staking points. This study
split the collected images such that there were 2400 training images and 600 test images.

4.2. Experimental Results

Table 1 first provides the hyperparameter tuning results for five different schemes (One
to Five). Following prior YOLO literature, this study tuned the following hyperparameters
that have been frequently tuned in past studies, to the five different schemes: lr0, lrf,
momentum, weight_decay, warmup_epochs, warmup_momentum, warmup_bias_lr, box,
cls, cls_pw, obj, obj_pw, iou_t, anchor_t, hsv_h, hsv_s, hsv_v, translate, scale, fliplr, and
mosaic. The hyperparameter settings in the fourth scheme provided the best performance.
Table 1 also shows the entire hyperparameter values and their descriptions. For easier
crosschecking with other related literature, this study followed the default hyperparameter
value settings. The trained model showed a precision of 0.995, a recall of 0.996, and a
mAP@.5 of 0.994. The results imply that the parameters are well tuned.

Table 1. Hyperparameter tuning results of YOLO model.

Scheme Optimizer Class Images Labels Precision Recall mAP@.5 mAP@

One AdamW

All

600

25,999 0.983 0.989 0.989 0.652
Points 16,163 0.989 0.999 0.99 0.699
Screw 9523 0.98 0.996 0.992 0.679
Hide 313 0.981 0.971 0.986 0.578

Two AdamW

All

600

25,999 0.946 0.963 0.961 0.596
Points 16,163 0.98 0.998 0.988 0.658
Screw 9523 0.972 0.993 0.991 0.646
Hide 313 0.886 0.898 0.903 0.485

Three AdamW

All

600

25,999 0.986 0.969 0.977 0.594
Points 16,163 0.99 0.997 0.988 0.645
Screw 9523 0.985 0.987 0.99 0.624
Hide 313 0.983 0.923 0.953 0.514

Four AdamW

All

600

25,999 0.995 0.996 0.994 0.664
Points 16,163 0.998 0.999 0.995 0.693
Screw 9523 0.995 0.996 0.995 0.647
Hide 313 0.993 0.994 0.994 0.651

Five AdamW

All

600

25,999 0.992 0.985 0.99 0.744
Points 16,163 0.997 1 0.995 0.785
Screw 9523 0.996 0.994 0.995 0.782
Hide 313 0.984 0.962 0.98 0.665

Hyperparameters Description Value

lr0 Initial learning rate 0.01
lrf Final OneCycleLR learning rate (lr0 * lrf) 0.01
momentum Tuning parameter for the gradient descent algorithm 0.937
weight_decay Optimizer weight decay 0.0005
warmup_epochs Warmup epochs 3.0
warmup_momentum Warmup initial momentum 0.8
warmup_bias_lr Warmup initial bias learning rate 0.1
box Box loss gain 0.05
cls Class loss gain 0.5
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Table 1. Cont.

Scheme Optimizer Class Images Labels Precision Recall mAP@.5 mAP@

cls_pw Class BCELoss positive weight 1.0
obj Object loss gain (scale with pixels) 1.0
obj_pw Object BCELoss positive weight 1.0
iou_t IoU training threshold 0.20
anchor_t Anchor-multiple threshold 4.0
hsv_h Image HSV-Hue augmentation (fraction) 0.015
hsv_s Image HSV-Saturation augmentation (fraction) 0.7
hsv_v Image HSV-Value augmentation (fraction) 0.4
translate Image translation (+/− fraction) 0.1
scale Image scale (+/− gain) 0.5
fliplr Image flip left-right (probability) 0.5
mosaic Image mosaic (probability) 1.0

This study trained the YOLO model on the training dataset that included 2400 door
trim images, which consisted of 200,620 heat staking points. The accuracy of the trained
model was then evaluated on the test set of 600 images. Table 2 presents the results that
show that YOLOv5m outperformed YOLOv5n, YOLOv5s, YOLOv5l, and YOLOv5x, with
a precision of 0.947, F1-score of 0.930, and mAP@.5 of 0.956. These results are significant. It
should be noted that the performance of the YOLO v5m model outperformed the YOLO
v5l and YOLO v5x model. Theoretically, YOLO v5l and YOLO v5x should outperform
the YOLO v5m model as v5l and v5x are larger size in terms of the number of extracted
features thus are able to train deeper. However, the results show that the optimum number
of features to be extracted do not monotonically increase. This implies that there are a
smaller number of features to be extracted from images of heat staking points, and that a
certain number of features provided by YOLO v5m model is enough. Therefore, this study
used the optimal model, YOLO v5m, as the baseline object detection model which was then
used to merge with the classification model.

Table 2. YOLO model heat staking points detection results.

Model Class Opt. Images Labels Precision Recall mAP@.5 mAP@

Yolov5n

All

AdamW 600

100,310 0.937 0.914 0.945 0.592
Points 54,060 0.978 0.99 0.992 0.622
Screw 43,500 0.972 0.989 0.986 0.692
Hide 2750 0.863 0.762 0.857 0.461

Yolov5s

All

AdamW 600

100,310 0.924 0.944 0.945 0.592
Points 54,060 0.978 0.99 0.992 0.622
Screw 43,500 0.969 0.993 0.987 0.692
Hide 2750 0.826 0.848 0.855 0.461

Yolov5m

All

AdamW 600

100,310 0.947 0.93 0.956 0.591
Points 54,060 0.987 0.987 0.992 0.627
Screw 43,500 0.98 0.988 0.987 0.689
Hide 2750 0.874 0.816 0.89 0.456

Yolov5l

All

AdamW 600

100,310 0.934 0.929 0.952 0.594
Points 54,060 0.982 0.99 0.992 0.614
Screw 43,500 0.979 0.989 0.988 0.689
Hide 2750 0.841 0.808 0.877 0.479

Yolov5x

All

AdamW 600

100,310 0.934 0.939 0.951 0.595
Points 54,060 0.984 0.988 0.99 0.619
Screw 43,500 0.982 0.99 0.988 0.696
Hide 2750 0.836 0.839 0.876 0.469
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As the object detection results are significant, this study used the obtained heat staking
points to further develop the ResNet classification model. Table 3 and Figure 5 report
the summary statistics of the ResNet classification model. It should be noted that the
F1-scores for non-defected, defected, and unknown classes were generally above 0.97. In
the manufacturing industry, it is important to obtain a high F1-score, as recall and precision
are both important factors [4]. This classification model’s high accuracy shows that ResNet
well captured the different distribution of features between defected and non-defected heat
staking points of automobile door trims. Furthermore, Table 4 reports performance metrics
of the YOLO-ResNet model with the statistics for recall, false negative rate, precision, false
negative rate, and F1-score of the model. It should be noted that the overall performance
metrics is generally high and significant. Specifically, important metrics for manufacturing
firms such as recall, and precision are approximately 98%. The overall results show that the
generated YOLO-ResNet model is a significant model that may somewhat replace human
labor inspection process.

Table 3. ResNet model heat staking points quality classification results.

Precision Recall F1-Score Support

Non-defect 0.97 0.99 0.98 306
Defect 0.96 0.93 0.95 105
Unknown 0.99 0.97 0.98 160
Accuracy 0.98 571
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manufacturing firms such as recall, and precision are approximately 98%. The overall re-
sults show that the generated YOLO-ResNet model is a significant model that may some-
what replace human labor inspection process. 

Table 3. ResNet model heat staking points quality classification results. 

 Precision Recall F1-Score Support 
Non-defect 0.97 0.99 0.98 306 
Defect 0.96 0.93 0.95 105 
Unknown 0.99 0.97 0.98 160 
Accuracy   0.98 571 
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Figure 5. Confusion matrix of the ResNet classification model.

Table 4. YOLO-ResNet model performance metrics.

Recall (R) = TP
TP+FN = 0.98

False Negative Rate (FNR) = 1.00 − R = 0.02
Precision (P) = TP

TP+FP = 0.98
False Negative Rate (FPR) = 1.00 − P = 0.02

F1 score = 2 · P · R
P+R = 0.98

5. Conclusions

Increased labor cost adds to the overall costs suffered by manufacturing firms in
developed nations. One potential breakthrough to overcome the issue is to employ Artificial
Intelligence models in their manufacturing process. Many studies have investigated the
usage of object detection and image classification in deep learning models. However, there
are few studies on the application of these models in the inspection of the heat staking
process. In this respect, this study proposed a new YOLO–ResNet model for detection
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and classification of heat staking points in the automobile manufacturing industry. In
this model, the YOLOv5 framework first detects the heat staking point accurately and
then ResNet classifies whether the detected points are defected or not. The ability to
detect the points and classify their quality is sufficiently accurate to be applied to real
manufacturing sites.

This study used YOLO and ResNet models to detect the heat staking points and
classify their quality. In the future, it is recommended to apply other object detection
models or classification models and improve the current models. Furthermore, future
researchers may also consider adding more defect categories for the heat staking process.
The current model only considered whether the detected images are defected, non-defected,
or unknown. However, there are multiple defect categories in the heat staking process
such as overstaking and understaking. More accurate categorization may be beneficial for
industries.

This study makes a contribution to the manufacturing industry that suffers from high
inspection costs. The F1-score of the model is well-above 97%, which implies that if the
model is used in the manufacturing inspection process, it would perform like or better than
the human labor inspection system. Furthermore, if the model can train multiple defect
types of heat staking points, then classifying detected heat staking points into different
categories by their defect type would also be possible. Such multi-class object detection and
classification hybrid model would be an important asset for the sustainable development
and growth of manufacturing firms.

Furthermore, this study makes a contribution to the growing deep learning applica-
tion literature. There are recent studies that employ image classification, multi-strategy
particle swarm and ant colony hybrid optimization and optimal search mapping on various
fields [54–57]. The underlying mechanism is to use modern algorithms and understand how
to employ them in a certain domain field. In this manner, this study contributes by showing
how YOLO and ResNet model could be used in the manufacturing inspection process.
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