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1 Introduction

Engineering gauge theories in various dimensions and with different amounts of supersym-

metry in terms of branes in string and M-theory is a fruitful approach for studying their

dynamics.

2dN = (0, 2) theories are interesting for various reasons. It is reasonable to expect that

although they have only two supercharges, it is possible to make considerable progress in

understanding their dynamics, thanks to the control provided by chirality, holomorphy and

anomalies. In addition, they are central in the worldsheet description of heterotic models.

This work concentrates on the realization of 2d N = (0, 2) theories in terms of branes.

Our main goals are to understand in detail the gauge theories on D1-branes probing ar-

bitrary toric singular Calabi-Yau 4-folds and to develop T-dual brane setups for them

analogous to brane tilings. The study of 4d N = 1 gauge theories on D3-branes probing

toric singular Calabi-Yau 3-folds in terms of brane tilings [1, 2] has been an extreme success

until now, laying out a path to follow for 2d (0, 2) theories.

In order to guide our quest for 2d (0, 2) theories, let us recount the main developments

that culminated in the discovery of brane tilings. At first, understanding gauge theories

living on D3-branes probing singularities of abelian orbifolds of C3 [3–5] led to the iden-

tification of gauge theories for non-orbifold singularities via partial resolution [6–8]. The

resulting large catalogue of explicit examples paved the way towards understanding basic

structures of quiver gauge theories corresponding to various toric Calabi-Yau 3-folds [8–

12]. In parallel, it was argued in [13, 14] that brane boxes, which are periodic arrays of

orthogonal NS5-branes on T 2 from which stacks of D5-branes are suspended, are related by

T-duality to D3-branes on C3/Zn × Zm orbifolds. Brane boxes provided valuable insights

towards better understanding the brane constructions under T-duality, but can be seen now

as little more than efficient bookkeeping devices for the restricted set of orbifold theories.
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The true breakthrough came with the discovery of brane tilings [1, 2]. Brane tilings

are the actual configurations of NS5- and D5-branes that are T-dual to D3-branes on

arbitrary toric CY3 singularities.1 Moreover, they have shed light on the connection be-

tween the geometry of the toric singularities and the corresponding gauge theories, in both

directions [1, 2, 15–18].

In contrast, the understanding of 2d (0, 2) theories in terms of branes remains consider-

ably underdeveloped. Our present knowledge is limited to D1-branes over abelian orbifolds

of C4 [19] and the T-dual configurations of brane boxes on T 3 [20].2 In recent years there

has been substantial progress in our understanding of the field theory side, making the

quest for a brane realization of these theories even timelier. An incomplete list of recent

developments includes c-extremization [21, 22], triality [23] and new ideas on dimensional

reduction from 4d N = 1 theories [24, 25].

This paper presents the first step in our program devoted to filling this gap, introducing

the tools for constructing the 2d theories on D1-branes over arbitrary toric Calabi-Yau 4-

folds. Additional progress in this program will be presented in future publications [26, 27].

This work is organized as follows. Section 2 contains a brief review of 2d (0, 2) theories

and section 3 outlines the basic features of the setups of D1-branes over toric Calabi-

Yau 4-folds that we study. Section 4 is devoted to gauge theories for abelian orbifolds

of C4 and discusses periodic quivers in their context. Section 5 introduces the forward

algorithm which is a systematic method for computing the classical mesonic moduli spaces

of the 2d (0, 2) theories under consideration. In fact, there are no moduli spaces of vacua

in 2d. The mesonic moduli spaces we compute should be regarded, in the spirit of the

Born-Oppenheimer approximation, as target spaces of non-linear sigma models [28]. They

correspond to the Calabi-Yau 4-folds probed by the D1-branes. Section 6 investigates 2d

(2, 2) theories for D1-branes on singularities of the form CY3 × C. We obtain them via

dimensional reduction from the 4d N = 1 theories for the CY3, verify that the CY3 × C
arises as the mesonic moduli space using the forward algorithm and introduce a lifting

algorithm for constructing the corresponding periodic quivers from those of the 4d parent

theories. Section 7 explains how partial resolution of singularities translates into higgsing

of the corresponding gauge theories. We also explain how to systematically use higgsing

in order to obtain gauge theories for arbitrary toric CY 4-folds. Explicit examples of

theories obtained via partial resolutions are presented in section 8, including theories for

singularities that are neither orbifolds nor of the form CY3 × C. Section 9 previews the

results of [26], where the brane configurations that are T-dual to the D1-branes at toric

singularities are going to be presented in full detail. These configurations, named brane

brick models, establish a direct connection between CY4 geometry and 2d (0, 2) quiver

gauge theories. Conclusions and future directions are presented in section 10.

1Brane boxes can be regarded as certain degenerate limits of the brane tilings associated with orbifolds.
2While inspiring, 2d brane boxes suffer from limitations that are similar to the ones of their 4d

counterparts.
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2 2d (0,2) field theories

This section briefly reviews the general structure of 2d (0, 2) theories, mainly to establish

notations for later sections. We will not discuss all terms in the Lagrangian but only some

of its most salient features. We refer the reader to [20, 23, 24, 29] for details.

2.1 Constructing 2d (0, 2) theories

We describe these theories in terms of 2d (0, 2) superspace (xα, θ+, θ̄+), α = 0, 1. Three

types of multiplets are needed to construct a 2d (0, 2) gauge theory.3 The first one is the

gauge multiplet, which contains the gauge boson vα (α = 0, 1), the adjoint chiral fermions

χ−, χ̄− and an auxiliary field D. We are not going to need the detailed structure of the

multiplet. The second type is the chiral multiplet,

Φ = φ+ θ+ψ+ − iθ+θ̄+D+φ , D+Φ = 0 , (2.1)

where the on-shell degrees of freedom are a complex scalar φ and a chiral fermion ψ+,

and D+ is a super-covariant derivative. The third type is the Fermi multiplet whose

chirality condition may be deformed by a holomorphic function of chiral fields E(Φi),

which introduces interactions among matter fields. We have

Λ = λ− − θ+G− iθ+θ̄+D+λ− − θ̄+E , D+Λ = E(Φi) . (2.2)

Here, G is an auxiliary field and the chiral fermion ψ− is the only on-shell degree of freedom.

The kinetic terms for the Fermi multiplets and some interactions are included in

LF =

∫
d2y d2θ

∑

a

(
Λ̄aΛa

)
, (2.3)

where a runs over all Fermi fields in the theory.

Another way to add interactions is to use a (0, 2) analog of the superpotential,

LJ = −
∫
d2y dθ+

∑

a

(ΛaJa(Φi)|θ̄+=0)− h.c. , (2.4)

where the Ja(Φi) are holomorphic functions of chiral fields. In a gauge theory, Ea has the

same gauge quantum numbers as Λa while Ja has the conjugate gauge quantum numbers.

The deformed chirality condition (2.2) and the chirality of LJ (2.4) requires J and E-terms

to satisfy an overall constraint,

∑

a

tr [Ea(Φi)Ja(Φi)] = 0 . (2.5)

For the 2d (0, 2) theories which we are considering in the following sections, the above con-

straint is explicitly checked and confirmed. There is a full symmetry under the individual

exchanges Ja ↔ Ea, which corresponds to exchanging Λa for Λ̄a.

3We follow the conventions of [20], except
√

2ψthere
+ = ψhere

+ , λthere
− /

√
2 = λhere

− , Λthere/
√

2 = Λhere.
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Figure 1. A generic 1-loop diagram to compute anomalies in 2d.

Upon integrating out the auxiliary fields Ga, LF and LJ produce the scalar potential

V =
∑

a

(
tr|Ea(φ)|2 + tr|Ja(φ)|2

)
, (2.6)

as well as interactions between scalars and pairs of fermions

VY = −
∑

a,i

tr

(
λ̄−a

∂Ea
∂φj

ψ+j + λ−a
∂Ja
∂φj

ψ+j + h.c.

)
, (2.7)

which include the usual Yukawa couplings.

2.2 Anomalies

As usual, anomalies play a central role in the analysis of quantum field theories. This

section briefly reviews the subject of anomalies in 2d (0, 2) theories, both in gauge and

global symmetries. In 2d, anomalies follow from 1-loop diagrams of the general form

shown in figure 1.

Consistency of the theories at the quantum level requires cancellation of gauge anoma-

lies. The gauge groups of the worldvolume theories on the probe D1-branes are U(Ni) =

SU(Ni)×U(1)i. Below we consider the anomalies that do not automatically vanish, focusing

on those groups and representations that appear in the 2d quiver theories of this work.

Non-Abelian anomalies. Let us first consider SU(Ni)
2 anomalies, where SU(Ni) might

be global or gauged. The corresponding anomaly is given by

Tr[γ3JSU(Ni)JSU(Ni)], (2.8)

where γ3 is the chirality matrix in 2d and JSU(Ni) indicates the generator of the symmetry

group in the representations in which each of the fields transforms.

The contributions of different fields and representations to (2.8) are given by:

Multiplet Rep. Contribution

Chiral or 1/2

adj Ni

Fermi or −1/2

adj −Ni

Vector adj −Ni

(2.9)
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Not surprisingly, given that anomalies are quadratic in 2d, things work quite differently

than in 4d. Two of the most notable differences we observe in (2.9) are that the sign of the

anomalies does not depend on the orientation of arrows and that the contributions from

chiral adjoints and vector multiplets are non-vanishing.

Abelian anomalies. In addition, it might be possible to have U(1)2
i anomalies, given by

Tr[γ3Q2
i ], (2.10)

and mixed U(1)iU(1)j anomalies, given by

Tr[γ3QiQj ]. (2.11)

As before, the U(1) groups under consideration might be either global or gauged.

Indeed, the theories we study generically have non-vanishing abelian gauge anomalies.

In theories on D1-branes at singularities, we expect them to be cancelled by a general-

ized Green-Schwarz mechanism via interactions with bulk RR fields, as shown in [19] for

orbifolds of C4.4

Anomalies for quivers. The specific theories we are interested in are quiver theories.

Nodes in these quivers correspond to U(Ni) gauge groups. Let us now study in further

detail the cancellation of non-abelian anomalies in the case of quivers. In order to allow

for the possibility of multiple fields between a given pair of nodes, it is convenient to

define: nχij := number of chiral arrows from node i to node j, nFij := number of Fermi

lines stretching between node i and node j,5 a
χ/F
i := number of adjoint chiral/Fermi lines

attached to node i. Cancellation of SU(N)2
i anomalies then requires

∑

j 6=i

(
nχjiNj + nχijNj − nFijNj

)
+ 2(aχi − aFi )Ni = 2Ni, (2.12)

for every node i.

In this article, we focus on the case in which all ranks are equal, i.e. Ni = N , which

corresponds to a stack of N regular D1-branes.6 In this case, (2.12) simplifies to

nχi − nFi = 2. (2.13)

In this expression, nχi and nFi indicate the total number of incoming plus outgoing chiral

and Fermi fields at node i, respectively. Since adjoint fields are represented in the quiver

by lines that start and end on the same node, each of them contributes 2 to these numbers.

It is interesting to notice that constructing quiver theories for which (2.13) is satisfied

for all gauge groups without the addition of flavors (i.e. of matter in e.g. purely fundamental

or anti-fundamental representations of gauge groups) and the associated flavor symmetries

they would introduce is a challenging combinatorial problem. Remarkably, (2.13) is auto-

matically satisfied by all the theories we construct.

4An alternative, field theoretic, approach to the cancellation of abelian gauge anomalies is the addition

of appropriate matter, as explained in [23]. We are not going to pursue this direction.
5Due to the symmetry between Λa and Λ̄a, Fermi fields are represented in the quiver diagram by lines

without orientation.
6It would be very interesting to investigate more general anomaly-free rank assignments and their cor-

respondence to fractional D1-branes. We leave this question for future work.
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2.3 Triality and dynamical SUSY breaking

As studied in [23], 2d (0, 2) theories can dynamically break SUSY at low energies. A

powerful tool for elucidating the IR dynamics of these theories is the triality introduced

in [23], which for this purpose plays a role similar to that of Seiberg duality in 4d. We are

not going to discuss the details of triality at all in this article. In fact its implementation

in string theory constructions will be the subject of one of our future publications [27].

A basic property of triality is that the original theory is recovered only after acting

with it three times on the same gauge group. Of course the space of dual theories grows

considerably when there are multiple gauge groups.

A possible diagnostic for SUSY preserving theories advocated in [23] is that no negative

ranks are generated in any duality frame. In the notation of (2.12), this occurs for nodes

without adjoints for which
∑

j 6=i n
χ
jiNj < Ni or

∑
j 6=i n

χ
ijNj < Ni.

7 This is analogous to

what happens in 4d. There, reaching a negative rank by Seiberg duality really means that

the duality should not have been performed because it involved an Nf < Nc gauge group

which, in turn, generates an ADS superpotential that spontaneously breaks SUSY [30]. As

a cross-check, whenever this criterion is not met in 2d, the equivariant index of the theory

vanishes, also indicating the absence of a SUSY vacuum. The detailed dynamical process

that triggers SUSY breaking is not yet known.

Arbitrary 2d (0, 2) quivers generically break SUSY spontaneously for the reasons dis-

cussed above. Given this challenge, as discussed in [23], it is desirable to come up with a

(combinatorial) prescription for generating SUSY preserving theories. The approach dis-

cussed in this article, of realizing theories with regular D1-branes at singular toric CY

4-folds, gives rise to an infinite class of theories for which its natural to expect that SUSY

is preserved.8

3 2d (0,2) theories from D1-branes over toric CY4 cones

The main goal of this article is to understand the gauge theories arising in the low energy

limit of a stack of D1-branes probing a singular toric CY 4-fold. Among other things, we

want to know how the gauge theory is determined by the CY 4-fold and, conversely, how

the CY 4-fold is captured by the gauge theory.

Type IIB string theory on R1,1×CY4 with parallel D1-branes spanning R1,1 preserves

(0, 2) SUSY on the worldvolume of the D1-branes.9 Non-chiral SUSY enhancement occurs

when the putative CY4 contains C factors; C4, CY2 × C2, CY3 × C preserve (8, 8), (4, 4),

(2, 2) SUSY, respectively. The D1-brane theory in these cases can be obtained from the di-

mensional reduction of a higher dimensional D-brane theory. Chiral enhancement to (0, 4)

SUSY arises from CY2×CY2. Further chiral enhancement to (0, 6) or (0, 8) is possible for

particular orbifold geometries.

7Due to the form of the anomaly cancellation conditions in 2d, it is possible for the numbers of incoming

and outgoing chiral fields to be different.
8This might no longer be true when considering fractional D1-branes.
9An alternative interesting approach for constructing 2d (0, 2) theories involves realizing them as com-

pactifications of 6d theories on 4-manifolds [31].
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Among all CY4 geometries, we restrict our attention to toric CY4 cones. The tools from

toric geometry make it easier to find the map between gauge theories and CY4 geometries.

The methods we use are similar to those from previous work on D3-branes probing toric

CY3 cones or M2-branes probing toric CY4 cones. A notable difference is that the D3-

brane or M2-brane theories at large N offer examples of AdS/CFT in the weakly coupled

gravity description, whereas the D1-brane theories under consideration here do not.

The main diagnostic we use to check the map between gauge theories and geometries

is the classical mesonic moduli space of the gauge theory. The classical mesonic moduli

space is the geometry underlying the chiral ring of gauge-invariant single-trace operators

modulo the relations coming from vanishing J- and E-terms. The moduli space is expected

to reproduce the probed Calabi-Yau geometry.

Our analysis is going to be entirely classical. The underlying Calabi-Yau cone is

expected to capture robust properties of the quantum field theory. At present, we do not

have a full understanding of the quantum effects in these theories in terms of branes. Early

attempts in this direction can be found in [32]. This is certainly a direction worth studying

in the future.

By definition, the isometry group of a toric CY4 contains U(1)4. This isometry trans-

lates into a global symmetry of the gauge theory. A linear combination of the four U(1)’s

accounts for the R-symmetry of (0, 2) SUSY. The non-R U(1)3 symmetry, which we call

the mesonic flavor symmetry, is going to be exploited in later sections and in a forthcoming

paper [26] in order to introduce the notion of a periodic quiver.

For some geometries, the isometry group is enhanced to a non-abelian group. For in-

stance, the isometry of the Q1,1,1 geometry, to be discussed in section 8.3, is U(1)R×SU(2)3.

In this example, the non-abelian global symmetry is not manifest at the level of the La-

grangian, but the chiral ring elements can be organized in multiplets of the global symmetry.

It is convenient to enumerate the elements of the chiral ring by the Hilbert series [33]. The

Hilbert series is a function in terms of fugacities for the U(1)4 global symmetry. When the

global symmetry is non-abelian, the Hilbert series can be expanded in characters of the

non-abelian group. Hilbert series will be presented in a forthcoming paper [26].

In order to fully understand the theories on D1-branes over general toric singularities,

we first work our way through geometries for which the corresponding gauge theories are

already well understood. First, we consider orbifold theories in section 4. Next, in section 6

we study the 2d (2, 2) theories obtained by dimensional reduction of 4d N = 1 theories on

D3-branes over toric CY 3-folds. Understanding both classes of theories is going to help

us to develop the main ideas that apply to the generic case. In addition, these theories are

connected to the ones for general toric singularities through RG flows.

3.1 Basic structure

Below we mention some additional general properties of the theories under consideration.

Gauge group. One piece of information that can directly be derived from the toric dia-

gram of the probed geometry is the total number of nodes in the quiver, which corresponds

to the number of independent ways of wrapping D-branes at the singularity. This is given

– 7 –
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by the number of minimal tetrahedra that fit into the toric diagram, i.e. 6 × V , with V

being the volume of the toric diagram.10

All the examples we consider in this article satisfy this property. It is true by construc-

tion for the orbifolds and dimensionally reduced theories. It is also true for the new models

that are obtained by partial resolution, i.e. higgsing from the gauge theory point of view.

However, we note that it is possible to find theories that seem to violate this rule by hig-

gsing. Our expectation is that such theories suffer from inconsistencies similar to the ones

observed in some otherwise healthy looking 4d N = 1 theories for D3-branes over toric CY

3-folds. In 4d, such inconsistencies have been understood from a variety of perspectives,

including: global symmetries [15], zig-zag paths in the associated brane tilings [15] and

algebraic conditions [34, 35]. We are not going to consider such theories any further in this

work. In 4d, inconsistencies can be eliminated by further higgsing. A more thorough inves-

tigation of consistency conditions is certainly worthwhile but exceeds the scope of this work.

J- and E-terms. Another special property of the gauge theories associated with toric

CY 4-folds is the structure of the J- and E-terms. All of them take the form of differences

between two monomials in chiral fields. We refer to this property as the toric form of these

functions. Once again, this property is present in orbifolds and dimensionally reduced

theories and preserved by the higgsing associated with partial resolutions that connects

them to other theories. This property is the 2d analogue of the toric superpotentials of 4d

N = 1 gauge theories for D3-branes on toric CY 3-folds [36]. It plays an important role in

the emergence of the probed geometry as the classical moduli space of the gauge theory.

4 Orbifold theories

This section studies the gauge theories on D1-branes over orbifolds of C4, which have

been originally considered in [19, 20]. This infinite family of theories gives a nice class of

examples to start developing our ideas in the following sections. In sections 4.1 and 4.2, we

investigate orbifolds in further detail, explaining how the geometry arises as the mesonic

moduli space of the corresponding gauge theories.

4.1 D1-branes over C4

Let us first consider the simplest gauge theory engineered with D1-branes, that of a stack

of D1-branes on C4, whose toric diagram is shown in figure 2.

This theory can be obtained by dimensional reduction of 4d N=4 SYM.11 The 2d

theory has an enhanced (8, 8) non-chiral SUSY. In (0, 2) language, the theory contains the

vector multiplet associated with a single U(N) gauge group, four chiral fields (X, Y , Z and

D) and three Fermi fields (Λ(i), i = 1, 2, 3), all transforming in the adjoint representation of

the gauge group. All this information can be summarized in the quiver shown in figure 3.

10The toric diagram of a toric CY4 cone lives in a hyperplane and hence can be projected to 3d. Here

and throughout the paper we consider such 3d toric diagrams.
11Dimensional reduction is discussed at length in section 6.1, here we just present the result.

– 8 –
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Figure 2. Toric diagram of C4.

Figure 3. The quiver diagram for N D1-branes over C4. It consists of a single U(N) gauge node,

four adjoint chiral fields (shown in black) and three Fermi fields (shown in red).

The corresponding J- and E-terms are as follows

J E

Λ(1) : Y · Z − Z · Y = 0 D ·X −X ·D = 0

Λ(2) : Z ·X −X · Z = 0 D · Y − Y ·D = 0

Λ(3) : X · Y − Y ·X = 0 D · Z − Z ·D = 0

(4.1)

We observe that this theory nicely agrees with our general discussion in section 3.1. The

single gauge group is in agreement with the fact that the toric diagram in figure 2 consists

of a single unit tetrahedron. In addition, the relations in (4.1) have the general structure

anticipated for theories corresponding to toric Calabi-Yau 4-folds.

4.2 Orbifolds

Abelian orbifolds of CD have been extensively studied from a geometric viewpoint for var-

ious dimensions D in [37–41]. Here we are interested in determining the gauge theories on

D1-branes over orbifolds of C4. These take the most general form C4/Zn1×Zn2×Zn3 where

the order of the orbifold group is n = n1n2n3. C4 is parameterized by complex coordinates

xk with k = 1, . . . , 4 and the orbifold action is determined by three integer 4-vectors

(a1, a2, a3, a4) , (b1, b2, b3, b4) , (c1, c2, c3, c4) , (4.2)

where ak, bk and ck relate to the coordinate action on C4 as follows

xk 7→ e
2πi

(
ak
n1

+
bk
n2

+
ck
n3

)
xk . (4.3)

The action satisfies

4∑

k=1

ak = 0 mod n1 ,

4∑

k=1

bk = 0 mod n2 ,

4∑

k=1

ck = 0 mod n3 . (4.4)
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A simple sub-class of orbifolds of C4 is C4/Zn, with orbifold action (a1, a2, a3, a4). The

action on the C4 coordinates xk is given by

xk 7→ e2πi
ak
n xk . (4.5)

Let us now determine how the orbifold action on C4 translates into the correspond-

ing gauge theory. First, there are four types of bifundamental chiral fields in the quiver

of the 2d (0, 2) theory which we are considering. These are related to the four complex

coordinates of C4,

x1 ↔ Xi,j , x2 ↔ Yi,j , x3 ↔ Zi,j , x4 ↔ Di,j , (4.6)

where the subindices i and j indicate that the corresponding field transforms in the funda-

mental representation of U(N)i and in the anti-fundamental representation of U(N)j . For

the most general orbifolds with n1, n2, n3 > 1, we take the gauge group indices i and j to

carry three components, i = (i1, i2, i3), j = (j1, j2, j3) where ik, jk = 0, . . . , nk − 1. The

four types of chiral fields connect gauge groups according to the following rule:

Xi,j : j = i+ (a1, b1, c1) mod (n1, n2, n3) ,

Yi,j : j = i+ (a2, b2, c2) mod (n1, n2, n3) ,

Zi,j : j = i+ (a3, b3, c3) mod (n1, n2, n3) ,

Di,j : j = i+ (a4, b4, c4) mod (n1, n2, n3) . (4.7)

One can always map the 3-vector labels i, j to single integer labels such that i, j = 1, . . . , n.

Note that this map is trivial for C4/Zn orbifolds. In addition, there are three types of

Fermi fields in bifundamental representations, which can be labeled

Λ
(1)
i,j : j = i− (a2 + a3, b2 + b3, c2 + c3) mod (n1, n2, n3) ,

Λ
(2)
i,j : j = i− (a3 + a1, b3 + b1, c3 + c1) mod (n1, n2, n3) ,

Λ
(3)
i,j : j = i− (a1 + a2, b1 + b2, c1 + c2) mod (n1, n2, n3) . (4.8)

It is also possible to write the J- and E-terms associated with Fermi fields for an arbi-

trary orbifold in a closed form. For simplicity, let us take C4/Zn with orbifold action

(a1, a2, a3, a4) with
∑

k ak = 0 mod n, and a single component index i defined modulo n.

The J- and E-terms are

Λ
(1)
i,i−a2−a3 : J

(1)
i−a2−a3,i = Yi−a2−a3,i−a3 · Zi−a3,i − Zi−a2−a3,i−a2 · Yi−a2,i ,

E
(1)
i,i−a2−a3 = Di,i+a4 ·Xi+a4,i−a2−a3 −Xi,i+a1 ·Di+a1,i−a2−a3 ,

Λ
(2)
i,i−a3−a1 : J

(2)
i−a3−a1,i = Zi−a1−a3,i−a1 ·Xi−a1,i −Xi−a1−a3,i−a3 · Zi−a3,i ,
E

(2)
i,i−a3−a1 = Di,i+a4 · Yi+a4,i−a3−a1 − Yi,i+a2 ·Di+a2,i−a3−a1 ,

Λ
(3)
i,i−a1−a2 : J

(3)
i−a1−a2,i = Xi−a1−a2,i−a2 · Yi−a2,i − Yi−a1−a2,i−a1 ·Xi−a1,i ,

E
(3)
i,i−a1−a2 = Di,i+a4 · Zi+a4,i−a1−a2 − Zi,i+a3 ·Di+a3,i−a1−a2 . (4.9)

Extending these expressions to general orbifolds of C4 is straightforward. Clearly, all

abelian orbifolds of C4 satisfy the condition (2.13) for the cancellation of non-abelian

anomalies.
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Y
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D

X

Figure 4. A unit cell of the periodic quiver of C4, which is periodically identified along the three

axes.

4.3 Periodic quivers: a first encounter

Periodic quivers for 2d theories were originally introduced in [20] in the context of orbifolds

of C4. They are standard quivers living on a 3-torus. For orbifolds, they are motivated

by the Type IIA brane box constructions consisting of D4-branes and three kinds of NS5-

branes [20] that are, roughly speaking, dual to the quiver.

In this section we review the periodic quivers for orbifolds of C4 following [20] and

add some new insights to their construction. We will later see that all gauge theories on

D1-branes over toric CY 4-folds are associated with a periodic quiver on T 3. In fact, the

three periodic directions of the torus correspond to the U(1)3 mesonic flavor symmetry

of the gauge theory that follows from three of the U(1) isometries of the toric CY4, with

the fourth one being related to the R-symmetry of the gauge theory. In a forthcoming

paper [26], we will fully explore how periodic quivers are dual to brane configurations that

generalize, and improve, brane box models. These brane setups are previewed in section 9.

T-dualizing such brane configuration along the three periodic directions of the 3-torus, one

obtains the stack of D1-branes at the toric CY4 singularity.

4.3.1 C4 and general orbifolds

Let us first consider the periodic quiver for D1-branes over C4. The corresponding 2d theory

has been reviewed in section 4.1 with the corresponding J- and E-terms given in (4.1). The

standard quiver in figure 3 can be turned into the periodic one shown in figure 4.

A remarkable illustration of the power of periodic quivers is that the gauge theories

for arbitrary abelian orbifolds of C4 can be constructed by appropriately stacking n copies

of the quiver in figure 4, with n being the order of the orbifold group. The precise way

in which these cubes are stacked is determined by the action of the orbifold group given

in (4.7) and (4.8).

For illustration, figure 5 shows the local structure of the periodic quiver for an arbitrary

C4/Zn orbifold with action (a1, a2, a3, a4), where a4 = −a1 − a2 − a3. All integer labels on

the gauge nodes of the periodic quiver are considered modulo n. A unit cell in this quiver
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+a1

+a2

+a3

+a1

+a2

+a3

+a2

+a1
+a3

+a3

+a1
+a2

+a4

Figure 5. The local structure of the periodic quiver for an arbitrary C4/Zn orbifold with action

(a1, a2, a3, a4), where a4 = −a1 − a2 − a3. All integer labels on the gauge nodes of the periodic

quiver are considered modulo n. On the chiral field arrows, we indicate the shift in the node label

between the two endpoints.

contains n nodes. Its precise shape depends on the orbifold action, and is determined by

the periodicity of the resulting node labels.

Example. In order to show how the general local structure of the orbifold periodic quiver

shown in figure 5 determines a unit cell, let us consider the example of C4/Z2 with action

(1, 0, 0, 1). It is equally straightforward to apply our results to more general orbifold ac-

tions. This example is particularly simple, since the orbifold group acts only on two of

the complex planes. In other words, the orbifold takes the form C2/Z2 × C2, which has

SU(2) holonomy, leading to enhanced (4, 4) SUSY. In fact, the theory can be obtained by

dimensional reduction from a 4d N = 2 orbifold theory. The corresponding periodic quiver

is shown in figure 6.

The corresponding J- and E-terms are given by

J E

Λ11 : Y11 · Z11 − Z11 · Y11 = 0 D12 ·X21 −X12 ·D21 = 0

Λ22 : Y22 · Z22 − Z22 · Y22 = 0 D21 ·X12 −X21 ·D12 = 0

Λ1
12 : Z22 ·X21 −X21 · Z11 = 0 D12 · Y22 − Y11 ·D12 = 0

Λ1
21 : Z11 ·X12 −X12 · Z22 = 0 D21 · Y11 − Y22 ·D21 = 0

Λ2
12 : X21 · Y11 − Y22 ·X21 = 0 D12 · Z22 − Z11 ·D12 = 0

Λ2
21 : X12 · Y22 − Y11 ·X12 = 0 D21 · Z11 − Z22 ·D21 = 0

(4.10)
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1

1

1

1

2 2

2 2

1 1

1 1

X12

X21

Y11

Z22

Z11 Y22

Figure 6. A unit cell in the periodic quiver for C4/Z2 with action (1, 0, 0, 1).

4.3.2 J- and E-terms from plaquettes

J- and E-terms are conveniently encoded in terms of plaquettes. We define a plaquette as

a closed loop in the quiver consisting of an arbitrary number of chiral fields and a single

Fermi field. The chiral fields in a plaquette form an oriented path with two endpoints,

which are connected by the Fermi field, closing the loop.

The relative orientation between the path of chiral fields in a plaquette and the gauge

quantum numbers of the corresponding Fermi field depend on whether it corresponds to a

J- or an E-term. Since E-terms are auxiliary components of Fermi fields, they share the

same gauge quantum numbers. Hence, the path of chiral fields in a plaquette representing

a contribution to an Eij term has the orientation of the corresponding Fermi field Λij .

Conversely, J-terms transform in the conjugate representation of the corresponding Fermi

field. As a result, a contribution to a Jji term associated with a Fermi field Λij corresponds

to a plaquette in which the path of chiral fields goes from node j to i.

Keeping our discussion general, we allow plaquettes to have arbitrary numbers of chiral

fields. For the special case of orbifolds, every plaquette has two chiral fields. As we discussed

in section 3.1, the J- and E-terms in toric theories have a special form: they are differences

of two monomials in chiral fields. This implies that in these theories every Fermi field

participates in four plaquettes, which separate into two pairs with opposite orientations.

Figure 7 schematically shows the basic structure of plaquettes for a given Fermi field.

A remarkable property of periodic quivers, which we study in the following sections,

is that periodic quivers beautifully encode the J- and E-terms of the theory in terms of

certain “minimal” plaquettes. This is the 2d analogue of the fact that plaquettes in periodic

quivers on a 2-torus precisely encode the superpotential of 4d toric theories [2].12

12For 4d theories, plaquettes are defined as closed oriented loops of chiral fields.
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Figure 7. Schematic representation of the four plaquettes giving rise to the J- and E-terms

associated with a Fermi field Λij .

5 Geometry from 2d (0,2) quivers

A central goal of this work is to identify 2d gauge theories which arise on the worldvolume of

D1-branes probing toric Calabi-Yau 4-folds. The primary tool we use in order to establish

this correspondence is the classical mesonic moduli space of the gauge theory. For a stack of

N D1-branes, we take the expectation values of the scalars in chiral fields to be proportional

to the identity. The resulting mesonic moduli space takes the form MN = SymNM1,

namely the symmetric product of N copies of the moduli space associated with a single

D1-brane M1. M1 corresponds to the probed CY4. For this reason, in what follows, we

focus on the moduli space of abelian theories.

This section presents an algorithm for extracting the information about the geometry

of the toric CY4. As emphasized above, the toric CY4 is the vacuum moduli space of

the 2d gauge theories which have been discussed in section 2. This algorithm is a direct

generalization of the so called forward algorithm for 4d N = 1 quiver gauge theories on the

worldvolume of D3-branes probing toric Calabi-Yau 3-folds [2, 8].

5.1 The forward algorithm for 2d (0,2) theories

This section presents the forward algorithm for 2d (0, 2) theories.13 It is convenient to

illustrate its implementation in terms of an explicit example. To do so, we consider C4/Z4

(1, 1, 1, 1) whose quiver diagram is shown in figure 8. The corresponding J- and E-terms

are presented in (5.2).14

13Our discussion also applies to theories with enhanced SUSY.
14For brevity, we provide standard quivers instead of periodic ones for this model and the orbifold

examples of section 5.3. We will return to periodic quivers in section 6.
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Figure 8. Quiver diagram for the C4/Z4 orbifold with action (1, 1, 1, 1).

The forward algorithm involves the following steps:

• J- and E-terms and the K-matrix: the first step in the algorithm is to take the

J- and E-terms associated with all Fermi fields. A special feature of the theories under

consideration, as discussed in section 3.1, is that these relations equate a monomial

to a monomial.

Let us denote by Xm, with m = 1, . . . , nχ, all the chiral fields in the quiver.15 Re-

markably, the space of solutions to the vanishing J- and E-terms can be expressed

in terms of G + 3 independent chiral fields vk, with G being the number of gauge

groups in the quiver. Xm can thus be expressed as

Xm =
∏

k

vKmkk , (5.1)

where m = 1, . . . , nχ and k = 1, . . . , G + 3. K is an nχ × (G + 3)-dimensional

matrix which precisely encodes the relations from the vanishing J- and E-terms. In

toric geometry, the K-matrix defines a cone M+ generated by non-negative linear

combinations of nχ ~Km vectors in ZG+3.

15For simplicity, in what follows, we often use chiral fields as synonyms of their scalar components.
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For the example C4/Z4 (1, 1, 1, 1), the J- and E-terms are given by

J E

Λ1
13 : X34 · Y41 − Y34 ·X41 = 0 D12 · Z23 − Z12 ·D23 = 0

Λ2
13 : Y34 · Z41 − Z34 · Y41 = 0 D12 ·X23 −X12 ·D23 = 0

Λ3
13 : Z34 ·X41 −X34 · Z41 = 0 D12 · Y23 − Y12 ·D23 = 0

Λ1
31 : X12 · Y23 − Y12 ·X23 = 0 D34 · Z41 − Z34 ·D41 = 0

Λ2
31 : Y12 · Z23 − Z12 · Y23 = 0 D34 ·X41 −X34 ·D41 = 0

Λ3
31 : Z12 ·X23 −X12 · Z23 = 0 D34 · Y41 − Y34 ·D41 = 0

Λ1
24 : Z41 ·X12 −X41 · Z12 = 0 D23 · Y34 − Y23 ·D34 = 0

Λ2
24 : X41 · Y12 − Y41 ·X12 = 0 D23 · Z34 − Z23 ·D34 = 0

Λ3
24 : Y41 · Z12 − Z41 · Y12 = 0 D23 ·X34 −X23 ·D34 = 0

Λ1
42 : X23 · Y34 − Y23 ·X34 = 0 D41 · Z12 − Z41 ·D12 = 0

Λ2
42 : Y23 · Z34 − Z23 · Y34 = 0 D41 ·X12 −X41 ·D12 = 0

Λ3
42 : Z23 ·X34 −X23 · Z34 = 0 D41 · Y12 − Y41 ·D12 = 0

(5.2)

where on the left there are the corresponding Fermi fields.

All chiral fields can be expressed in terms of 4 + 3 = 7 variables vk as follows

D12 = v1 D23 = v2 D34 = v3 D41 = v4

X12 = v5 X23 =
v2v5

v1
X34 =

v3v5

v1
X41 =

v4v5

v1

Y12 = v6 Y23 =
v2v6

v1
Y34 =

v3v6

v1
Y41 =

v4v6

v1

Z12 = v7 Z23 =
v2v7

v1
Z34 =

v3v7

v1
Z41 =

v4v7

v1

(5.3)

We then define K following (5.1) and obtain

(Kt)(G+3)×E =




D12 D23 D34 D41 X12 X23 X34 X41 Y12 Y23 Y34 Y41 Z12 Z23 Z34 Z41

v1 = D12 1 0 0 0 0 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1

v2 = D23 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

v3 = D34 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

v4 = D41 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

v5 = X12 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

v6 = Y12 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

v7 = Z12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




.

(5.4)

• The dual cone and the P -matrix: entries in the K-matrix are integers but can

be negative. This means that the chiral fields can involve negative powers of the

independent fields vk. Such negative powers can be avoided by constructing a new

set of variables as follows. We define the dual cone N+ in terms of vectors ~Tm,
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m = 1, . . . , c, which can be combined into a (G+ 3)× c-dimensional matrix that we

call T .16 This matrix has positive integer entries and is defined through the condition

~K · ~T ≥ 0 . (5.5)

We can now use T to trade the independent chiral fields vk for a new set of fields pα,

α = 1, . . . , c, such that only positive powers are involved,

vk =
∏

α

pTkαα . (5.6)

The pα are interpreted as GLSM fields [29] in the toric description of the moduli

space.17

Combining (5.1) and (5.6), all chiral fields can be expressed in terms of the GLSM

fields according to

Xm =
∏

α

pPmαα , (5.7)

where we have defined the nχ × c-dimensional P -matrix as

Pnχ×c = Knχ×(G+3) · T(G+3)×c . (5.8)

Above, the labels on the matrices indicate their dimensions. The map in (5.7) only

involves positive powers and is fully controlled by the P -matrix, which is going to

play a central role in connecting gauge theory and geometry in the following sections.

For the C4/Z4 example, T is given by

T =




p1 p2 p3 p4 q1 q2 q3 q4

v1 = D12 1 0 0 0 1 0 0 0

v2 = D23 1 0 0 0 0 1 0 0

v3 = D34 1 0 0 0 0 0 1 0

v4 = D41 1 0 0 0 0 0 0 1

v5 = X12 0 1 0 0 1 0 0 0

v6 = Y12 0 0 1 0 1 0 0 0

v7 = Z12 0 0 0 1 1 0 0 0




. (5.9)

This matrix encodes the following map

v1 = p1q1 v2 = p1q2 v3 = p1q3

v4 = p1q4 v5 = p2q1 v6 = p3q1

v7 = p4q1

(5.10)

16Notice that the number of independent vectors c spanning the dual cone is a priori unknown and results

from the actual computation.
17We will reserve the term GLSM for the theories constructed via the forward algorithm which, unlike

the original 2d quivers, involve unconstrained fields.
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The resulting P -matrix is given by

P =




p1 p2 p3 p4 q1 q2 q3 q4

D12 1 0 0 0 1 0 0 0

D23 1 0 0 0 0 1 0 0

D34 1 0 0 0 0 0 1 0

D41 1 0 0 0 0 0 0 1

X12 0 1 0 0 1 0 0 0

X23 0 1 0 0 0 1 0 0

X34 0 1 0 0 0 0 1 0

X41 0 1 0 0 0 0 0 1

Y12 0 0 1 0 1 0 0 0

Y23 0 0 1 0 0 1 0 0

Y34 0 0 1 0 0 0 1 0

Y41 0 0 1 0 0 0 0 1

Z12 0 0 0 1 1 0 0 0

Z23 0 0 0 1 0 1 0 0

Z34 0 0 0 1 0 0 1 0

Z41 0 0 0 1 0 0 0 1




. (5.11)

This implies the following map between GLSM and chiral fields

D12 = p1q1 D23 = p1q2 D34 = p1q3 D41 = p1q4

X12 = p2q1 X23 = p2q2 X34 = p2q3 X41 = p2q4

Y12 = p3q1 Y23 = p3q2 Y34 = p3q3 Y41 = p3q4

Z12 = p4q1 Z23 = p4q2 Z34 = p4q3 Z41 = p4q4

(5.12)

• GLSM charges from J- and E-terms: as already mentioned, the GLSM fields pα
encoded in the P -matrix can be considered as a new basis of fields parameterizing the

space of solutions to the vanishing J- and E-terms. The resulting relations between

chiral fields can be neatly implemented by introducing U(1) gauge symmetries to the

GLSM and assigning appropriate charges to its fields. These charges are encoded in a

(c− (G+3))×c -dimensional charge matrix QJE which is the kernel of the P -matrix,

(QJE)(c−(G+3))×c = ker(P ) . (5.13)

For our C4/Z4 example, we get

QJE =

(
p1 p2 p3 p4 q1 q2 q3 q4

1 1 1 1 −1 −1 −1 −1

)
. (5.14)

Above, a single U(1) symmetry is necessary in order to capture the J- and E-terms.
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• GLSM charges from D-terms: the final step in the computation of the moduli

space is to impose the vanishing D-terms. Recall, we are focusing on the abelian

theory. The U(1) gauge charges of the chiral fields are encoded by the G × nχ-

dimensional incidence matrix d of the quiver, where G is the number of nodes. The

incidence matrix is defined as follows

dai =





+1 if Xi is a fundamental of node a

−1 if Xi is an anti-fundamental of node a

0 if Xi is an adjoint of node a

(5.15)

Since in the theories under consideration all chiral fields always transform in bifun-

damental or adjoint representations, the incidence matrix satisfies

∑

a

dai = 0 . (5.16)

As a result, only G − 1 rows of the incidence matrix are independent. It is thus

sufficient to focus on a (G − 1) × nχ-dimensional matrix ∆, obtained from d by

deleting any of its rows.

Next, it is possible to establish U(1) charges for the GLSM fields pα that would result

in the desired charges for the chiral fields via the map in (5.7). The U(1) charges of

the pα’s are summarized in a (G− 1)× c-dimensional matrix QD that satisfies

∆(G−1)×nχ = (QD)(G−1)×c · P tc×nχ . (5.17)

Notice that, in general, this equation does not fix QD uniquely. The final moduli

space is however independent of which solution is used.

From figure 8, we determine the following quiver incidence matrix

d =




D12 D23 D34 D41 X12 X23 X34 X41 Y12 Y23 Y34 Y41 Z12 Z23 Z34 Z41

1 1 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1

2 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0

3 0 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1 1 0

4 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1 1



.

(5.18)

Combining (5.11) and (5.18), we obtain the following possible QD matrix for the

GLSM fields

QD =




p1 p2 p3 p4 q1 q2 q3 q4

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1



. (5.19)

• CY4 moduli space and its toric diagram: we have translated the relations as-

sociated with vanishing J- and E-terms into U(1) charges given by the matrix QJE .
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Figure 9. Toric diagram for the C4/Z4 orbifold with action (1, 1, 1, 1). This geometry was obtained

as the mesonic moduli space of the corresponding gauge theory. GLSM fields q1, q2, q3 and q4
correspond to a single internal point, shown in red.

Similarly, D-terms are captured by the charges in QD. We define the total charge

matrix

(Qt)(c−4)×c = ((QJE)(c−(G+3))×c , (QD)(G−1)×c) (5.20)

as the concatenation of QJE and QD. The total charge matrix is (c − 4) × c-

dimensional, with c being the number of GLSM fields.

We can now determine the moduli space of the gauge theory. The kernel of QD is a

4× c-dimensional matrix,

G = ker(Qt) . (5.21)

This matrix should be interpreted as determining the toric diagram of the moduli

space, which is a toric Calabi-Yau 4-fold. Every column in G corresponds to a GLSM

field and determines the position in Z4 of the corresponding point in the toric diagram.

For the C4/Z4 (1, 1, 1, 1) gauge theory, we obtain

G =




p1 p2 p3 p4 q1 q2 q3 q4

1 1 1 1 1 1 1 1

−1 0 0 1 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 1 −1 0 0 0 0



. (5.22)

We note that the GLSM fields q1, q2, q3 and q4 correspond to the same point in the

toric diagram. We say that this point has multiplicity 4. The toric diagram associated

with (5.22) is shown in figure 9. Since all 4-vectors corresponding to toric points live
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on a 3-dimensional hyperplane, it can be drawn in Z3. The toric diagram in figure 9

corresponds to the C4/Z4 (1, 1, 1, 1) orbifold. Remarkably, we obtained it as the

moduli space of the corresponding gauge theory. Notice that four unit tetrahedra fit

into this toric diagram, in agreement with the fact that the corresponding quiver has

four nodes.

5.2 Algebraic varieties, extra GLSM fields and Hilbert series

The previous section introduced the forward algorithm, which gives a toric description of

the mesonic moduli space of the 2d abelian theory. This section gives an overview of the

algebraic structure of the Calabi-Yau moduli spaces. Furthermore, it also sheds light on a

new phenomenon exhibited by some 2d theories: the appearance of extra GLSM fields.

The master space and the mesonic moduli space. The chiral fields Xij , which are

subject to the vanishing J- and E-term relations, form an affine algebraic variety

F [ = Cn
χ
[X1, . . . Xnχ ]/〈Ja, Ea〉 . (5.23)

The quotienting ideal 〈Ja, Ea〉 is over the relations Ja = 0 and Ea = 0 corresponding to all

Fermi fields Λa. We refer to this variety as the master space, in analogy to the master space

of 4d N = 1 theories, which is the space of vanishing F-terms [42]. For the 2d theories

under consideration, the master space is a G+ 3-dimensional toric Calabi-Yau, where G is

the number of gauge groups.

The mesonic moduli space M is obtained by further quotienting the master space by

the U(1)G gauge charges carried by the chiral fields

M = F [//U(1)G . (5.24)

As explained in section 5.1, note that one of the U(1) gauge symmetries is redundant in

the 2d quiver gauge theory. M is a toric Calabi-Yau 4-fold and it is precisely the space

probed by the D1-brane whose worldvolume theory is the 2d quiver gauge theory.

The mesonic moduli space as a Kähler quotient. The forward algorithm, reformu-

lates the vanishing J- and E-terms as a set of complexified U(1)c−G−3 charges on GLSM

fields pa. These charges are summarized in the matrix QEJ (c−G−3)×c as defined in (5.13).

Combined with the U(1)G gauge charges on the GLSM fields, which are summarized in the

matrix QD (G−1)×c as shown in (5.17), the Calabi-Yau 4-fold mesonic moduli space can be

expressed as the following Kähler quotient

M = (C[p1, . . . , pc]//QJE)//QD , (5.25)

where C[p1, . . . , pc] is the freely generated c-dimensional space of GLSM fields pa defined

in (5.8). In other words, the mesonic moduli space is the space of U(1)c−4 invariant

operators in terms of GLSM fields pa.

From (5.24) and (5.25), we conclude that M can be expressed in terms of chiral fields

subject to J- and E-term relations and U(1)G invariance, or in terms of GLSM fields

invariant under QJE and QD.
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Extra GLSM fields. The two constructions (5.24) and (5.25) of the mesonic moduli

space give rise to the same geometry. However, it is interesting to point out a new phe-

nomenon exhibited by 2d theories: in some cases, the forward algorithm makes use of

additional GLSM fields that are redundant for describing M.

Such extra GLSM fields manifest as additional points in the toric diagram of M that,

however, can be neglected when identifying the corresponding geometry. In physical terms,

they can be understood as follows. M is parameterized by mesonic gauge invariant oper-

ators, which form the spectrum of the quotients in (5.24) and (5.25). These operators can

be expressed in terms of either chiral fields or GLSM fields. When extra GLSM fields are

present, they do not affect the spectrum of operators. Instead, they can be regarded as an

over-parameterization of the mesonic moduli space, where generators and relations amongst

generators remain unaffected by their presence. Hilbert series provide an efficient tool for

verifying that this is actually the case. Hilbert series are partition functions that count

gauge invariant operators and have been extensively used in 4d theories corresponding to

brane tilings to study the algebraic structure of their vacuum moduli spaces [33, 43, 44].

In all the examples presented in this paper, we have used Hilbert series to verify that

the presence of extra GLSM fields does not affect the algebraic properties of the mesonic

moduli space. We postpone a more detailed study and presentation of this approach for the

future [26]. The following sections concentrate on toric diagrams, after appropriately iden-

tifying extra GLSM fields when they are present, as a tool for characterizing the mesonic

moduli space.

We have empirically found various characteristic properties that can be exploited for

identifying points in the toric diagram corresponding to possible extra GLSM fields. They

are:

• Property 1: the points do not lie on the same 3-dimensional hyperplane as the rest

of the toric diagram of the CY4.

• Property 2: the points have multiplicity greater than 1. While this seems to be the

case for extra GLSM fields in all examples we considered, it is also a rather common

feature of normal GLSM fields, so it is not a particularly restrictive condition.

• Property 3: according to the examples we studied, it appears that extra GLSM

fields contain more chiral fields than other GLSM fields. This seems to be a necessary

but not sufficient condition.

Let us reiterate that the above are observations. In the following sections, once candidate

extra GLSM fields are found, we verify the actual geometry of the moduli space with its

generators and relations using Hilbert series. For explicit computations of the Hilbert

series, the reader is referred to our future work [26].

The following sections present several explicit examples of the forward algorithm ap-

plied to 2d theories both with and without extra GLSM fields.
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Figure 10. Quiver diagram for C4/Z2 (1, 1, 1, 1).

5.3 Orbifold examples

We now illustrate the forward algorithm with additional orbifold examples. As expected,

the mesonic moduli space of the gauge theory nicely reproduces the probed geometry. We

have picked examples that show the phenomenon of extra GLSM fields. Additional orbifold

theories are presented in appendix A. The forward algorithm is applied to non-orbifold

theories in sections 6 and 8.

5.3.1 C4/Z2 (1, 1, 1, 1) with extra GLSM fields

The quiver diagram for C4/Z2 (1, 1, 1, 1) is shown in figure 10. The J- and E-terms with

their corresponding Fermi fields are

J E

Λ1
11 : Y12 · Z21 − Z12 · Y21 = 0 D12 ·X21 −X12 ·D21 = 0

Λ1
22 : Y21 · Z12 − Z21 · Y12 = 0 D21 ·X12 −X21 ·D12 = 0

Λ2
11 : Z12 ·X21 −X12 · Z21 = 0 D12 · Y21 − Y12 ·D21 = 0

Λ2
22 : Z21 ·X12 −X21 · Z12 = 0 D21 · Y12 − Y21 ·D12 = 0

Λ3
11 : X12 · Y21 − Y12 ·X21 = 0 D12 · Z21 − Z12 ·D21 = 0

Λ3
22 : X21 · Y12 − Y21 ·X12 = 0 D21 · Z12 − Z21 ·D12 = 0

(5.26)

The quiver incidence matrix for the chiral fields is

d =




D12 D21 X12 X21 Y12 Y21 Z12 Z21

1 1 −1 1 −1 1 −1 1 −1

2 −1 1 −1 1 −1 1 −1 1


 . (5.27)

The relations in (5.26) can be reduced to independent relations that give rise to the following

K-matrix

K =




D12 D21 X12 X21 Y12 Y21 Z12 Z21

D12 1 0 0 −1 0 −1 0 −1

D21 0 1 0 1 0 1 0 1

X12 0 0 1 1 0 0 0 0

Y12 0 0 0 0 1 1 0 0

Z12 0 0 0 0 0 0 1 1




. (5.28)
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The P -matrix connecting chiral fields to GLSM fields is given by

P =




p1 p2 p3 p4 q1 q2

D12 1 0 0 0 1 0

D21 1 0 0 0 0 1

X12 0 1 0 0 1 0

X21 0 1 0 0 0 1

Y12 0 0 1 0 1 0

Y21 0 0 1 0 0 1

Z12 0 0 0 1 1 0

Z21 0 0 0 1 0 1




. (5.29)

The charge matrices encoding vanishing J- and E-terms and the vanishing D-terms are

respectively

QJE =

(
p1 p2 p3 p4 q1 q2

1 1 1 1 −1 −1

)
, QD =

(
p1 p2 p3 p4 q1 q2

0 0 0 0 −1 1

)
. (5.30)

The resulting toric data is given by the following matrix

G =




p1 p2 p3 p4 q1 q2

2 0 0 0 1 1

−1 0 0 1 0 0

−1 0 1 0 0 0

−1 1 0 0 0 0



, (5.31)

where column vectors should be regarded as the positions of the corresponding points in

the toric diagram of the CY4. GLSM fields p1, p2, p3 and p4 correspond to toric points with

multiplicity 1 whereas GLSM fields q1 and q2 correspond to the same toric point which has

multiplicity 2.

Let us explore whether some of these points correspond to extra GLSM fields. By

performing an SL(4,Z) transformation with

M =




2 1 1 1

1 1 0 0

1 1 1 0

1 1 0 1



, (5.32)
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Figure 11. After removing the extra GLSM fields, we obtain the toric diagram for C4/Z2 (1, 1, 1, 1).

on the coordinates of the toric points.18 The new toric diagram matrix becomes

G̃ = M.G =




p1 p2 p3 p4 q1 q2

1 1 1 1 2 2

1 0 0 1 1 1

0 0 1 1 1 1

0 1 0 1 1 1



. (5.33)

It can be seen that the x-plane corresponding to the first row of the toric diagram matrix

above is a 3-dimensional hyperplane on which GLSM fields p1, p2, p3 and p4 lie, whereas

GLSM fields q1 and q2 are not on the hyperplane. As a result, q1 and q2 satisfy property 1,

which is a strong indication that they are extra GLSM fields. In this case, q1 and q2 also

exhibit the other two properties which are outlined in section 5.2. First, they correspond to

a point with multiplicity 2, satisfying property 2. Finally, the P -matrix in (5.29) shows that

q1 and q2 contain more chiral fields than the remaining GLSM fields, thus also satisfying

property 3.

After identifying q1 and q2 as potential extra GLSM fields, it is straightforward to

confirm that this is indeed the case by verifying that the generators of the mesonic moduli

space and their relations are independent of them. We can thus remove q1 and q2 from the

toric diagram matrix (5.33). Figure 11 shows the resulting toric diagram, which is precisely

the one for C4/Z2 (1, 1, 1, 1) [40, 41].
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Figure 12. Quiver diagram for C4/Z3 (1, 1, 2, 2).

5.3.2 C4/Z3 (1, 1, 2, 2) with extra GLSM fields

Let us now consider the C4/Z3 orbifold with action (1, 1, 2, 2), whose corresponding quiver
is shown in figure 12. The J- and E-terms read

J E

Λ1
11 : Y13 · Z31 − Z12 · Y21 = 0 D13 ·X31 −X12 ·D21 = 0

Λ1
22 : Y21 · Z12 − Z23 · Y32 = 0 D21 ·X12 −X23 ·D32 = 0

Λ1
33 : Y32 · Z23 − Z31 · Y13 = 0 D32 ·X23 −X31 ·D13 = 0

Λ2
11 : X12 · Y21 − Y13 ·X31 = 0 D13 · Z31 − Z12 ·D21 = 0

Λ2
22 : X23 · Y32 − Y21 ·X12 = 0 D21 · Z12 − Z23 ·D32 = 0

Λ2
33 : X31 · Y13 − Y32 ·X23 = 0 D32 · Z23 − Z31 ·D13 = 0

Λ12 : Z23 ·X31 −X23 · Z31 = 0 D13 · Y32 − Y13 ·D32 = 0

Λ23 : Z31 ·X12 −X31 · Z12 = 0 D21 · Y13 − Y21 ·D13 = 0

Λ31 : Z12 ·X23 −X12 · Z23 = 0 D32 · Y21 − Y32 ·D21 = 0

(5.34)

The quiver incidence matrix is

d =




D13 D21 D32 X12 X23 X31 Y13 Y21 Y32 Z12 Z23 Z31

1 1 −1 0 1 0 −1 1 −1 0 1 0 −1

2 0 1 −1 −1 1 0 0 1 −1 −1 1 0

3 −1 0 1 0 −1 1 −1 0 1 0 −1 1



. (5.35)

18In the examples that follow, we will often perform similar SL(4,Z) transformations on the G-matrices

in order to obtain better looking toric diagrams.
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From (5.34), we obtain

K =




D13 D21 D32 X12 X23 X31 Y13 Y21 Y32 Z12 Z23 Z31

D13 1 0 0 0 0 −1 0 −1 −1 0 0 −1

D32 0 1 1 0 0 1 0 1 1 0 0 1

X12 0 −1 0 1 0 0 0 −1 0 0 −1 −1

X23 0 1 0 0 1 1 0 1 0 0 1 1

Y13 0 0 0 0 0 0 1 1 1 0 0 0

Z12 0 0 0 0 0 0 0 0 0 1 1 1




. (5.36)

The P -matrix becomes

P =




p1 p2 p3 p4 q1 q2 q3 q4 r1 r2

D13 1 0 0 0 1 0 1 1 0 0

D21 1 0 0 0 1 1 0 0 1 0

D32 1 0 0 0 0 1 1 0 0 1

X12 0 1 0 0 0 0 1 1 0 1

X23 0 1 0 0 1 0 0 1 1 0

X31 0 1 0 0 0 1 0 0 1 1

Y13 0 0 1 0 1 0 1 1 0 0

Y21 0 0 1 0 1 1 0 0 1 0

Y32 0 0 1 0 0 1 1 0 0 1

Z12 0 0 0 1 0 0 1 1 0 1

Z23 0 0 0 1 1 0 0 1 1 0

Z31 0 0 0 1 0 1 0 0 1 1




. (5.37)

Finally, the charge matrices of the forward algorithm are

QJE =




p1 p2 p3 p4 q1 q2 q3 q4 r1 r2

1 2 1 2 0 0 0 −1 −1 −1

0 1 0 1 1 0 0 −1 −1 0

0 1 0 1 0 0 1 −1 0 −1

0 1 0 1 0 1 0 0 −1 −1



, QD =




p1 p2 p3 p4 q1 q2 q3 q4 r1 r2

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 −1 0 1


 ,

(5.38)

from which we obtain the toric diagram matrix

G =




p1 p2 p3 p4 q1 q2 q3 q4 r1 r2

1 1 1 1 2 2 2 2 2 2

0 1 1 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 0 0 3 1 1 1 2 2 2



. (5.39)
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Figure 13. Toric diagram for C4/Z3 (1, 1, 2, 2).

Proceeding as in the previous example, we can determine that qi and ri are extra GLSM

fields. After removing them, we obtain the toric diagram in figure 13, which is precisely

the one expected for C4/Z3 (1, 1, 2, 2) [40, 41].

6 CY3 × C theories

In this section, we continue our journey beyond orbifolds and study the class of 2d theories

on the worldvolume of D1-branes over toric CY 4-folds of the form CY3 × C. These

theories can be nicely understood via dimensional reduction from 4d theories that arise

on the worldvolume of D3-branes probing the CY3 factor of the Calabi-Yau 4-fold. They

have non-chirally enhanced SUSY: 2d (2, 2), (4, 4) or (8, 8) for 4d N = 1, 2 and 4 parent

theories, respectively.19

6.1 2d (2, 2) theories from dimensional reduction

Let us briefly review how 4d N = 1 theories can be dimensionally reduced to 2d (2, 2)

theories, which in turn can be expressed in 2d (0, 2) language. To do so, we consider all

fields are independent of x2 and x3 and decompose the representations of the 4d Lorentz

group into those of the 2d one. The 2d theory is described in terms of (2, 2) superspace

(yα, θ+, θ−, θ̄+, θ̄−), where (y0, y1) = (x0, x1). We can further express the (2, 2) theory in

(0, 2) language, which uses the (0, 2) superspace (yα, θ+, θ̄+).

19Thinking more broadly, there can be 2d (2, 2) theories that are not obtained by dimensionally reducing

consistent 4d N = 1 theories. For example, anomalies are determined differently in 2d and 4d, and therefore

one may obtain consistent (2, 2) theories by dimensionally reducing anomalous 4d theories. This is not going

to be the case for the theories we obtain in this section.
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Figure 14. Dimensional reduction of 4d N = 1 quivers down to 2d (2, 2), expressed in (0, 2)

language. (a) A 4d N = 1 vector multiplet reduces to a (0, 2) vector multiplet and a (0, 2) chiral

multiplet in the adjoint representation. (b) A 4d N = 1 bifundamental chiral multiplet reduces to

a (0, 2) chiral multiplet and a (0, 2) Fermi multiplet, both in the bifundamental representation. (c)

Similarly, a 4d N = 1 adjoint chiral multiplet reduces to a (0, 2) chiral multiplet and a (0, 2) Fermi

multiplet, both in the adjoint representation.

4d N = 1 SUSY has vector multiplets Vi and a chiral multiplet Xij , where we have

included subindices to stress the quiver nature of the theories that we are considering. Un-

der dimensional reduction, they become 2d (2, 2) vector and chiral multiplets, respectively.

Finally, 2d (2, 2) multiplets can be expressed in terms of 2d (0, 2) multiplets. In summary,

we obtain the following reduction from 4d N = 1 to 2d (0, 2) multiplets:

• 4d N = 1 vector Vi → 2d (0, 2) vector Vi + 2d (0, 2) adjoint chiral Φii

• 4d N = 1 chiral Xij → 2d (0, 2) chiral Xij + 2d (0, 2) Fermi Λij

Figure 14 schematically shows how 4d N = 1 multiplets map to the 2d (0, 2) multiplets in

terms of the quiver diagram.

The J-terms of the 2d theory follow from the 4d F-terms

Jji =
∂W

∂Xij
, (6.1)

where W is the 4d superpotential. The J-terms and W are here understood as functions

of the 2d (0, 2) chiral multiplets that descend from the 4d chiral multiplets.
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The E-terms come from the gauge interaction of the 4d theory, and are given by

Eij = ΦiiXij −XijΦjj . (6.2)

The condition
∑

tr(JjiEij) = 0 follows from gauge invariance of the superpotential W [20].

As explained in section 2.1, there is no invariant distinction between J- and E-terms.

However, dimensionally reduced theories naturally distinguish between them due to the 4d

parent theory.

6.2 Dimensional reduction: from 4d to 2d periodic quivers

Here we are interested in 2d (2, 2) theories on the worldvolume of D1-branes over toric

Calabi-Yau 4-folds of the form CY3 × C. These theories can be obtained by dimensional

reduction of 4d N = 1 theories on the worldvolume of D3-branes probing the toric CY3

factor of the Calabi-Yau 4-fold.20 Let us first discuss these 4d theories, which are given

by brane tilings. These are bipartite graphs on a 2-torus where gauge groups, chiral fields

and superpotential terms map to faces, edges and nodes in the graph. We refer the reader

to [2, 45, 46] for thorough discussions on brane tilings.

Brane tilings. Brane tilings [1, 2] have simplified immensely the connection between 4d

N = 1 quiver gauge theories and their corresponding Calabi-Yau geometry. For example,

GLSM fields in the toric description of the CY3 admit a combinatorial implementation as

perfect matchings in the brane tiling picture. A perfect matching pα is a collection of edges

in the tiling such that every node is the endpoint of exactly one edge in pα.

Brane tilings can be graph dualized into periodic quivers on T 2. Being equivalent to

brane tilings, periodic quivers fully specify the corresponding gauge theories. In particular,

every plaquette in the periodic quiver corresponds to a term in the superpotential. Periodic

quivers nicely capture the global symmetries of the gauge theory, which at least contain

a U(1)2 × U(1)R subgroup coming from the isometries of the toric CY3. U(1)R is the

R-symmetry whereas U(1) × U(1) is a mesonic flavor symmetry. Each fundamental cycle

of the 2-torus corresponds to a U(1) factor of the global flavor symmetry.

The purpose of this section is to develop a systematic method for constructing the

periodic quiver on T 3 corresponding to a 2d (2, 2) theory that comes from dimensional

reduction of a 4d brane tiling. The periodic quiver on T 3 encodes J- and E-terms as

minimal plaquettes.

Vertical direction and T 3. The third cycle in the periodic quivers on T 3 for the 2d

theories corresponding to CY3×C is parameterized by the adjoint chiral multiplets arising

from dimensional reduction of the 4d vector multiplets. This new cycle corresponds to

an extra U(1) mesonic global symmetry, which precisely comes from the additional U(1)

isometry associated with the C factor of the CY3×C. From now on, we refer to this third

cycle as the vertical direction in the picture of the T 3 periodic quiver.

20The theories for D3-branes are generically N = 1 but, of course, there can be examples with enhanced

SUSY.
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Object Vertical shift

Xij sij

Eij sij + 1

Jji −sij − 1

W −1

Table 1. Vertical shifts of chiral fields and their products in the periodic quiver on T 3.

Since mesonic symmetries map to the three fundamental directions of T 3, determining

the periodic quiver for the 2d theory translates into the problem of assigning charges to

fields. Once the 4d multiplets split into 2d (0, 2) multiplets, one needs to establish how

each chiral multiplet is charged under the additional U(1) flavor symmetry associated with

the vertical direction. These charges determine how the original periodic quiver on T 2 gets

‘lifted’ to T 3. The charges under the remaining U(1)2 flavor symmetries are inherited from

the 4d theory. The choice of a U(1) subgroup of the flavor symmetry is determined up to

an overall GL(3,Z) symmetry of T 3 but, as we explain below, it is possible to come up

with a natural prescription for performing the lift.

Vertical shifts. Recall that every Fermi field Λij in the 2d theory descends from a 4d chi-

ral field Xij and gives rise to the J- and E-terms in (6.1) and (6.2). Assuming that Λij has

a well-defined vertical shift, we note that Jji and Eij should have equal and opposite shifts

along the vertical direction. Here vertical shifts for chiral fields are measured between the

tail and the head of arrows or paths of arrows. For Fermi fields, we use the same prescrip-

tion, with the orientation determined by the corresponding 4d chiral field. By convention,

we may assign a (+1) vertical shift to all Φii’s. It then follows that every term in W must

have a (−1) vertical shift. Due to this, the oriented loops in the quiver, which correspond

to the 4d superpotential, only close once the vertical periodicity is taken into account. The

vertical shifts of Xij , if any, do not affect this property, as summarized in table 1.

The question now is how to determine the vertical shifts sij of the chiral fields Xij such

that all terms in W acquire a (−1) shift. This problem has a beautiful combinatorial answer

in terms of perfect matchings of the parent brane tiling. Recall that a perfect matching

is a collection of edges in the tiling that touches every node exactly once. Equivalently, it

corresponds to a collection of chiral fields that contains precisely one field per superpotential

term. Accordingly, an efficient way of achieving the desired result is picking a perfect

matching of the brane tiling and assigning a (−1) vertical shift to all the chiral fields

contained in it (regarded as 2d chiral fields), while leaving the remaining chiral fields

without a vertical shift. This procedure automatically gives all terms in W a (−1) vertical

shift. The freedom in choosing this perfect matching corresponds to the freedom in choosing

a point in the CY3 toric diagram. When the selected perfect matching receives the (−1)

shift, an additional point in the toric diagram is generated on top of it, which precisely

corresponds to the C factor in the CY3 × C geometry.
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W = · · ·+ X12X23X34X41 + . . . Eij = ΦiiXij − XijΦjj

Φ11 Φ22

Φ33Φ44

E23 = Φ22X23 − X23Φ33

J32 =
∂W

∂X23

Λ23

a b c

T 2 T 3 T 3

Figure 15. (a) A node in the brane tiling corresponds to a plaquette in the T 2 periodic quiver

and a superpotential term in the 4d N = 1 parent theory. A perfect matching picks a single 4d

chiral field in the plaquette, here shown in green. (b) An intermediate step in which we introduce

two copies of the T 2 periodic quiver and connect their nodes by the 2d adjoint chiral multiplets Φii

coming from the 4d vector multiplets. (c) Finally, the 2d chiral field Xij and Fermi field Λij arising

from a given 4d chiral field Xij receive vertical shifts sij and (sij + 1), respectively, with sij = −1

if Xij is in the perfect matching and 0 otherwise.

Finally, we note that the 2d chiral field Xij and Fermi field Λij arising from a given

4d chiral field Xij receive vertical shifts sij and (sij + 1) respectively, and hence get split

in the periodic quiver on T 3. Figure 15 shows the basics of the lifting algorithm for the

periodic quiver. Section 6.4 is going to illustrate this construction with several examples.

Before closing this section, let us emphasize that these periodic quivers can alternatively

be derived from those of orbifolds by higgsing, following the ideas that are going to be

discussed in section 7.

6.2.1 Thoughts regarding compactifications on magnetized tori

We have just explained how the dimensional reduction from the 4d N = 1 gauge theory

on D3-branes probing a toric CY3 to the 2d (2, 2) theory on D1-branes over toric CY3×C
has a beautiful implementation as a lift of the periodic quiver from T 2 to T 3. Conversely,

going to the 4d parent theory simply corresponds to a projection of the periodic quiver

from T 3 to T 2 along the vertical direction.

There are more general ways of going from 4d to 2d, preserving less SUSY. In particular,

if the 4d N = 1 theory has a U(1) global (non-R) symmetry, it is possible to obtain a 2d

(0, 2) theory by compactification on a 2-torus with background magnetic and D fields for

– 32 –



J
H
E
P
0
9
(
2
0
1
5
)
0
7
2

it [24].21 In the presence of several U(1) global symmetries, there are multiple possibilities

for such a reduction.

Remarkably, the 4d toric theories under consideration have at least two U(1) global

flavor symmetries that, moreover, translate into the two fundamental directions of the cor-

responding periodic quivers on T 2. It is natural to wonder whether the (0, 2) reductions may

be captured by a generalized lift of the periodic quiver that non-trivially takes into account

the two directions of T 2. Conversely, it would be interesting to explore whether a given

periodic quiver on T 2 can be obtained via different projections from periodic quivers on T 3

corresponding to (2, 2) or (0, 2) theories. We leave these questions for future investigation.

6.3 General analysis of the classical mesonic moduli space

It is possible to present a concise discussion of the application of the forward algorithm

to all the dimensionally reduced theories under consideration. We are going to see that,

for this class of theories, the classical mesonic moduli space admits a simple combinatorial

description.

The J-terms are given by (6.1), which we reproduce here for convenience

Jji =
∂W

∂Xij
. (6.3)

It can be seen that the J-terms are equal to the F-terms of the 4d theory. Furthermore,

they exclusively depend on variables that are in one-to-one correspondence with the 4d

chiral fields. Solving these equations subject to D-terms thus gives rise to the CY3 factor

of the moduli space. Moreover, this piece of the problem is exactly equivalent to finding

the mesonic moduli space of the 4d toric theory. In this case, the c − 1 GLSM fields are

in one-to-one correspondence with perfect matchings of the corresponding brane tiling [2].

As introduced in section 5, we have

Xm =

c−1∏

α=1

pPmαα , (6.4)

where pα, α = 1, . . . , c− 1 correspond to perfect matchings of the parent brane tiling.

Let us now consider the E-terms. Since we are interested in the abelian theory, (6.1)

reduces to

Eij = Φii − Φjj . (6.5)

In other words, all the adjoint chiral fields Φii must be equal. This is simply taken care of

by introducing an additional GLSM field s such that

Φii = s , (6.6)

for all gauge nodes i. This GLSM field gives rise to the additional point in the toric diagram

representing the C factor of the geometry.

21Notice that the 2d (0, 2) theory obtained this way may break SUSY once quantum effects are taken

into account.
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Figure 16. Dimensional reduction from the quiver of the 4d N = 1 gauge theory corresponding

to C3/Z3 with action (1, 1, 1) to the quiver of the 2d (2, 2) theory corresponding to C4/Z4 with

action (1, 1, 1, 0).

6.4 Examples

This section presents various explicit examples of 2d (0, 2) theories obtained by dimensional

reduction of 4d N = 1 theories corresponding to brane tilings. We determine their classical

mesonic moduli spaces using the forward algorithm, recovering the expected toric CY3×C
geometry. The general structure of the corresponding periodic quivers and Calabi-Yau

geometries that have been discussed in sections 6.2 and 6.3 are recovered.

6.4.1 C4/Z3 (1, 1, 1, 0)

Our first example of a dimensionally reduced theory corresponds to the C4/Z3 (1, 1, 1, 0)

orbifold. Since this is an orbifold, it can be studied with the tools from both section 4 and

section 6.2. The left of figure 16 shows the quiver for the 4d parent theory corresponding

to C3/Z3 (1, 1, 1). The 4d superpotential is given by

W = X12 · Y23 · Z31 + Y12 · Z23 ·X31 + Z12 ·X23 · Y31

−X12 · Z23 · Y31 − Y12 ·X23 · Z31 − Z12 · Y23 ·X31 . (6.7)

Here and henceforth, overall traces over gauge indices are understood in superpotentials.

Note that for simplicity, the font distinction between 4d and 2d chiral multiplets has been

dropped. The theory has an SU(3) global symmetry under which the three bifundamental

fields with the same gauge charges transform in triplets.

Dimensional reduction produces a 2d (2, 2) theory whose quiver is also depicted in
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p3

qi

Figure 17. Toric diagram for the C4/Z3 orbifold with action (1, 1, 1, 0) obtained as the mesonic

moduli space of the dimensionally reduced C3/Z3 with action (1, 1, 1) gauge theory.

figure 16. The J- and E-term equations are

J E

Λ1
12 : Y23 · Z31 − Z23 · Y31 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ1
23 : Y31 · Z12 − Z31 · Y12 = 0 Φ22 ·X23 −X23 · Φ33 = 0

Λ1
31 : Y12 · Z23 − Z12 · Y23 = 0 Φ33 ·X31 −X31 · Φ11 = 0

Λ2
12 : Z23 ·X31 −X23 · Z31 = 0 Φ11 · Y12 − Y12 · Φ22 = 0

Λ2
23 : Z31 ·X12 −X31 · Z12 = 0 Φ22 · Y23 − Y23 · Φ33 = 0

Λ2
31 : Z12 ·X23 −X12 · Z23 = 0 Φ33 · Y31 − Y31 · Φ11 = 0

Λ3
12 : X23 · Y31 − Y23 ·X31 = 0 Φ11 · Z12 − Z12 · Φ22 = 0

Λ3
23 : X31 · Y12 − Y31 ·X12 = 0 Φ22 · Z23 − Z23 · Φ33 = 0

Λ3
31 : X12 · Y23 − Y12 ·X23 = 0 Φ33 · Z31 − Z31 · Φ11 = 0

(6.8)

Here, we use the notation for orbifold theories from section 4. In view of the general

discussion on dimensional reduction, the adjoint chiral fields Φii (i = 1, 2, 3) are precisely

the fields originating from 4d vector multiplets.

We now determine the classical mesonic moduli space of the gauge theory using the for-

ward algorithm. For brevity, we only quote some of the matrices involved in the algorithm.

Vanishing J- and E-terms can be reduced and summarized by the K-matrix as follows,

K =




X12 X23 X31 Y12 Y23 Y31 Z12 Z23 Z31 Φ11 Φ22 Φ33

X12 1 0 0 0 −1 −1 0 −1 −1 0 0 0

X23 0 1 0 0 1 0 0 1 0 0 0 0

X31 0 0 1 0 0 1 0 0 1 0 0 0

Y12 0 0 0 1 1 1 0 0 0 0 0 0

X12 0 0 0 0 0 0 1 1 1 0 0 0

Φ11 0 0 0 0 0 0 0 0 0 1 1 1




. (6.9)
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Figure 18. Brane tiling for C3/Z3 (1, 1, 1) encoding the corresponding 4d N = 1 gauge theory and

its dual periodic quiver on T 2.

The P -matrix becomes

P =




p1 p3 p4 q1 q2 q3 s

X12 1 0 0 1 0 0 0

X23 1 0 0 0 1 0 0

X31 1 0 0 0 0 1 0

Y12 0 1 0 1 0 0 0

Y23 0 1 0 0 1 0 0

Y31 0 1 0 0 0 1 0

Z12 0 0 1 1 0 0 0

Z23 0 0 1 0 1 0 0

Z31 0 0 1 0 0 1 0

Φ11 0 0 0 0 0 0 1

Φ22 0 0 0 0 0 0 1

Φ33 0 0 0 0 0 0 1




. (6.10)

Next, we use the previous matrices to determine QJE and the incidence matrix to find

QD, which in turn we use to compute the toric diagram matrix

G =




p1 p2 p3 q1 q2 q3 s

1 1 1 1 1 1 1

1 0 −1 0 0 0 0

0 1 −1 0 0 0 0

0 0 0 0 0 0 1



, (6.11)

The corresponding toric diagram is shown in figure 17. It corresponds to the C4/Z3 orbifold

with action (1, 1, 1, 0), as expected.

Let us now use the lifting algorithm introduced in section 6.2 to generate the periodic

quiver on T 3 encoding the 2d (2, 2) theory. The starting point is the brane tiling and the
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Figure 19. Lift of the periodic quiver from T 2 to T 3. (a) Two copies of the 4d periodic quiver

with the chiral fields for the perfect matching p1 shown in green. (b) The adjoints Φii connect these

planes with a vertical shift (+1). (c) The 2d chiral fields descending from those in p1 receive a (−1)

vertical shift. (d) The Fermi fields coming from 4d chiral fields in p1 have no vertical shift, while

all others receive a (−1) shift. (e) The full periodic quiver on T 3 for C4/Z3 (1, 1, 1, 0).

Figure 20. Dimensional reduction from the quiver of the 4d N = 1 gauge theory corresponding to

the conifold C to the quiver of the 2d (2, 2) theory corresponding to C × C.

dual periodic quiver for the 4d theory associated with C3/Z3 (1, 1, 1), which are shown in

figure 18. The periodic quiver on T 3 is presented in figure 19.

6.4.2 C × C

Let us now investigate the theory for C×C, where C refers to the conifold [9]. The 4d quiver

for the conifold theory is given on the left of figure 20. The corresponding superpotential is

W = X12 · Y21 · Y12 ·X21 −X12 ·X21 · Y12 · Y21 . (6.12)

The theory has an SU(2)× SU(2) global mesonic symmetry.
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The dimensionally reduced quiver is shown on the right of figure 20. The J- and

E-terms are given by

J E

Λ1
12 : X21 ·X12 · Y21 − Y21 ·X12 ·X21 = 0 Φ11 · Y12 − Y12 · Φ22 = 0

Λ1
21 : X12 · Y21 · Y12 − Y12 · Y21 ·X12 = 0 Φ22 ·X21 −X21 · Φ11 = 0

Λ2
12 : Y21 · Y12 ·X21 −X21 · Y12 · Y21 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ2
21 : Y12 ·X21 ·X12 −X12 ·X21 · Y12 = 0 Φ22 · Y21 − Y21 · Φ11 = 0

(6.13)

Proceeding with the forward algorithm, we obtain the K-matrix

K =




X21 X12 Y21 Y12 Φ11 Φ22

X21 1 0 0 0 0 0

X12 0 1 0 0 0 0

Y21 0 0 1 0 0 0

Y12 0 0 0 1 0 0

Φ22 0 0 0 0 1 1




, (6.14)

the P -matrix

P =




p1 p2 p3 p4 s

X21 1 0 0 0 0

X12 0 1 0 0 0

Y21 0 0 1 0 0

Y12 0 0 0 1 0

Φ11 0 0 0 0 1

Φ22 0 0 0 0 1




, (6.15)

and the toric diagram matrix

G =




p1 p2 p3 p4 s

1 1 1 1 1

1 1 1 1 0

0 1 1 0 0

0 0 1 1 0



. (6.16)

The corresponding toric diagram is shown in figure 21 and it indeed corresponds to C ×C.

Let us now construct the periodic quiver for the 2d theory. Figure 22 shows the brane

tiling and the dual periodic quiver for the parent conifold theory. The lift to a periodic

quiver on T 3 is presented in figure 23.
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Figure 21. Toric diagram for C × C obtained as the mesonic moduli space of the dimensionally

reduced conifold gauge theory.

1

2

2

1

Y12

X21

X12

Y21

2

1

1

2

Figure 22. Brane tiling for C encoding the corresponding 4d N = 1 gauge theory and its dual

periodic quiver on T 2.
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Figure 23. Lift of the periodic quiver from T 2 to T 3. (a) Two copies of the 4d periodic quiver

with the chiral fields for the perfect matching p1 shown in green. (b) The adjoints Φii connect these

planes with a vertical shift (+1). (c) The 2d chiral fields descending from those in p1 receive a (−1)

vertical shift. (d) The Fermi fields coming from 4d chiral fields in p1 have no vertical shift, while

all others receive a (−1) shift. (e) The full periodic quiver on T 3 for C × C.
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Figure 24. Dimensional reduction from the quiver of the 4d N = 1 gauge theory corresponding to

SPP to the quiver of the 2d (0, 2) theory corresponding to SPP × C.

6.4.3 SPP× C

The last example of this section is SPP × C, where SPP indicates the complex cone over

the suspended pinch point [6]. The 4d quiver for the SPP theory is shown on the left of

figure 24 and the superpotential is

W = X13 ·X31 ·X11 +X12 ·X23 ·X32 ·X21−X12 ·X21 ·X11−X13 ·X32 ·X23 ·X31 . (6.17)

This theory has an SU(2) global symmetry.

The dimensionally reduced quiver is shown on the right of figure 24. The J- and

E-terms are given by

J E

Λ11 : X13 ·X31 −X12 ·X21 = 0 Φ11 ·X11 −X11 · Φ11 = 0

Λ21 : X12 ·X23 ·X32 −X11 ·X12 = 0 Φ22 ·X21 −X21 · Φ11 = 0

Λ12 : X21 ·X11 −X23 ·X32 ·X21 = 0 Φ11 ·X12 −X12 · Φ22 = 0

Λ31 : X13 ·X32 ·X23 −X11 ·X13 = 0 Φ33 ·X31 −X31 · Φ11 = 0

Λ13 : X31 ·X11 −X32 ·X23 ·X31 = 0 Φ11 ·X13 −X13 · Φ33 = 0

Λ32 : X21 ·X12 ·X23 −X23 ·X31 ·X13 = 0 Φ33 ·X32 −X32 · Φ22 = 0

Λ23 : X32 ·X21 ·X12 −X31 ·X13 ·X32 = 0 Φ22 ·X23 −X23 · Φ33 = 0

(6.18)

Using the forward algorithm to find the classical mesonic moduli space of this theory,
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we obtain the K-matrix

K =




X23 X11 X32 X13 X21 X12 X31 Φ11 Φ22 Φ33

X23 1 1 0 0 0 0 0 0 0 0

X32 0 1 1 0 0 0 0 0 0 0

X13 0 0 0 1 0 0 −1 0 0 0

X21 0 0 0 0 1 0 1 0 0 0

X12 0 0 0 0 0 1 1 0 0 0

X22 0 0 0 0 0 0 0 1 1 1




, (6.19)

the P -matrix

P =




p1 p2 p3 p4 q1 q2 s

X23 1 0 0 0 0 0 0

X11 1 1 0 0 0 0 0

X32 0 1 0 0 0 0 0

X13 0 0 1 0 1 0 0

X21 0 0 1 0 0 1 0

X12 0 0 0 1 1 0 0

X31 0 0 0 1 0 1 0

Φ11 0 0 0 0 0 0 1

Φ22 0 0 0 0 0 0 1

Φ33 0 0 0 0 0 0 1




(6.20)

and the toric diagram matrix

G =




p1 p2 p3 p4 q1 q2 s

1 1 1 1 1 1 1

1 1 1 1 1 1 0

0 1 1 −1 0 0 0

0 0 1 1 1 1 0



. (6.21)

The corresponding toric diagram is shown in figure 25 and it indeed is the one for SPP×C.

To construct the periodic quiver for the 2d theory, we start from the brane tiling and

its dual periodic quiver for the 4d theory, which are shown in figure 26. The lift to the

periodic quiver on T 3 is presented in figure 27.

7 Partial resolution and higgsing

In this section, we study how to connect theories for different singularities via partial

resolution. In terms of the gauge theory, partial resolution translates into higgsing, namely

into RG flows triggered by turning on non-zero VEVs for the scalar component of certain

chiral multiplets.
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Figure 25. Toric diagram for SPP×C obtained as the mesonic moduli space of the dimensionally

reduced SPP gauge theory.
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Figure 26. Brane tiling for SPP encoding the corresponding 4d N = 1 gauge theory and its dual

periodic quiver on T 2.

7.1 Higgsing

Let us consider the effect of turning a non-zero VEV for the scalar component of a bifunda-

mental chiral field Xij . In the abelian theory, this follows from turning on FI terms of equal

magnitude and opposite signs for nodes i and j. As a result, the gauge groups associated

with nodes i and j are higgsed to the diagonal subgroup, while the anti-diagonal combina-

tion becomes massive. In terms of the quiver, the Xij arrow is removed and nodes i and j

are condensed into a single one, as schematically shown in figure 28. At the same time, we

replace Xij by its VEV, which for simplicity can be taken to be 1, in all J- and E-terms.

Massive fields. As usual, a possible additional outcome of higgsing is the generation of

masses for some of the matter fields. For 2d (0, 2) theories, such massive fields correspond

to Fermi-chiral pairs. Massive pairs arise when either a J- or E-term develops a linear

term. For concreteness, let us consider the case of an J-term with a linear term. The case

of a linear E-term is identical, due to the symmetry under the exchange of J- and E-terms.

This situation arises when, before turning on a VEV for Xij , the original J-term for Λki
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Figure 27. Lift of the periodic quiver from T 2 to T 3. (a) Two copies of the 4d periodic quiver

with the chiral fields for the perfect matching p1 shown in green. (b) The adjoints Φii connect these

planes with a vertical shift (+1). (c) The 2d chiral fields descending from those in p1 receive a (−1)

vertical shift. (d) The Fermi fields coming from 4d chiral fields in p1 have no vertical shift, while

all others receive a (−1) shift. (e) The full periodic quiver on T 3 for SPP× C.

2

3 1

X23

X31

2

3/1

X23

Figure 28. Effect of bifundamental higgsing on the quiver. The chiral field with a non-zero VEV,

in this case X31, disappears from the quiver and the two nodes connected by it are condensed into

a single one.
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1

4

2

3

1/4

2

3

1/4

X12

X23

X43

X14

Λ31

J13 : X12 · X23 − X14 · X43 = 0 , . . . J13 : X12 · X23 − X43 = 0 , . . .

Λ31

X12

X23

X43

Figure 29. An example showing the appearance of a Fermi-chiral massive pair when higgsing and

how it is integrated out. Let us consider the original J-term for Λ31 is J13 = X12 ·X23 −X14 ·X43.

Turning on a VEV for X14 condenses nodes 1 and 4. In addition, we get J13 = X12 · X23 − X43,

which results in a massive pair consisting of Λ13 and X43. When integrating out these fields, we

set J13 = 0 replacing X43 → X12 ·X23.

takes the general form given on the left of

Jik = XijXjk − fik(X) −→ Xjk − fik(X), (7.1)

where fij(X) indicates a product of scalar fields associated with an oriented path of chiral

fields in the quiver connecting nodes i and k. The right hand side of (7.1) shows Jik
after the VEV. The massive pair in this case consists of the Fermi field Λki (the one for

which the J-term becomes linear) and the chiral field Xjk (the one in the linear term).

Notice that after higgsing identifies nodes i and j, Λki and Xjk end up connecting the

same pair of nodes, transforming in conjugate representations. It is straightforward to see

that all the on-shell degrees of freedom in Λki and Xjk become massive. Plugging (7.1)

into (2.6), we obtain a mass term for φjk. Masses for the fermions ψ+,jk and λ−,ki arise

from replacing (7.1) in (2.7).

At low energies, we can integrate out Λki and Xjk. When doing so, the terms Jik and

Eki associated with the Fermi field Λki are removed from the Lagrangian. We explicitly set

Jik to zero, using (7.1) to make the replacement Xjk → fik(X) wherever it appears in the

Lagrangian. Eik also disappears with the Fermi field. The process of generating a massive

pair by higgsing and integrating it out is schematically illustrated in figure 29.

In terms of the periodic quiver, the Fermi and chiral fields in a massive pair not

only connect the same pair of nodes but they overlap, hence giving rise to the plaquette

associated with the linear J- or E-term.

7.2 Partial resolution via higgsing

Different toric singularities can be connected by partial resolution, which corresponds to

the removal of some points in the toric diagram. Partial resolution translates into higgsing

in the gauge theory. From this viewpoint, the change in the singularity corresponds to
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p1

p2

p3

q1, q2

p4

s

P =




p1 p2 p3 p4 q1 q2 s
X23 1 0 0 0 0 0 0
X11 1 1 0 0 0 0 0
X32 0 1 0 0 0 0 0
X13 0 0 1 0 1 0 0
X21 0 0 1 0 0 1 0
X12 0 0 0 1 1 0 0
X31 0 0 0 1 0 1 0
Φ11 0 0 0 0 0 0 1
Φ22 0 0 0 0 0 0 1
Φ33 0 0 0 0 0 0 1




Figure 30. Higgsing the 2d theory for SPP × C to the theory for C × C. According to the

P -matrix (6.20), which we reproduce here for convenience, giving a VEV to the chiral field Z12

corresponds to removing the GLSM fields p4 and q1.

the change in the mesonic moduli space after higgsing. This strategy for generating gauge

theories associated with new geometries from known ones has been successfully exploited

for the determination of 4d N = 1 gauge theories on D3-branes over toric Calabi-Yau

3-folds [7, 8]. Based on this precedent, we extend its application to the 2d (0, 2) theories

on D1-branes over toric Calabi-Yau 4-folds.

As explained earlier, every point in the toric diagram corresponds to one or various

GLSM fields. In turn, GLSM fields are related to chiral fields in the quiver via the map (5.7),

which is controlled by the P -matrix introduced in section 5.1 as part of the forward algo-

rithm. Giving a VEV to a chiral field corresponds to eliminating all the GLSM fields that

contribute to it.22 A point in the toric diagram is removed once all the GLSM associated

with it disappear. The P -matrix thus gives us a systematic method for identifying the

chiral field whose VEV implements any desired partial resolution.

The method we just outlined is illustrated in figure 30 for the partial resolution SPP×
C→ C×C. In this example, the point associated with p4 can only be removed by giving a

VEV to X12 which, in turn, also requires the removal of q1. Deleting q1, however, does not

result in the elimination of an additional point in the toric diagram due to the presence of q2.

In summary, partial resolution corresponds to removing points in the toric diagram

that, in turn, translates into the Higgs mechanism in the gauge theory. This provides us

with a systematic algorithm for constructing gauge theories associated with arbitrary toric

singularities: they can be obtained by higgsing from theories whose toric diagram contains

the one we are interested in. Of course such an approach would not be of much use if

determining the gauge theory for the original singularity were difficult. However, there is a

standard choice for the starting point. Any toric diagram can be embedded into the one for

a C4/Zn1×Zn2×Zn3 orbifold with action (1, 0, 0,−1)(0, 1, 0,−1)(0, 0, 1,−1) for sufficiently

large n1, n2 and n3. In this case the toric diagram is a tetrahedron of length n1, n2 and

n3 along the three axes. The gauge theories for these orbifolds can be straightforwardly

22If these GLSM fields contain all the ones in another chiral field, the latter also gets a VEV. The

additional VEV would be the result of relations coming from vanishing J- and E-terms.
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p1

p2

Figure 31. The black toric diagram of C×C can be embedded into the toric diagram of C4/Z2×Z2,

shown in grey. Consequently, its gauge theory can be obtained via higgsing from that for the

orbifold.

constructed using the ideas in section 4. Figure 31 shows an example of a toric diagram

embedded into the one of such an orbifold.

7.3 Vanishing trace condition

As reviewed in section 2, the J- and E-terms must satisfy

∑

a

Tr(EaJa) = 0 , (7.2)

where the sum runs over Fermi fields. We call this requirement the vanishing trace condi-

tion. Recall that for the theories under consideration the J- and E-terms take the toric form

Ea = E(+)
a − E(−)

a , Ja = J (+)
a − J (−)

a , (7.3)

where E
(±)
a and J

(±)
a are products of matrices. The contribution of a Fermi field to the

trace above has the following general form

Tr(EaJa) = Tr(E(+)
a J (+)

a ) + Tr(E(−)
a J (−)

a )− Tr(E(+)
a J (−)

a )− Tr(E(−)
a J (+)

a ) . (7.4)

The vanishing trace condition holds because there is a pairing of terms in (7.2) of the form

Ema J
n
a − Ekb J lb = 0 , (7.5)

where m,n, k.l = (±) such that the product is mnkl = (−). For conciseness, we have left

out the trace.

Let us assume (7.2) is true for a theory with all the terms in the trace being paired as

in (7.5). When a chiral field X gets a non-zero VEV, the following scenarios apply to the

vanishing trace condition in (7.2):
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• No massive fields: the simplest situation occurs when turning on VEV 〈X〉 = m,

does not produce masses for other matter fields. In this case, (7.2) takes the form

Ema J
n
a − Ekb J lb

∣∣∣
〈X〉=m

= m
(
Ẽma J̃

n
a − Ẽkb J̃ lb

)
. (7.6)

This contribution vanishes provided that (7.5) is true prior to giving the VEV. Ac-

cordingly, the vanishing trace condition holds when chiral fields receive VEVs,

Ema J
n
a − Ekb J lb = 0 ⇒ Ẽma J̃

n
a − Ẽkb J̃ lb = 0 . (7.7)

• Massive fields: as we discussed earlier, 〈X〉 = m can sometimes result in a Fermi-

chiral massive pair. This is reflected in a linear J- or E-term. For concreteness, let

us consider the case in which

Ec

∣∣∣
〈X〉=m

= mẼ(+)
c − E(−)

c , Jc

∣∣∣
〈X〉=m

= J (+)
c − J (−)

c , (7.8)

where Ẽ
(+)
c corresponds to a single chiral field that, following the discussion in the

previous section, becomes massive. When integrating it out, we impose

Ẽ(+)
c =

1

m
E(−)
c , (7.9)

which implies

Ec

∣∣∣
〈X〉=m

= 0 . (7.10)

As a result, the contribution to the trace condition (7.2) associated with the massive

Fermi field vanishes,

Tr(EcJc)
∣∣∣
〈X〉=m

= 0 . (7.11)

We thus have ∑

a

Tr(EaJa)
∣∣∣
〈X〉=m

=
∑

a 6=k
Tr(EaJa)

∣∣∣
〈X〉=m

. (7.12)

Assuming that the vanishing trace condition is satisfied in the original theory, (7.7)

and (7.12) imply that it continues to hold after higgsing, i.e.

∑

a

Tr(EaJa) = 0 ⇒
∑

a 6=k
Tr(EaJa)

∣∣∣
〈X〉=m

= 0 , (7.13)

The argument holds even if there are multiple massive fields that are integrated out.

The vanishing trace condition has been shown to hold for abelian orbifolds of C4 in [20].

Since, as we explained in the previous section, the gauge theory for any toric Calabi-Yau

4-fold can be obtained from that of an abelian orbifold via higgsing, the arguments we have

just presented imply that the vanishing trace condition continues to hold for them.
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7.4 Cancellation of non-Abelian anomalies in general toric theories

It is possible to use the previous ideas regarding higgsing to show that all gauge theories on

D1-branes probing toric CY 4-folds are free of non-abelian anomalies. To do so, we exploit

once more the fact that any such theory can be obtained as a partial resolution of an appro-

priate abelian orbifold of C4. Since, as discussed in section 4, all orbifold theories are free

of non-abelian anomalies, it is sufficient to show that higgsing preserves the cancellation.

Consider higgsing a parent theory by an expectation value for the scalar in a bifunda-

mental chiral field which, without loss of generality, we can call X12. To start, let us assume

that this VEV does not result in any massive field. Hence, the only anomaly cancellation

conditions we should care about are the ones for nodes 1 and 2, since the other ones remain

unaltered. In the parent theory, nodes 1 and 2 satisfy (2.13), i.e.

nχ1 − nF1 = 2

nχ2 − nF2 = 2 .
(7.14)

Giving a VEV to X12 higgses nodes 1 and 2 into a single one, which we call 1/2. X12 is

removed from the theory, which results in nχi decreasing by one for i = 1, 2. In addition, the

Fermi fields originally charged under nodes 1 and 2 remain unaffected. We thus conclude

that the combined node 1/2 is free of non-abelian anomalies, since

nχ1/2 = nχ1 + nF1 − 2

nF1/2 = nF1 + nF2



 ⇒ nχ1/2 − n

F
1/2 = 2 (7.15)

Let us now consider what happens if massive fields are generated while higgsing. In this

case, both the anomaly cancellation conditions of node 1/2 and other nodes can be affected.

However, every massive pair consists of a chiral field and a Fermi field stretching between

the same pair of nodes. The net contribution of such a pair of fields to the non-abelian

anomaly is zero, so the theory remains free of non-abelian anomalies after integrating them

out.

8 Beyond orbifolds and CY3 × C

We now present explicit examples of the connection of different singularities by partial

resolution and higgsing. As a warm-up, we first consider some CY3 × C theories. For

them, partial resolution closely resembles the one for the underlying CY 3-folds. We then

use partial resolution to generate the first known examples of gauge theories on D1-branes

probing singularities that are neither abelian orbifolds of C4 nor of the form CY3 × C.

8.1 C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0)→ SPP× C→ C × C

Let us construct some of the dimensionally reduced theories considered in section 6.4 by

partial resolution. Specifically, we are going to consider the partial resolution sequence

C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0) → SPP × C → C × C. All the necessary information

regarding C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0), which is also a dimensionally reduced theory,
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is given in appendix A.1. In order to illustrate how partial resolution is implemented,

our presentation of these first theories is going to be rather detailed. Our treatment of

subsequent examples will be considerably shorter.

Let us first consider the resolution from C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0) to SPP × C.

The reduction in the volume of the toric diagram implies that the gauge theory looses a

gauge group. Thus, we conclude it is necessary to turn on a VEV for a bifundamental chiral

field. Since all bifundamental chiral fields are equivalent in this orbifold theory, we can

pick any of them for higgsing. We can arrive at the same conclusion using the systematic

approach introduced in section 7.2 based on the P -matrix, which for this theory is given

by (A.4). We see that every chiral bifundamental involves a multiplicity 1 GLSM field pi,

which correspond to the point in the toric diagram that is removed when higgsing, and two

additional GLSM fields coming from different points in the toric diagram with multiplicity

2, which hence are not removed. Without loss of generality, let us give a VEV to X14. The

J- and E-terms from (A.1) become

J E

Λ12 : X23 · Y31 − Y24 ·X41 = 0 D11 · Z12 − Z12 ·D22 = 0

Λ21 : Y42 − Y13 ·X32 = 0 D22 · Z21 − Z21 ·D11 = 0

Λ13 : Z34 ·X41 −X32 · Z21 = 0 D11 · Y13 − Y13 ·D33 = 0

Λ31 : Z12 ·X23 − Z43 = 0 D33 · Y31 − Y31 ·D11 = 0

Λ14 : Y42 · Z21 − Z43 · Y31 = 0 D11 −D44 = 0

Λ41 : Y13 · Z34 − Z12 · Y24 = 0 D44 ·X41 −X41 ·D11 = 0

Λ23 : Y31 · Z12 − Z34 · Y42 = 0 D22 ·X23 −X23 ·D33 = 0

Λ32 : Y24 · Z43 − Z21 · Y13 = 0 D33 ·X32 −X32 ·D22 = 0

Λ24 : Z43 ·X32 −X41 · Z12 = 0 D22 · Y24 − Y24 ·D44 = 0

Λ42 : Z21 −X23 · Z34 = 0 D44 · Y42 − Y42 ·D22 = 0

Λ34 : X41 · Y13 − Y42 ·X23 = 0 D33 · Z34 − Z34 ·D44 = 0

Λ43 : X32 · Y24 − Y31 = 0 D44 · Z43 − Z43 ·D33 = 0

(8.1)

where we indicate in red the Fermi fields developing linear J- or E-terms. The correspond-

ing Fermi-chiral massive pairs are

{Λ21, Y42} , {Λ31, Z43} , {Λ14, (D11 −D44)/2} , {Λ42, Z21} , {Λ43, Y31} . (8.2)

Notice that while (D11 − D44)/2 becomes massive, the orthogonal combination Φ11 =

(D11 + D44)/2 remains massless. After identifying nodes 1 and 4 and integrating out

the massive fields, the quiver diagram becomes the one for SPP × C, which was given in

figure 24. Imposing the relations

Y42 = Y13 ·X32 Z43 = Z12 ·X23 Z21 = X23 · Z34

Y31 = X32 · Y24 D44 = D11

(8.3)
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and relabeling node 4→ 1, the J- and E-terms for the surviving Fermi fields become

J E

Λ12 : X23 ·X32 · Y21 − Y21 ·X11 = 0 Φ11 · Z12 − Z12 ·D22 = 0

Λ13 : Z31 ·X11 −X32 ·X23 · Z31 = 0 Φ11 · Y13 − Y13 ·D33 = 0

Λ11 : Y13 · Z31 − Z12 · Y21 = 0 Φ11 ·X11 −X11 · Φ11 = 0

Λ23 : X32 · Y21 · Z12 − Z31 · Y13 ·X32 = 0 D22 ·X23 −X23 ·D33 = 0

Λ32 : Y21 · Z12 ·X23 −X23 · Z31 · Y13 = 0 D33 ·X32 −X32 ·D22 = 0

Λ21 : Z12 ·X23 ·X32 −X11 · Z12 = 0 D22 · Y21 − Y21 · Φ11 = 0

Λ31 : X11 · Y13 − Y13 ·X32 ·X23 = 0 D33 · Z31 − Z31 · Φ11 = 0

(8.4)

which precisely agree with (6.18) after relabeling of fields.

Let us continue and perform the partial resolution from SPP×C to C×C. Translating

the P -matrix in (6.20) to the notation in (8.4), we conclude that this particular partial

resolution can be achieved by turning on a VEV for Z12, Y21, Y13 or Z31. Giving a VEV to

either X23 or X32 instead would generate a resolution to C4/Z2 (1, 1, 0, 0). Consider giving

a VEV to Y13. The J- and E-terms in (8.4) become

J E

Λ12 : X23 ·X32 · Y21 − Y21 ·X11 = 0 Φ11 · Z12 − Z12 ·D22 = 0

Λ13 : Z31 ·X11 −X32 ·X23 · Z31 = 0 Φ11 −D33 = 0

Λ11 : Z31 − Z12 · Y21 = 0 Φ11 ·X11 −X11 · Φ11 = 0

Λ23 : X32 · Y21 · Z12 − Z31 ·X32 = 0 D22 ·X23 −X23 ·D33 = 0

Λ32 : Y21 · Z12 ·X23 −X23 · Z31 = 0 D33 ·X32 −X32 ·D22 = 0

Λ21 : Z12 ·X23 ·X32 −X11 · Z12 = 0 D22 · Y21 − Y21 · Φ11 = 0

Λ31 : X11 −X32 ·X23 = 0 D33 · Z31 − Z31 · Φ11 = 0

(8.5)

The massive pairs are now

{Λ13, (Φ11 −D33)/2} , {Λ11, Z31} , {Λ31, X11} . (8.6)

while the linear combination Φ̃11 = (Φ11 +D33)/2 is massless. Integrating out the massive

fields and identifying nodes 3 and 1, we arrive at the quiver in figure 20 with

J E

Λ1
12 : X21 ·X12 · Y21 − Y21 ·X12 ·X21 = 0 Φ̃11 · Z12 − Z12 ·D22 = 0

Λ1
21 : X12 · Y21 · Z12 − Z12 · Y21 ·X12 = 0 D22 ·X21 −X21 · Φ̃11 = 0

Λ2
12 : Y21 · Z12 ·X21 −X21 · Z12 · Y21 = 0 Φ̃11 ·X12 −X12 ·D22 = 0

Λ2
21 : Z12 ·X21 ·X12 −X12 ·X21 · Z12 = 0 D22 · Y21 − Y21 · Φ̃11 = 0

(8.7)

which is in agreement with (6.13).
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D3

C4/Z2 × Z2 × Z2

Figure 32. The toric diagram for D3 (shown in black) can be embedded into the toric diagram of

C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1) (shown in grey) and hence can be obtained from it

by partial resolution.

8.2 D3

Having developed some familiarity with the implementation of partial resolution as hig-

gsing, we illustrate in this and the coming sections how to use it for constructing gauge

theories for general toric singularities that are neither abelian orbifolds of C4 nor CY3×C.

The first geometry we consider is the so-called D3 singularity [47], whose toric diagram is

shown in black in figure 32. From this figure, we also conclude that D3 can be obtained

from the C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1) orbifold by partial resolution.

All necessary information regarding the C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1)

theory is collected in appendix A.3. The corresponding P -matrix (A.14) indicates that the

desired partial resolution can be achieved, for example, by giving VEVs to Y12, X37, Z42,

X48 and Y56. In the notation of figure 52, the surviving GLSM fields are p4, q1, r1, u1,

v1 and w2, which precisely agrees with figure 32. After higgsing, integrating out massive

fields and relabeling nodes, the final theory for the D3 singularity is given by the quiver in

figure 33, with the following J- and E-terms

J E

Λ21 : X13 ·X31 · Y12 − Y12 ·X22 = 0 D23 · Z32 · Z21 − Z21 ·D11 = 0

Λ12 : Z21 ·X13 ·X31 −X22 · Z21 = 0 D11 · Y12 − Y12 ·D23 · Z32 = 0

Λ31 : X13 · Y33 − Y12 · Z21 ·X13 = 0 X31 ·D11 − Z32 ·D23 ·X31 = 0

Λ13 : X31 · Y12 · Z21 − Y33 ·X31 = 0 D11 ·X13 −X13 · Z32 ·D23 = 0

Λ1
23 : Y33 · Z32 − Z32 · Z21 · Y12 = 0 D23 ·X31 ·X13 −X22 ·D23 = 0

Λ2
23 : Z32 ·X22 −X31 ·X13 · Z32 = 0 D23 · Y33 − Z21 · Y12 ·D23 = 0

(8.8)
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Figure 33. Quiver diagram for D3.

As an additional check of the theory we have just obtained, let us apply to it the

forward algorithm and confirm that its mesonic moduli space indeed corresponds to the

desired geometry. The quiver incidence matrix is

d =




D11 D23 X13 X31 X22 Y33 Y12 Z21 Z32

1 0 0 0 0 0 1 −1 1 −1

2 0 0 0 1 −1 0 0 −1 1

3 0 0 0 −1 1 −1 1 0 0



, (8.9)

and the K- and P -matrices are given by

K =




D11 X22 Y33 D23 Z32 X13 X31 Y12 Z21

D23 1 0 0 1 0 0 0 0 0

Z32 1 0 0 0 1 0 0 0 0

X13 0 1 0 0 0 1 0 0 0

X31 0 1 0 0 0 0 1 0 0

Y12 0 0 1 0 0 0 0 1 0

Z21 0 0 1 0 0 0 0 0 1




, P =




p1 p2 p3 p4 p5 p6

D11 1 0 0 1 0 0

X22 0 1 0 0 1 0

Y33 0 0 1 0 0 1

D23 1 0 0 0 0 0

Z32 0 0 0 1 0 0

X13 0 1 0 0 0 0

X31 0 0 0 0 1 0

Y12 0 0 1 0 0 0

Z21 0 0 0 0 0 1




.

(8.10)

The GLSM charge matrices become

QJE = ∅ , QD =




p1 p2 p3 p4 p5 p6

1 0 −1 −1 0 1

−1 −1 0 1 1 0


 . (8.11)
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p1

p4

p6

p3

p5

p2

Figure 34. The toric diagram associated with (8.12) is the one for D3. This geometry has been

obtained as the mesonic moduli space of the corresponding gauge theory.

From them we obtain

G =




p1 p2 p3 p4 p5 p6

1 1 1 1 1 1

0 0 0 1 −1 1

0 1 0 0 1 0

0 0 1 0 0 1



, (8.12)

which, following our expectations, corresponds to the toric diagram for D3, as shown in

figure 34.

8.3 Q1,1,1

We now construct the gauge theory on D1-branes probing the real cone over the 7d Sasaki-

Einstein manifold Q1,1,1, which is the homogeneous coset space

SU(2)× SU(2)× SU(2)

U(1)×U(1)
(8.13)

and has a U(1)R × SU(2)3 isometry [48–51]. It can be written as a U(1) fibration over

S2 × S2 × S2. For brevity, we simply refer to the full cone geometry as Q1,1,1. The toric

diagram for Q1,1,1 is shown in black in figure 35, from which we also conclude that, like

the theory in the section above, it can be obtained by partial resolution of C4/Z2 × Z2 ×
Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1).

From the P -matrix for the orbifold given in (A.14), we see that the desired partial

resolution can be obtained by giving VEVs to Z13, X15, D27 and Y87. After higgsing,

integrating out massive fields and relabeling nodes we obtain the theory for Q1,1,1, which

corresponds to the quiver in figure 36 with J- and E-terms
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C4/Z2 × Z2 × Z2

Q1,1,1

Figure 35. The toric diagram for Q1,1,1 (shown in black) can be embedded into the toric diagram

of C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1) (shown in grey) and hence can be obtained from

it by partial resolution.

Figure 36. Quiver diagram for Q1,1,1.

J E

Λ1
21 : D12 · Z24 · Y41 ·X12 −X12 · Z23 ·D31 ·D12 = 0 X23 · Y31 −X24 ·D41 = 0

Λ2
21 : X12 ·X24 · Y41 ·D12 −D12 · Z23 · Y31 ·X12 = 0 X23 ·D31 − Z24 ·D41 = 0

Λ3
21 : D12 · Z24 ·D41 ·X12 −X12 ·X23 ·D31 ·D12 = 0 X24 · Y41 − Z23 · Y31 = 0

Λ4
21 : D12 ·X23 · Y31 ·X12 −X12 ·X24 ·D41 ·D12 = 0 Z23 ·D31 − Z24 · Y41 = 0

Λ43 : D31 ·X12 ·X24 − Y31 ·X12 · Z24 = 0 D41 ·D12 · Z23 − Y41 ·D12 ·X23 = 0

Λ34 : Y41 ·X12 ·X23 −D41 ·X12 · Z23 = 0 D31 ·D12 ·X24 − Y31 ·D12 · Z24 = 0

(8.14)

In the notation of figure 52, the surviving GLSM fields are q2, r1, s1, u2, v1 and w1,

which give rise to figure 35, as well as e4 and e7, which are two extra GLSM fields inherited
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from the parent orbifold. Let us confirm this is the case with the forward algorithm. The

quiver incidence matrix is given by

d =




D12 X12 Y31 D31 X24 Z24 X23 Z23 D41 Y41

1 1 1 −1 −1 0 0 0 0 −1 −1

2 −1 −1 0 0 1 1 1 1 0 0

3 0 0 1 1 0 0 −1 −1 0 0

4 0 0 0 0 −1 −1 0 0 1 1



. (8.15)

The K- and P -matrices are

K =



D12 X12 Y31 D31 D41 Y41 X24 Z24 X23 Z23

D12 1 0 0 0 0 0 0 0 0 0

X12 0 1 0 0 0 0 0 0 0 0

Y31 0 0 1 0 0 0 0 −1 −1 −1

D31 0 0 0 1 0 0 0 1 0 0

D41 0 0 0 0 1 0 0 0 1 0

Y41 0 0 0 0 0 1 0 0 0 1

X24 0 0 0 0 0 0 1 1 1 1


P =



p1 p2 p3 p4 p5 p6 q1 q2

D12 1 0 0 0 0 0 0 0

X12 0 1 0 0 0 0 0 0

Y31 0 0 1 0 0 0 1 0

D31 0 0 0 1 0 0 1 0

D41 0 0 0 0 1 0 1 0

Y41 0 0 0 0 0 1 1 0

X24 0 0 1 0 0 0 0 1

Z24 0 0 0 1 0 0 0 1

X23 0 0 0 0 1 0 0 1

Z23 0 0 0 0 0 1 0 1



.

(8.16)

Finally, the GLSM charge matrices become

QJE =

(
p1 p2 p3 p4 p5 p6 q1 q2

0 0 −1 −1 −1 −1 1 1

)
, QD =




p1 p2 p3 p4 p5 p6 q1 q2

−1 −1 0 0 0 0 0 1

0 0 1 1 0 0 0 −1

0 0 0 0 1 1 0 −1



. (8.17)

This results in

G =




p1 p2 p3 p4 p5 p6 q1 q2

1 1 1 1 1 1 2 2

0 1 1 0 0 1 1 1

0 1 0 1 1 0 1 1

0 0 0 0 1 −1 0 0



. (8.18)

Following our discussion in section 5.2, it is possible to identify q1 and q2 as possible extra

GLSM fields and to verify this is the case using the Hilbert series. The toric diagram for the

mesonic moduli space then corresponds to removing q1 and q2 and, as shown in figure 37,

is precisely the one for Q1,1,1.

– 55 –



J
H
E
P
0
9
(
2
0
1
5
)
0
7
2

p1

p2

p3

p4

p5

p6

Figure 37. After removing the extra GLSM fields q1 and q2, the toric diagram associated

with (8.18) is the one for Q1,1,1. This geometry has been obtained as the mesonic moduli space of

the corresponding gauge theory.

Global symmetry enhancement. The full matrix of complexified U(1) charges for

GLSM fields is given by

Qt =

(
QJE

QD

)
=




p1 p2 p3 p4 p5 p6 q1 q2

0 0 −1 −1 −1 −1 1 1

−1 −1 0 0 0 0 0 1

0 0 1 1 0 0 0 −1

0 0 0 0 1 1 0 −1



. (8.19)

Each of the pairs {p1, p2}, {p3, p4} and {p5, p6} have the same complexified U(1) charges and

indeed transform as doublets of independent SU(2) global symmetry factors. This indicates

an enhancement of the global symmetry to the U(1)R×SU(2)3 expected from the geometry.

8.4 The higgsing web

Figure 38 shows a map of several geometries whose corresponding gauge theories are con-

sidered in this work. The figure also indicates how we connected the theories by higgsing.

Many of the gauge theories in this web can be obtained by two independent methods out of:

orbifold techniques, dimensional reduction and partial resolution. This provides compelling

support for the consistency of our results.

Of these theories, only C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1) and Q1,1,1 get

extra GLSM fields in the forward algorithm.23 Our systematic approach to partial reso-

lution implies that it maintains or reduces the number of extra GLSM fields in a theory

23It is in principle possible that “dual” gauge theories exist for some of these geometries. It is also possible

that some theories with extra GLSM fields have duals without them. We postpone this interesting question

for future research.
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Q1,1,1

D3

C4/Z2 × Z2

C4/Z2 × Z2 × Z2

SPP× C

C × C

C4

Figure 38. A web showing several of the geometries for which we determined a 2d gauge theory

and their connections through higgsing.

and that theories without extra GLSM fields can originate from those that have them. As

illustrated with explicit examples in section 5.3 and appendix A.3, even standard orbifolds

can sometimes contain extra GLSM fields. These two facts support our idea that extra

GLSM fields do not imply any pathology of the corresponding gauge theories, but rather

are a over-parameterization of the mesonic moduli space under the forward algorithm.
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9 Towards brane bricks

This final section provides an appetizer anticipating some of the results that will be pre-

sented in detail in the forthcoming works [26, 27]. Our goal is to construct a new type of

brane configuration that serves as a more direct bridge connecting toric CY4 singularities to

the 2d (0, 2) quiver gauge theories that arise on the D1-branes probing them. Such a brane

configuration explicitly encodes the 2d gauge theory with its defining quiver and J- and

E-terms. It also bypasses the intricacies of the forward algorithm, which indeed becomes

computationally demanding for moderately complicated geometries. This brane construc-

tion corresponds to a periodic tessellation of the 3-torus that we call brane brick model.

Brane brick models are analogous to the brane tilings for 4d N = 1 quiver gauge

theories on D3-branes over toric CY 3-folds [2], to which we have referred throughout this

work. It is thus instructive to review a few more facts about them before embarking on

the construction of brane brick models.

Brane tilings. Brane tilings, also known as dimers [2], are bipartite periodic graphs on

T 2 that encode a class of 4d N = 1 gauge theories. Faces, edges and nodes of the graph

represent gauge groups, chiral fields and superpotential terms respectively.

One of the important features of brane tilings is that they allow a direct connection

with the underlying CY3 geometry. As mentioned in the above sections, solutions to F-

and D-term constraints of the 4d supersymmetric gauge theory are encoded in terms of

perfect matchings, providing an extremely efficient combinatorial alternative to the forward

algorithm [2, 17]. Conversely, it is straightforward to construct brane tilings starting from

geometry in terms of so-called zig-zag paths [15, 16].

From the point of view of string theory, a brane tilings represents a configuration

consisting of an NS5- and D5-branes in Type IIB string theory. The NS5-brane extends in

the 0123 directions and wraps a holomorphic curve embedded in the 4567 directions (with

5 and 7 compactified in a T 2). The D5-branes span 012357 and are suspended inside holes

of the NS5-brane like soap bubbles. These configurations are connected to D3-branes over

toric Calabi-Yau 3-folds by T-duality. It is also important to note that the brane tiling

is the graph dual to the periodic quiver of the 4d N = 1 toric theory, as illustrated in

figure 39 for C3.

Brane bricks. We have discussed at length the periodic quivers on T 3 associated with 2d

(0, 2) toric theories. In analogy to the construction of brane tilings in 4d, brane brick models

can be obtained by dualizing the periodic quivers on T 3. This procedure is illustrated in

figure 40 for C4. The corresponding periodic quiver, which has been presented in section 4.1,

can be drawn in a manifestly symmetric way such that it takes the form of the body centered

cubic (bcc) lattice.24 The graph dual to the bcc lattice, which is also known as the Voronoi

tessellation, gives the bitruncated cubic honeycomb. It is a space-filling tessellation of T 3

that is composed of truncated octahedra, as shown in figure 41.

24Notice that in order to make the bcc symmetry of the lattice on the covering space manifest, the region

displayed in figure 40 (b) has twice the volume of the unit cell in the periodic quiver.
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Figure 39. Dualizing the 4d periodic quiver on T 2 into the brane tiling for the C3 example. (a)

The periodic quiver can be fitted into a unit cell of T 2 which is taken to be a square here. (b) When

the periodic quiver is drawn such that the symmetry of the quiver is manifest, the unit cell is not

necessarily a square anymore. (c) The dual graph of the periodic quiver is the brane tiling on T 2.

Y

Z

D

X
Y

Z

D
X

a b c

Figure 40. Dualizing the 2d periodic quiver on T 3 into the brane tiling for the C4 example. (a) The

periodic quiver of the C4 theory can be manifestly symmetrized to give (b) the body centered cubic

(bcc) lattice. (c) The graph-dual of the bcc lattice is the bitruncated cubic honeycomb composed

of truncated octahedra.

A truncated octahedron consists of 8 hexagonal and 6 square faces as illustrated in

figure 41. They map respectively to the chiral fields and Fermi fields of the C4 theory. The

interior of the truncated octahedron corresponds to the single gauge group of the theory.

Following our convention for 2d quiver diagrams, we have colored faces corresponding to

chiral fields and Fermi fields respectively in black and red. As discussed in section 4.2, the

periodic quivers for abelian orbifolds of C4 can be constructed by stacking together copies

of the one for C4. As a result, the brane brick model for such an orbifold is the bitruncated

cubic honeycomb with several truncated octahedra corresponding to nodes of the quiver

diagram. The brane brick dictionary for abelian orbifolds of C4 is given in table 2.

A brane brick model represents a Type IIA configuration consisting of an NS5-brane

and D4-branes. The NS5-brane extends in the 01 directions and wraps a holomorphic
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Figure 41. A single brane brick for the C4 theory and its tessellation on T 3.

Brane Brick Brane Brick for C4/Γ Gauge Theory

Solid Brick truncated octahedron Gauge group

Brick Face (chiral) hexagon bifundamental or adjoint

chiral field

Brick Face (Fermi) square bifundamental or adjoint

Fermi field

Table 2. Dictionary for Brane Brick Models. The table gives the dictionary for a general brane

brick model, the brane brick model for the C4/Γ theory and the corresponding quiver gauge theory.

surface (with four real dimensions) embedded in the 234567 directions (with 3, 5 and 7

compactified in a T 3). The D4-branes span 01357 and are suspended from the NS5-brane.

Although in this section we have concentrated on orbifolds, the brane brick construc-

tion is fully generalizable to non-orbifold theories. This is the subject of a forthcoming

paper [26].

Amoeba and coamoeba. A direct connection between toric geometry of the Calabi-

Yau 4-fold, the brane brick model and the periodic quiver can be established in terms of

the coamoeba. It is useful to start by reviewing similar ideas that have been exploited in

the context of brane tilings [16]. The toric diagram for a CY3 cone is associated with a

complex curve defined by the Newton polynomial as follows

∑

(a,b)∈V

c(a,b) x
ayb = 0 , (9.1)

where V is the set of all vertices of the toric diagram, and (x, y) take values in (C∗)2.

This is the curve on which the NS5-brane of the brane tiling is wrapped. The projection

of the curve onto the radial part (log |x|, log |y|) ∈ R2 defines the amoeba, which is a

thickened version of the (p, q)-web dual to the toric diagram [52–54]. The projection of
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Figure 42. Left: toric diagram for C4. Right: the lines on T 2 normal to the external edges of the

toric diagram become the boundary of the coamoeba.

Figure 43. Coamoeba and Brane Tiling for C3. (a) The coamoeba and its complement are

indicated in blue and red, respectively. (b) The brane tiling is the skeleton of the coamoeba. (c)

The periodic quiver on T 2 is obtained by dualizing the brane tiling.

the same curve onto the angular part (arg(x), arg(y)) ∈ T 2 defines the coamoeba. To get

an idea of the structure of the coamoeba, it suffices to examine the asymptotics of the

Newton polynomial. This is achieved by considering lines that are normal to the segments

connecting external points in the toric diagram.

Let us illustrate this construction for C3. Its toric diagram and the corresponding

normal lines on T 2 are shown in figure 42. The resulting coamoeba is shown in figure 43.

The complement of the coamoeba is a disjoint union of domains in T 2. The brane tiling is

the skeleton of the coamoeba.

It is straightforward to generalize the notions of amoeba and coamoeba to the Calabi-

Yau 4-fold setup. We consider the complex surface defined by the Newton polynomial,

∑

(a,b,c)∈V

c(a,b,c) x
aybzc = 0 , (9.2)

where V is the set of all vertices of the toric diagram and (x, y, z) take values in (C∗)3.

This is the surface wrapped by the NS5-brane. For illustration, let us consider the example

of C4, for which all coefficients can be removed by rescalings. Hence, we have

1 + x+ y + z = 0 . (9.3)

– 61 –



J
H
E
P
0
9
(
2
0
1
5
)
0
7
2

Figure 44. Toric diagram for C4. We have colored its external edges to identify the normal

2-planes in the coamoeba.

Figure 45. Coamoeba for Brane Brick Model for C4. The six 2-planes in T 3 corresponding to the

six edges of the toric diagram of C4 and the asymptotic boundary of the coamoeba. We use the

same colors for the planes and their normal vectors in figure 44. The planes cut out a rhombic-

dodecahedron in T 3 that is the complement of the coamoeba.

Once again, it is sufficient to study the asymptotic behavior of the Newton polynomial.

In this case, it amounts to considering the 2-planes that are normal to the external edges

of the toric diagram.25 Figure 44 shows the toric diagram for C4.

Figure 45 shows the six 2-planes normal to the edges of the toric diagram. When

combined, they carve out a single rhombic-dodecahedron (RD) in T 3 as the complement

of the coamoeba. In analogy with brane tilings, we identify the bulk of the RD with the

gauge group, and its vertices with the matter fields. The RD has eight 3-valent vertices

and six 4-valent vertices, which nicely matches the fact that the C4 theory has four chiral

fields and three Fermi fields as illustrated in figure 46.

25More generally, we should consider 2-cycles in T 3 whose homology is determined by the external edges

of the toric diagram.
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Figure 46. Rhombic-dodecahedron. The six 2-planes in figure 45 cut out a rhombic dodecahedron

in T 3. It has eight 3-valent vertices and six 4-valent vertices, which correspond to the 4 chiral and

3 Fermi fields of the C4 theory, respectively. We precisely recover the periodic quiver in figure 40.

The same ideas can be applied to produce the brane brick models corresponding to

other orbifold and non-orbifold toric CY4 geometries [26].

10 Conclusions

We have initiated a comprehensive investigation of the 2d (0, 2) quiver gauge theories

arising on D1-branes probing toric CY4 cones, at the classical level. This setup can also

give rise to theories with enhanced SUSY.

The CY4 transverse to the D1-branes arises as the mesonic moduli space of the world-

volume gauge theory. In order to efficiently calculate the mesonic moduli spaces of the class

of gauge theories under consideration, we developed the forward algorithm. We applied

our ideas to a variety of geometries, including abelian orbifolds of C4, CY3 × C cones and

generic toric singularities.

We also introduced a systematic procedure for constructing gauge theories associated

with arbitrary toric singularities by means of partial resolution, which translates to hig-

gsing in the gauge theory. We showed how the gauge theories for several geometries are

connected by RG flows triggered by VEVs for bifundamental scalars and presented two

explicit examples of theories for singularities that are neither orbifolds nor of the form

CY3 × C. We also explained how to use the P -matrix of the parent theory to identify the

set of VEVs producing a desired partial resolution. At each stage, we used the forward

algorithm to verify that the classical mesonic moduli space of the gauge theory agrees with

the Calabi-Yau 4-fold under consideration.

We discussed how toric 2d gauge theories are fully captured by periodic quivers on

T 3, which were originally introduced in [20] in the context of orbifolds. Periodic quivers

not only encode the gauge symmetry and matter content of the theory, but also its J-

and E-terms. In theories corresponding to toric geometries, these terms have a special

structure involving contributions coming from pairs of plaquettes in the quiver. In the case

of the 2d (2, 2) theories for toric CY3 × C geometries, we introduced a lifting algorithm

that produces the periodic quiver on T 3 from the periodic quiver on T 2 associated with

the 4d N = 1 theory on D3-branes over the corresponding CY3.
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Partial resolution is an efficient method for obtaining gauge theories for arbitrary toric

singularities, but it becomes considerably involved for complicated geometries. Similarly,

determining the probed geometry as the mesonic moduli space of the corresponding gauge

theory by means of the forward algorithm also turns computationally intensive as the

complexity of the gauge theory is increased. It is thus desirable to establish a more direct

connection between geometry and gauge theory. For this purpose, we introduced brane

brick models, which are T-dual to the D1-CY4 system. A brane brick model consists

of stacks of D4-branes suspended from an NS5-brane wrapping a holomorphic surface,

tessellating a 3-torus. Bricks correspond to gauge groups and their faces represent chiral

or Fermi fields. Brane brick models can be obtained from the periodic quivers by graph

dualization. In addition, we previewed an algorithm for constructing brane brick models

directly from geometric data in terms of the coamoeba. A thorough study of brane brick

models, including additional combinatorial tools for connecting geometry to gauge theory,

will be presented in an upcoming work [26].

We conclude mentioning a few topics for future investigation. An obvious question is

how the quantum behavior of the gauge theories is captured by branes. Another interesting

direction is to establish how triality [23] is realized in terms of brane bricks. We will report

on this issue in [27]. More generally, it would also be interesting to establish to what extent

different gauge theories associated with the same underlying CY4 are related.
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A Additional examples

Here we collect detailed information on the gauge theories and the application of the

forward algorithm for three additional orbifolds, two of which have been used as starting

points for the partial resolutions leading to the theories presented in section 8. Early

studies of some of these orbifolds were carried out in [55, 56].

A.1 C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0)

Figure 47 shows the quiver diagram for C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0).
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Figure 47. Quiver diagram for C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0).

The J- and E-terms are

J E

Λ12 : X23 · Y31 − Y24 ·X41 = 0 D11 · Z12 − Z12 ·D22 = 0

Λ21 : X14 · Y42 − Y13 ·X32 = 0 D22 · Z21 − Z21 ·D11 = 0

Λ13 : Z34 ·X41 −X32 · Z21 = 0 D11 · Y13 − Y13 ·D33 = 0

Λ31 : Z12 ·X23 −X14 · Z43 = 0 D33 · Y31 − Y31 ·D11 = 0

Λ14 : Y42 · Z21 − Z43 · Y31 = 0 D11 ·X14 −X14 ·D44 = 0

Λ41 : Y13 · Z34 − Z12 · Y24 = 0 D44 ·X41 −X41 ·D11 = 0

Λ23 : Y31 · Z12 − Z34 · Y42 = 0 D22 ·X23 −X23 ·D33 = 0

Λ32 : Y24 · Z43 − Z21 · Y13 = 0 D33 ·X32 −X32 ·D22 = 0

Λ24 : Z43 ·X32 −X41 · Z12 = 0 D22 · Y24 − Y24 ·D44 = 0

Λ42 : Z21 ·X14 −X23 · Z34 = 0 D44 · Y42 − Y42 ·D22 = 0

Λ34 : X41 · Y13 − Y42 ·X23 = 0 D33 · Z34 − Z34 ·D44 = 0

Λ43 : X32 · Y24 − Y31 ·X14 = 0 D44 · Z43 − Z43 ·D33 = 0

(A.1)

The quiver incidence matrix is

d =




D11 D22 D33 D44 X14 X23 X32 X41 Y13 Y24 Y31 Y42 Z12 Z21 Z34 Z43

1 0 0 0 0 1 0 0 −1 1 0 −1 0 1 −1 0 0

2 0 0 0 0 0 1 −1 0 0 1 0 −1 −1 1 0 0

3 0 0 0 0 0 −1 1 0 −1 0 1 0 0 0 1 −1

4 0 0 0 0 −1 0 0 1 0 −1 0 1 0 0 −1 1



.

(A.2)
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Following the forward algorithm, we obtain the K-matrix

K =




D11 D22 D33 D44 X14 X23 X32 X41 Y13 Y24 Y31 Y42 Z12 Z21 Z34 Z43

D11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X14 0 0 0 0 1 0 0 −1 0 0 −1 −1 0 −1 0 −1

X23 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

X32 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0

Y13 0 0 0 0 0 0 0 0 1 0 0 1 0 −1 −1 0

Y24 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0

Z12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




,

(A.3)

and the P -matrix

P =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

D11 0 1 0 0 0 0 0 0 0 0

D22 0 1 0 0 0 0 0 0 0 0

D33 0 1 0 0 0 0 0 0 0 0

D44 0 1 0 0 0 0 0 0 0 0

X14 1 0 0 0 0 1 1 0 0 0

X23 1 0 0 0 0 1 0 1 0 0

X32 1 0 0 0 1 0 1 0 0 0

X41 1 0 0 0 1 0 0 1 0 0

Y13 0 0 0 1 0 1 0 0 0 1

Y24 0 0 0 1 0 1 0 0 1 0

Y31 0 0 0 1 1 0 0 0 1 0

Y42 0 0 0 1 1 0 0 0 0 1

Z12 0 0 1 0 0 0 1 0 0 1

Z21 0 0 1 0 0 0 0 1 1 0

Z34 0 0 1 0 0 0 1 0 1 0

Z43 0 0 1 0 0 0 0 1 0 1




. (A.4)

The GLSM charge matrices are

QJE =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

1 0 1 0 0 0 −1 −1 0 0

0 0 2 0 1 1 −1 −1 −1 −1

0 0 1 1 0 0 0 0 −1 −1



,
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Figure 48. Toric diagram for C4/Z2 × Z2 (1, 1, 0, 0)(1, 0, 1, 0). This geometry has been obtained

as the mesonic moduli space of the corresponding gauge theory.

QD =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

0 0 0 0 −1 1 −1 1 1 −1

0 0 0 0 1 −1 1 −1 1 −1

0 0 0 0 1 −1 −1 1 −1 1



. (A.5)

Using the above charges, the toric diagram is captured by the matrix

G =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

1 1 1 1 1 1 1 1 1 1

0 0 0 2 1 1 0 0 1 1

0 0 2 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 0



. (A.6)

as shown in figure 48.

A.2 C4/Z2 × Z2 (0, 0, 1, 1)(1, 1, 1, 1)

Figure 49 shows the quiver diagram for C4/Z2 × Z2 (0, 0, 1, 1)(1, 1, 1, 1).
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Figure 49. Quiver diagram for C4/Z2 × Z2 (0, 0, 1, 1)(1, 1, 1, 1).

The J- and E-terms are

J E

Λ1
13 : Y34 · Z41 − Z32 · Y21 = 0 D14 ·X43 −X12 ·D23 = 0

Λ1
31 : Y12 · Z23 − Z14 · Y43 = 0 D32 ·X21 −X34 ·D41 = 0

Λ2
13 : Z32 ·X21 −X34 · Z41 = 0 D14 · Y43 − Y12 ·D23 = 0

Λ2
31 : Z14 ·X43 −X12 · Z23 = 0 D32 · Y21 − Y34 ·D41 = 0

Λ1
24 : Y43 · Z32 − Z41 · Y12 = 0 D23 ·X34 −X21 ·D14 = 0

Λ1
42 : Y21 · Z14 − Z23 · Y34 = 0 D41 ·X12 −X43 ·D32 = 0

Λ2
24 : Z41 ·X12 −X43 · Z32 = 0 D23 · Y34 − Y21 ·D14 = 0

Λ2
42 : Z23 ·X34 −X21 · Z14 = 0 D41 · Y12 − Y43 ·D32 = 0

Λ11 : X12 · Y21 − Y12 ·X21 = 0 D14 · Z41 − Z14 ·D41 = 0

Λ22 : X21 · Y12 − Y21 ·X12 = 0 D23 · Z32 − Z23 ·D32 = 0

Λ33 : X34 · Y43 − Y34 ·X43 = 0 D32 · Z23 − Z32 ·D23 = 0

Λ44 : X43 · Y34 − Y43 ·X34 = 0 D41 · Z14 − Z41 ·D14 = 0

(A.7)

The corresponding incidence matrix is

d =




D14 D23 D32 D41 X12 X21 X34 X43 Y12 Y21 Y34 Y43 Z14 Z23 Z32 Z41

1 1 0 0 −1 1 −1 0 0 1 −1 0 0 1 0 0 −1

2 0 1 −1 0 −1 1 0 0 −1 1 0 0 0 1 −1 0

3 0 −1 1 0 0 0 1 −1 0 0 1 −1 0 −1 1 0

4 −1 0 0 1 0 0 −1 1 0 0 −1 1 −1 0 0 1



.

(A.8)
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As part of the forward algorithm, we find the K-matrix

K =




D14 D23 D32 D41 X12 X21 X34 X43 Y12 Y21 Y34 Y43 Z14 Z23 Z32 Z41

D14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1

D32 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

X12 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0

X21 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X34 0 −1 0 −1 0 0 1 −1 −1 −1 0 −2 0 −1 0 −1

Y34 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Z14 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




,

(A.9)

and the P -matrix

P =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

D14 1 0 0 0 1 0 0 0 1 0

D23 1 0 0 0 1 0 0 0 0 1

D32 1 0 0 0 0 1 0 0 1 0

D41 1 0 0 0 0 1 0 0 0 1

X12 0 1 0 0 0 0 1 0 1 0

X21 0 1 0 0 0 0 0 1 0 1

X34 0 1 0 0 0 0 0 1 1 0

X43 0 1 0 0 0 0 1 0 0 1

Y12 0 0 1 0 0 0 1 0 1 0

Y21 0 0 1 0 0 0 0 1 0 1

Y34 0 0 1 0 0 0 0 1 1 0

Y43 0 0 1 0 0 0 1 0 0 1

Z14 0 0 0 1 1 0 0 0 1 0

Z23 0 0 0 1 1 0 0 0 0 1

Z32 0 0 0 1 0 1 0 0 1 0

Z41 0 0 0 1 0 1 0 0 0 1




. (A.10)

The GLSM charge matrices become

QJE =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

1 0 0 1 0 0 1 1 −1 −1

0 0 0 0 1 1 1 1 −1 −1

0 1 1 0 0 0 −1 −1 0 0



,
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Figure 50. Toric diagram for C4/Z2 × Z2 (1, 0, 0, 1)(1, 1, 1, 1), obtained after removing the extra

GLSM fields s1 and s2.

QD =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

0 0 0 0 0 −1 −1 0 0 1

0 0 0 0 0 1 0 1 0 −1

0 0 0 0 0 1 1 0 −1 0



. (A.11)

From them we obtain

G =




p1 p2 p3 p4 q1 q2 r1 r2 s1 s2

1 1 1 1 1 1 1 1 2 2

0 0 0 2 1 1 0 0 1 1

0 0 2 0 0 0 1 1 1 1

0 1 1 0 0 0 1 1 1 1



. (A.12)

It can be verified that s1 and s2 are extra GLSM fields. The remaining GLSM fields

correspond to points on a 3-dimensional hyperplane and give rise to the expected toric

diagram as illustrated in figure 50.
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A.3 C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1)

The quiver diagram for C4/Z2×Z2×Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1) is shown in figure 51.

The J- and E-terms are

J E

Λ14 : Y43 · Z31 − Z42 · Y21 = 0 D18 ·X84 −X15 ·D54 = 0

Λ41 : Y12 · Z24 − Z13 · Y34 = 0 D45 ·X51 −X48 ·D81 = 0

Λ16 : X62 · Y21 − Y65 ·X51 = 0 D18 · Z86 − Z13 ·D36 = 0

Λ61 : X15 · Y56 − Y12 ·X26 = 0 D63 · Z31 − Z68 ·D81 = 0

Λ17 : X73 · Z31 − Z75 ·X51 = 0 D18 · Y87 − Y12 ·D27 = 0

Λ71 : X15 · Z57 − Z13 ·X37 = 0 D72 · Y21 − Y78 ·D81 = 0

Λ23 : Y34 · Z42 − Z31 · Y12 = 0 D27 ·X73 −X26 ·D63 = 0

Λ32 : Y21 · Z13 − Z24 · Y43 = 0 D36 ·X62 −X37 ·D72 = 0

Λ25 : X51 · Y12 − Y56 ·X62 = 0 D27 · Z75 − Z24 ·D45 = 0

Λ52 : X26 · Y65 − Y21 ·X15 = 0 D54 · Z42 − Z57 ·D72 = 0

Λ28 : X84 · Z42 − Z86 ·X62 = 0 D27 · Y78 − Y21 ·D18 = 0

Λ82 : X26 · Z68 − Z24 ·X48 = 0 D81 · Y12 − Y87 ·D72 = 0

Λ35 : X51 · Z13 − Z57 ·X73 = 0 D36 · Y65 − Y34 ·D45 = 0

Λ53 : X37 · Z75 − Z31 ·X15 = 0 D54 · Y43 − Y56 ·D63 = 0

Λ38 : X84 · Y43 − Y87 ·X73 = 0 D36 · Z68 − Z31 ·D18 = 0

Λ83 : X37 · Y78 − Y34 ·X48 = 0 D81 · Z13 − Z86 ·D63 = 0

Λ46 : X62 · Z24 − Z68 ·X84 = 0 D45 · Y56 − Y43 ·D36 = 0

Λ64 : X48 · Z86 − Z42 ·X26 = 0 D63 · Y34 − Y65 ·D54 = 0

Λ47 : X73 · Y34 − Y78 ·X84 = 0 D45 · Z57 − Z42 ·D27 = 0

Λ74 : X48 · Y87 − Y43 ·X37 = 0 D72 · Z24 − Z75 ·D54 = 0

Λ58 : Y87 · Z75 − Z86 · Y65 = 0 D54 ·X48 −X51 ·D18 = 0

Λ85 : Y56 · Z68 − Z57 · Y78 = 0 D81 ·X15 −X84 ·D45 = 0

Λ67 : Y78 · Z86 − Z75 · Y56 = 0 D63 ·X37 −X62 ·D27 = 0

Λ76 : Y65 · Z57 − Z68 · Y87 = 0 D72 ·X26 −X73 ·D36 = 0

(A.13)

Using the forward algorithm, the P -matrix can be found to be
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Figure 51. Quiver diagram for C4/Z2 × Z2 × Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1).

P=



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 u1 u2 v1 v2 w1 w2 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

X15 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1

X51 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0

X26 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0

X62 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1

X37 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0

X73 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1

X48 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0

X84 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1

Y12 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1

Y21 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

Y34 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1

Y43 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0

Y56 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0

Y65 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1

Y78 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1

Y87 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0

Z13 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1

Z31 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0

Z24 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1

Z42 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0

Z57 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0

Z75 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1

Z68 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1

Z86 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0

D18 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

D18 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

D27 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0

D72 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1

D36 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

D63 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

D45 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0

D54 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1



.

(A.14)

Following further the forward algorithm, we obtain

– 72 –



J
H
E
P
0
9
(
2
0
1
5
)
0
7
2

p1

p2

p3

p4

qi

ri

si

ui

vi

wi

Figure 52. Toric diagram for C4/Z2×Z2×Z2 (1, 0, 0, 1)(0, 1, 0, 1)(0, 0, 1, 1), obtained after removing

the extra GLSM fields ei.

G=



p1 p2 p3 p4 q1 q2 r1 r2 s1 s2 u1 u2 v1 v2 w1 w2 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 −1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 ,

(A.15)

The GLSM fields ei are extra and do not play a defining role for the geometry. The

remaining GLSM fields give rise to the expected toric diagram, as shown in figure 52.
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