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a b s t r a c t 

In tissue engineering, excessively generated reactive oxygen species (ROS) during biomaterial implanta- 

tion or cell transplantation is a one of major causes of diminishing therapeutic effects. In this study, we 

prepared biomaterial surfaces coated with antioxidant epigallocatechin gallate (EGCG) and metal ions, and 

evaluated their anti-oxidative and ROS scavenging properties. We revealed that EGCG-coating on poly- 

caprolactone (PCL) film surface increased hydrophilicity and anti-oxidative properties as a function of to- 

tal phenol content (TPC) potentially due to the increase in phenolic -OH and π-electrons from structural 

maintenance and directly removed the hydrogen peroxide (H 2 O 2 ) by resonance-stabilization. Furthermore, 

EGCG-coated PCL film increased attachment, spreading area, and viability of human adipose-derived stem 

cells (hADSCs) against H 2 O 2 treatment while stimulated the cellular signaling to reduce apoptotic gene 

and enhance anti-oxidative enzyme expression. Further, we applied EGCG coating on the surface of poly- 

L-lactic acid (PLLA) fibers. Spheroids incorporating EGCG-coated PLLA fibers were able to maintain their 

shape and showed improved viability and anti-oxidative activities in response to H 2 O 2 -induced oxida- 

tive stress than control spheroids. Therefore, metal-phenolic network (MPN) coating of EGCG is a suitable 

method to impart the anti-oxidative properties to biomaterials by evaluating the structural properties and 

biological effects. 

Statement of Significance 

This manuscript describes an antioxidant coating for biomaterials to control reactive oxygen 

species (ROS). Antioxidant epigallocatechin gallate (EGCG) was coated on the PCL film sur- 
face via metal-phenolic network (MPN). We revealed that the phenolic functional groups of 
EGCG are structurally maintained as confirmed by quantitative reducing power, radical scav- 
enging assays. EGCG coating not only removed ROS directly, but also is involved in cell signal- 
ing to enhance the anti-apoptotic gene, anti-oxidative enzyme expression. Furthermore, human 

adipose-derived stem cells (hADSCs) spheroid produced by self-assembly with EGCG-coated 

poly-L-lactic aicd (PLLA) fibers showed anti-oxidative properties from inside of spheroids. Thus, 
our evaluation of the anti-oxidative properties of EGCG coating can be applied to various tissue 
engineering applications. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Reactive oxygen species (ROS), including superoxide ( • O 2 
−), hy- 

rogen peroxide (H 2 O 2 ), and hydroxyl radicals ( • OH), are generally 

roduced during implantation of biomaterials or cells for tissue 
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ngineering therapy. Excessive ROS cause apoptosis and activation 

f inflammatory signaling cascades, leading to incomplete recov- 

ry of damaged tissue [ 1 , 2 ]. For example, the high level of ROS

urrounding dental implants results in uncontrolled inflammation 

ith bone loss, and elevation of ROS during autologous or allo- 

enic hematopoietic stem cell transplantation (HSCT) can result in 

erious toxic problems [3–5] . It has been reported that pro-oxidant 

ethemoglobin (Fe 3 + ) released from lysed blood cells and H 2 O 2 

erived from the lysis of epithelial or immune cells during surgical 

ncision of implantation process are associated with ROS-mediated 

ailure of tissue engineering approaches [ 6 , 7 ]. In addition, serum 

roteins adsorbed to the surfaces of biomaterials are known to 

ind to Fc domains of transmembrane receptors of inflammatory 

ells, stimulating the synthesis of ROS by these cells [ 8 , 9 ]. There-

ore, it is important to control ROS for successful regenerative out- 

omes in tissue engineering. 

Various strategies based on the use of antioxidants and anti- 

xidative enzymes have been investigated to control ROS. For ex- 

mple, delivery of the soluble antioxidant N-acetylcysteine (NAC) 

ith mesenchymal stem cell (MSC) aggregates into ischemic tis- 

ue successfully removed 80% of H 2 O 2 with enhancement of cell 

dhesion and survival of the engrafted cells [10] . Furthermore, 

elivery of the soluble antioxidant edaravone with human um- 

ilical cord mesenchymal stem cells (hUMSCs) in an acute liver 

ailure model increased the viability of transplanted hUMSCs by 

.5-fold and reduced the area of hepatic necrosis by approxi- 

ately 60% [11] . However, co-injected soluble antioxidants or anti- 

xidative enzymes were rapidly cleared (8–90% within 24 hr), 

nd therefore, ineffective for continuous control of ROS generated 

y damaged tissue [ 12 , 13 ]. As an alternative, biomaterials have 

een mixed or surface-coated with antioxidant or anti-oxidative 

nzymes to achieve sustained anti-oxidative activity. For exam- 

le, polycaprolactone (PCL)/polyethylene glycol (PEG) electrospun 

anofibers mixed with antioxidant chrysin significantly reduced 

hrysin release with 1,0 0 0-fold greater oxygen radical decomposi- 

ion capacity than control nanofibers, while hyaluronic acid hydro- 

els conjugated with anti-oxidative dopamine showed 40% and 65% 

mproved hydroxyl radical and DPPH scavenging activity over non- 

onjugated hydrogels, respectively, with increased SOD and GPX 

nzyme activity [ 14 , 15 ]. However, mixing of ROS-controlling agents 

ith biomaterials may alter the characteristics of biomaterials such 

s their degradation rate, swelling ratio, and mechanical proper- 

ies, while the surface conjugating strategy may require complex 

hemical processes and could decrease the biological activities of 

ntioxidants or anti-oxidative enzymes [14–16] . 

Polydopamine and polyphenol coating of biomaterials have 

een actively studied. Polydopamine forms a material-independent 

oating on the biomaterial surface at a basic pH by self-oxidation 

f catechol groups in dopamine [17] . Similarly, polyphenols such 

s tannic acid (TA), catechin (CA), and epigallocatechin gallate 

EGCG) can readily form a metal-phenolic network (MPN) with 

ationic metal ions due to hydrogen bonding, π- π stacking, and 

ation- π interactions by incubation of the sample in a buffer so- 

ution containing metal ions such as Na + , Fe 3 + [18] . In particu- 

ar, an MPN can form on the surfaces of various types of mate- 

ials, facilitating simple and effective coating and conferring that 

aterial with the biological properties of polyphenols including 

heir anti-inflammatory, anti-cancer, and anti-oxidative properties 

19] . For example, gold nanoparticles coated with polyphenols in 

he presence of HAuCl 4 • 3H 2 O showed 46%, 51%, and 55% ABTS 

adical scavenging activity when coated with EGCG, resveratrol 

RSV), and fisetin (FS), respectively [20] . Furthermore, tissue cul- 

ure polystyrene (TCP) coated with TA modified with Na + coated 

ilica nanoparticles reduced the intracellular ROS level significantly 

ore than uncoated TCP [21] . In addition, MPN coatings have been 

eported to have anti-cancer activity (coating of RSV with Au 

3 + ) 
167 
nd to enhance endothelialization (coating of TA with Sr 2 + ) [22–

4] . Despite the focus on using polyphenols as surface modifiers 

f biomaterials, detailed information on the effects of coating con- 

entration and structural feature of polyphenols on anti-oxidative 

ctivity and cellular signaling have not yet been reported. 

Previously, our group reported the EGCG coating on Ti sur- 

ace in the presence of Mg 2 + , and investigated their effect on os- 

eogenic differentiation of human adipose-derived stem cells (hAD- 

Cs) and suppression of osteoclast functions [25] . Compared to 

his previous work, the current study is focused on the evaluation 

f the anti-oxidative properties of EGCG-coated biomaterial sur- 

aces and their effects on cells, based on the structural and chem- 

cal properties of EGCG through 2D and 3D culture conditions for 

ADSCs. Given that, we prepared PCL films and poly-L-lactic acid 

PLLA) fibers coated with EGCG as model substrates, and then, an- 

lyzed the effect of coating in the presence of cations (Na + or 

g 2 + ) on the total phenol content (TPC) deposited on the surfaces 

f the substrates, surface properties, and anti-oxidative properties. 

econd, we cultured hADSCs on EGCG-coated surfaces and inves- 

igated the effect of the EGCG coating on the survival of hADSCs 

nder a ROS environment induced by H 2 O 2 treatment. In addi- 

ion, PLLA fibers coated with EGCG were combined with hADSCs to 

repare 3D spheroids and we examined whether the EGCG-coated 

bers were able to protect stem cells within the spheroids from 

xidative stress. 

. Materials and methods 

Polycaprolactone (PCL) (M w 

= 80,0 0 0) and poly-L-lactic acid 

PLLA, 1479) were obtained from Sigma-Aldrich (St. Louis, MO, 

SA) and Samyang (Jeollabuk-do, Korea), respectively. 2,2,2- 

rifluoroethanol (TFE) and ethylenediamine (EDM) were purchased 

rom Sigma-Aldrich (St. Louis, MO, USA). Dichloromethane (DCM) 

nd isopropyl alcohol (IPA) were purchased from Junsei Chemi- 

al Co., Ltd (Chuo-ku, Tokyo, Japan) and EDM Millipore (Darm- 

tadt, Germany), respectively. BIS-TRIS was obtained from Sigma- 

ldrich (St. Louis, MO, USA), and EGCG was purchased from 

CI America. Magnesium chloride hexahydrate (MgCl 2 
. 6H 2 O) and 

odium chloride (NaCl) were obtained from Junsei Chemical Co., 

td. Distilled water (D.W.) was acquired from an Elix Advan- 

age System (Millipore, MA, USA). Phosphate buffered saline (PBS), 

rypsin/EDTA, fetal bovine serum (FBS), and penicillin-streptomycin 

PS) were purchased from Wisent (St. Bruno, QC, Canada). Mesen- 

ro RS medium and L-glutamine were obtained from Gibco BRL 

Rockville, MD, USA). Human adipose-derived stem cells (hADSCs) 

ere purchased from Invitrogen (Carlsbad, CA, USA). 3% hydro- 

en peroxide (H 2 O 2 ) was purchased from Sigma-Aldrich (St. Louis, 

O, USA). LIVE/DEAD assay kit and Alexa Fluor TM 488 Phalloidin 

ere purchased from Invitrogen (Carlsbad, CA, USA). Mounting 

edium containing 4 ′ ,6-diamidino-2-phenylindole was purchased 

rom Vectashield® (Burlingame, CA, USA). The RNeasy Mini Kit was 

btained from Qiagen (Valencia, CA, USA). Maxime RT Premix was 

urchased from Intron (Seoul, Korea), and SYBR Premix Ex Taq was 

cquired from TAKARA (Otsu, Shiga, Japan). 

.1. Preparation and characterization of EGCG-coated PCL films 

To prepare PCL films, PCL granules (4 g) were dissolved in 50 

l of dichloromethane (DCM) and 2,2,2-trifluoroethanol (TFE) (8:2, 

/v) for 24 hr, and this solution was then poured into a 100 mm 

lass dish and thoroughly dried in a 60 °C dry oven for 6 hr. Circles

ere punched from the dried PCL film (diameter, 1.91 cm 

2 ). 1 mM 

GCG solution was prepared in BIS-TRIS buffer (100 mM of BIS- 

RIS in D.W. at pH 7). We added either 300 mM of NaCl or MgCl 2 
o the buffer solution for MPN formation. PCL film was placed on a 

4-well plate and incubated with 1 ml of EGCG solution for 24 hr 
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C

t 37 °C. The total phenol content (TPC) on the PCL films was de- 

ermined using the Folin-Ciocalteu method. Briefly, films were in- 

ubated with 300 μL Folin-Ciocalteu solution for 10 min, and then 

00 μL of sodium carbonate solution (Na 2 CO 3 , 2% w/v) was added. 

fter a 2-hr incubation at RT, absorbance was measured at 780 nm. 

he TPC on the PCL film was calculated using an EGCG standard. 

he same concentration (300 mM) of buffer solutions containing 

ifferent monovalent (NaCl, KCl) and divalent (MgCl 2 , CaCl 2 , and 

rCl 2 ) metal ions were used for the EGCG coating on PCL film sur- 

ace with same method described above. The relative TPC on PCL 

lm was calculated by using the same Folin-Ciocalteu method and 

ormalization with the values from the use of NaCl and MgCl 2 , 

espectively. The EGCG-coated PCL films were incubated in 1 ml 

f D.W. for 1, 2, 4, and 7 days to measure the remaining TPC 

n the surface. The relative TPC of Surface functional groups on 

he PCL film were analyzed by attenuated total reflection-Fourier 

ransform infrared spectroscopy (ATR-FTIR, Nicolet 6700, Thermo 

cientific, Waltham, MA, USA) and the surface atomic composi- 

ion of PCL film was analyzed by X-ray photoelectron spectrom- 

try (XPS) (ThetaProbe Base System, Thermo Fisher Scientific) at 

he Hanyang Center for Research Facilities (Seoul) using analysis 

oftware (Thermo VG Scientific, MA, USA). Surface morphological 

hanges were observed using scanning electron microscopy (SEM) 

Hitachi S-4800, Hitachi, Ltd, Tokyo, Japan). Water contact angle 

as measured by capturing images (Phoenix 300, Surface Electro 

ptics Co., Suwon, Korea) of a 1 μl droplet of D.W. on the surface 

f the PCL films and analyzing them with Image-Pro plus software 

MediaCybernetics, Silver Spring, MD, USA). 

Anti-oxidative properties of EGCG-coated PCL films were ana- 

yzed using a ferric reducing antioxidant power assay and ABTS 

adical scavenging assay. For the ferric reducing antioxidant power 

ssay, 1 mg/ml of 1,10-phenanthroline and 1 mM of FeCl 3 (Sigma- 

ldrich, St. Louis, MO, USA) were dissolved in D.W. to obtain 

n Fe(III) solution. Prewetted EGCG-coated PCL films were mixed 

ith 1 ml of Fe(III) solution, and the absorbance of the solu- 

ion was measured at 510 nm and used to quantify the con- 

ersion ratio of Fe(III) to Fe(II) (%) calculated using an ascorbic 

cid standard. ABTS radicals were generated in a solution contain- 

ng 7.0 mM 2,2 ′ -Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 

iammonium salt and 2.4 mM potassium persulfate (K 2 S 2 O 8 ) 

Sigma-Aldrich, St. Louis, MO, USA) in D.W. for 24 hr. The ABTS 

olution was diluted with PBS until an absorbance value of 0.7 at 

32 nm was reached and then mixed with 50 μl of ascorbic acid 

tandard or EGCG-coated PCL film prewetted with 50 μl D.W. Af- 

er 10 min of reaction, the percentage ABTS radicals scavenged was 

alculated by measuring the absorbance of the solution at 732 nm. 

.2. Adhesion of hADSCs and ROS-scavenging activity of EGCG-coated 

CL films 

hADSCs were maintained under standard culture conditions 

ith MesenPro RS medium (with 1% L-glutamine and 1% PS) and 

ells from passage number 4 were used in all experiments. To 

etermine the effect of EGCG on the viability of hADSCs, hAD- 

Cs were seeded in a tissue culture plate at 0.5 × 10 4 cells/cm 

2 

nd cultured for 24 hr. Then, the media was replaced with fresh 

edium containing EGCG (0, 12.5, 25, 50 μM) and the viability of 

ADSCs was measured by MTT assay after a 24-hr incubation. hAD- 

Cs were seeded at 0.5 × 10 4 cells/cm 

2 on the surface of PCL film 

nd EGCG-coated PCL film and cultured for 24 hr. hADSCs cultured 

n PCL film were fixed with 4% paraformaldehyde, and then incu- 

ated with 1:200 Alexa Fluor TM 488 Phalloidin for 1 hr at 37 °C for

-actin staining. hADSCs stained for F-actin were preserved using 

ounting medium with DAPI. The number of attached cells was 

alculated by counting the number of nuclei per area (/mm 

2 ), and 

pread area was calculated by measuring the existing area (x10 3 
168 
m 

2 ) of actin filaments per individual cells using Image-Pro plus 

oftware. 

We first investigated the effect of the concentration of exoge- 

ous H 2 O 2 on the viability of hADSCs; hADSCs were cultured on 

 tissue culture plate at 0.5 × 10 4 cells/cm 

2 for 24 hr and the 

edium was replenished by fresh medium containing 0, 10 0, 20 0, 

r 400 μM H 2 O 2 . Cell viability was then measured by MTT assay

fter 4, 8, and 24 hr. To investigate the effect of EGCG on ROS scav-

nging, hADSCs were similarly cultured on a tissue culture plate at 

.5 × 10 4 cells/cm 

2 , and the culture media was then replaced by 

ne containing H 2 O 2 (100 μM) and 0, 12.5, 25, or 50 μM of EGCG.

fter 24 hr of culture, cell viability was measured by MTT assay. 

e then cultured hADSCs on the surfaces of PCL film and EGCG- 

oated PCL film for 24 hr and exposed the hADSCs on the film to 

00 μM of H 2 O 2 -containing culture media for 12 hr. The number 

f cells before and after H 2 O 2 treatment were counted and mor- 

hological changes were observed after F-actin staining. 

.3. Anti-apoptotic and anti-oxidative activities of EGCG-coated PCL 

lm against H 2 O 2 

Apoptotic DNA fragmentation of hADSCs cultured on PCL and 

GCG-coated PCL films in response to H 2 O 2 treatment was ana- 

yzed by TUNEL assay (ApopTag® fluorescein in situ apoptosis de- 

ection kit, Sigma-Aldrich, St. Louis, MO, USA). hADSCs at 0.5 × 10 4 

ells/cm 

2 were cultured on the surfaces of PCL and EGCG-coated 

CL films for 24 hr, and the films were then exposed to 200 

M of H 2 O 2 for 12 hr. H 2 O 2 -exposed cells on PCL films were

xed with 1% paraformaldehyde for 10 min and then treated with 

thanol:acetic acid (2:1, v:v) for 5 min. After two washes with 

BS, equilibration buffer was added for 10 sec. Then, the cells 

ere incubated with terminal deoxynucleotide transferase (TDT) 

or 1 hr in a 37 °C incubator. Immediately after TDT treatment, 

top/wash buffer was added for 10 min at RT, followed by addi- 

ion of anti-digoxigenin conjugate (fluorescein) for 30 min. Stained 

ells were preserved in mounting medium with DAPI. Percentage 

UNEL-positive nuclei was calculated by counting the number of 

uorescein-stained nuclei (positive) and normalizing this to the to- 

al number of nuclei. 

To examine the ability of EGCG-coated film to scavenge H 2 O 2, 

CL and EGCG-coated PCL films were incubated in D.W. containing 

00 μM H 2 O 2 for 2 hr and the remaining H 2 O 2 was measured us-

ng an H 2 O 2 detection kit (Fluorimetric Hydrogen Peroxide Assay 

it, Sigma-Aldrich, St. Louis, MO, USA). Cells were also cultured as 

escribed above and then treated with H 2 O 2 for 12 hr, followed 

y incubation with 10 μM of 2 ′ ,7 ′ -dichlorofluorescein diacetate 

DCFH-DA) (Sigma-Aldrich, St. Louis, MO, USA) for 30 min. Intracel- 

ular ROS level was assessed by fluorescence microscopy, and the 

elative mean fluorescence intensity (MFI) value was quantified by 

alculating fluorescence intensity within areas of individual cells 

sing Image-Pro plus software and normalized to that measured 

n the PCL group. We also analyzed the expression of apoptotic 

nd oxidative genes by real-time reverse transcription polymerase 

hain reaction (RT-PCR). Total RNA of hADSCs cultured on EGCG- 

oated PCL film was collected using TRizol reagent (Life Technolo- 

ies, Carlsbad, CA, USA), and cDNA was synthesized from collected 

otal RNA using the Maxime RT PreMix Kit (Intron Biotechnology, 

yeonggi-do, Korea). Then, the cDNA was mixed with SYBR Green 

CR Mastermix (TAKARA, Otsu, Shiga, Japan), and PCR was per- 

ormed in a StepOnePlus thermocycler (Life Technology, Carlsbad, 

A, USA). The sequences of the primers used for RT-PCR were as 

ollows: GAPDH (Fw: 5’-GTC AGT GGT GGA CCT GAG CT-3’, Rv: 5’- 

GC TGT AGC CAA ATT CGT TG-3’), BAX (Fw: 5’-TTT GCT TCA GGG 

TT CAT CC-3’, Rv: 5’-CAG TTG AAG TTG CCG TCA GA-3’), BCL2 (Fw: 

’-GAG GAT TGT GGC CTT CTT TG-3’, Rv: 5’-ACA GTT CCA CAA AGG 

AT CC-3’), BCL2L1 (Fw: 5’-CTG AAT CGG AGA TGG AGA CC-3’, Rv: 
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’-TGG GAT GTC AGG TCA CTG AA-3’), Catalase (Fw: 5’-GCC TGG 

AC CCA ATT ATC TT-3’, Rv: 5’-GAA TCT CCG CAC TTC TCC AG-3’), 

OXO3 (Fw: 5’-GCA AGC ACA GAG TTG GAT GA-3’, Rv: 5’-CAG GTC 

TC CAT GAG GTT TT-3’), GPX-1 (Fw: 5’-CTC TTC GAG AAG TGC 

AG GT-3’, Rv: 5’-TCG ATG TCA ATG GTC TGG AA-3’). 

.4. Preparation and characterization of EGCG-coated PLLA fibers 

To prepare PLLA fibers, an electrospun nanofiber sheet was pre- 

ared by ejecting 10 ml of 3% of PLLA solution dissolved in a mix- 

ure of DCM and TFE (8:2, v/v) using a syringe pump (KDS200, KD 

cientific, New Hope, PA, USA) through a 23-gauge needle under 

6 kV at a rate of 2 ml/h. Scattered fibers were collected on alu- 

inum foil covered a rotating mandrel (SPG, Incheon, Korea), and 

he sheet was dried overnight. The nanofiber sheet was chopped 

nto small pieces and dispersed in ethylenediamine (EDM) solution 

10%, v/v in IPA) for aminolysis. After vigorous shaking at 90 rpm 

or 30 min at 37 °C, the aminolyzed PLLA fibers were centrifuged 

t 4,0 0 0 rpm for 10 min and washed in 70% ethanol. 50–100 μm

ized PLLA fibers were collected using a sieve grid and lyophilized 

fter 3 D.W. washes. To coat PLLA fibers (PF) with EGCG, 1 mg/ml 

f prepared PF (50–100 μm) was dispersed in EGCG solution (100 

M of BIS-TRIS with 300 mM of MgCl 2 dissolved in D.W. at pH 7)

nd incubated for 24 hr at 37 °C on a rotator. The TPC on the PLLA

bers was measured by the Folin-Ciocalteu method as described in 

ection 2.1 . 

The anti-oxidative activity of EGCG-coated PLLA fibers (E-PF) 

as measured by a ferric reducing antioxidant power assay, ABTS 

adical scavenging assay, and H 2 O 2 scavenging assay. PF and E- 

F were dispersed in D.W. (1 mg/ml) and serially diluted. 500 μl 

f the PF sample, E-PF sample, and ascorbic acid standard were 

eacted with Fe(III) solution for 30 min and the absorbance was 

easured at 510 nm. Similarly, 50 μl of the PF sample, E-PF sam- 

le, and ascorbic acid standard were reacted with ABTS solution 

nd the absorbance was measured at 732 nm. To analyze H 2 O 2 

cavenging activity, PF and E-PF were dispersed in 100 μM H 2 O 2 

olution (0 to 1 mg/ml), dissolved in D.W., and incubated for 2 

r at 37 °C. The remaining concentration of H 2 O 2 in the solution 

as measured using an H 2 O 2 detection kit. To evaluate the bio- 

ompatibility of PF and E-PF and hADSCs, hADSCs were cultured 

n a 24-well plate at 1 × 10 4 cells/cm 

2 for 24 hr. Then, the media

as changed to one containing 5 μg of PF or E-PF. After 24 hr of

ulture, the viability of hADSCs was measured by MTT assay. The 

ntracellular ROS level of hADSCs was measured by incubating the 

ells with 10 μM DCFH-DA for 30 min after the same culture pro- 

ess as described above. Fluorescence intensity of individual cells 

as calculated by Image-Pro plus software and normalized to that 

f the control (-) group. 

.5. hADSC spheroid formation with fibers and anti-oxidative effect of 

GCG coated fibers on H 2 O 2 -treated hADSCs 

To fabricate hADSC spheroids (cells only), 40,0 0 0 hADSCs in 

00 μl of culture media were placed in a 0.2 ml tube and cen- 

rifuged at 1,200 rpm for 3 min. Cells in the tube gradually formed 

 spheroid during incubation for 24 hr at 37 °C, and the spheroid 

as then transferred to an ultra-low attachment plate (Costar®

ltra-low attachment multiple 96-well plate, Corning Incorporated, 

ew York, USA). PF-incorporating spheroids were prepared as de- 

cribed above except that 10 μg of PF (1 μg/μl) was added the 100

f culture medium containing 40,0 0 0 cells. Cell-only spheroids and 

F-incorporating spheroids were cultured in media containing 400 

M H 2 O 2 for 12 hr. Changes in the morphology of spheroids were 

onitored by phase contrast microscopy and the number of de- 

ormed spheroids was quantified by image analysis and reported 

s a percentage. Using the same cell culture process described 
169 
bove, the distribution of live and dead cells in spheroids was de- 

ermined by confocal microscopy (TE20 0 0 and Eclipse C1, Nikon, 

okyo, Japan) after 30 min of incubation in LIVE/DEAD staining so- 

ution (Invitrogen, Carlsbad, CA, USA). 

For histological analysis, H 2 O 2 -exposed spheroids were fixed in 

% paraformaldehyde. Fixed individual spheroids were then im- 

ersed in optimal cutting temperature compound (OCT) solution 

nd frozen in a deep freezer (-80 °C) for more than 2 hr to pro-

uce an OCT block. The frozen OCT block containing spheroids was 

ut into 10 μm sections using a cryostat microtome and sections 

ere collected on slide glass. To observe the internal morphology 

f spheroids, H&E staining of cross-sectioned spheroids was per- 

ormed. First, cross-sectioned samples were incubated twice in xy- 

ene for 10 min. After a hydration step (rinsing with 100% to 70% 

thanol followed by running water for 10 min), samples were incu- 

ated in hematoxylin for 2 min and eosin for 8 min. Following de- 

ydration, samples were preserved in mounting medium for obser- 

ation. The DNA integrity of hADSCs within spheroids was deter- 

ined by TUNEL assay. First, cross-sectioned samples of spheroids 

rom the OCT block were incubated twice in xylene for 10 min. 

ollowing hydration, samples were treated with ethanol:acetic acid 

2:1, v:v) for 5 min. After two washes with PBS, samples were 

ncubated in equilibration buffer for 10 sec. Then, samples were 

ncubated with terminal deoxynucleotide transferase (TDT) for 1 

r at 37 °C. Immediately after TDT treatment, stop/wash buffer 

as added for 10 min at RT, followed by anti-digoxigenin con- 

ugate (fluorescein) for 30 min. Stained samples were preserved 

n mounting medium with DAPI. TUNEL-positive nuclei (%) were 

uantified by counting the number of fluorescein-stained nuclei 

positive) normalized to the total number of nuclei. In addition, 

pheroids exposed to 400 μM H 2 O 2 for 12 hr were incubated in 

0 μM DCFH-DA for 30 min, and then intracellular ROS levels were 

uantified by fluorescence microscopy. Relative MFI was quantified 

y calculating the fluorescence intensity of individual spheroids 

nd normalizing this to that of cell-only spheroids. For apoptotic 

nd oxidative gene expression analyses, spheroids exposed to H 2 O 2 

ere immersed in TRizol reagent, and were then broken apart by 

ipetting several times to extract RNA. Subsequent steps for RT- 

CR were the same as those described in Section 2.3 . 

.6. Statistics and analyses 

Quantitative data are presented as means ± standard devia- 

ions. One-way analysis of variance (ANOVA) using Tukey’s hon- 

stly significant difference test and two-way ANOVA (for two vari- 

bles) using the Bonferroni post-test were performed using Graph- 

ad Prism 5 software (La Jolla, CA, USA). A p value < 0.05 was 

onsidered to denote statistical significance. 

. Results and discussion 

.1. Characterization of EGCG-coated PCL films 

The overall scheme of EGCG coating on a biomaterial surface 

hrough MPN formation and the potential effects on 2D, 3D cul- 

ured cell underlying its anti-oxidative activity are illustrated in 

ig. 1 . According to the EGCG coating, the white color PCL sur- 

ace turned slightly brown in Na-E and Mg-E, and small aggre- 

ates were observed in Mg-E (Supplementary Fig. S1). The TPC 

n the PCL film increased significantly in the presence of cations, 

ith Mg 2 + increasing TPC on the PCL firm to a greater extent 

han Na + (17 ± 3 μg/cm 

2 vs 8 ± 1 μg/cm 

2 , respectively) ( Fig. 2 a).

hen various types of metal ions were used for EGCG coating, 

PC from divalent was significantly greater than that from mono- 

alent ions while no significant difference was found in different 

ons of each group (Supplementary Fig. S2). The TPC on PCL film 
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Fig. 1. Schematic diagram of the anti-oxidative properties of EGCG coating to reduce intracellular ROS and anti-apoptosis on 2D, 3D cultured cells. 

Fig. 2. Characterization of EGCG-coated PCL film. (a) The TPC on the PCL film surface using NaCl- or MgCl 2 -containing buffer. Spectra of PCL film, Na-E, and Mg-E obtained 

by (b) ATR-FTIR analysis and (c) XPS analysis. (d) SEM images of the surfaces of PCL film, Na-E, and Mg-E. (e) Water contact angles of PCL film, Na-E, and Mg-E. The 

anti-oxidative activity of EGCG-coated PCL film as measured by (f) ferric reducing antioxidant power assay and (g) ABTS radical scavenging assay ( ∗ , # p < 0.05). 

s

E

s

a

i

T

t

y  

t

i

(

s

M

±
t  

F  

e

a

r

c

c

urface remained 80% and 60% in Na-E (6 ± 1 μg/cm 

2 ) and Mg- 

(10 ± 1 μg/cm 

2 ) for 7 days (Supplementary Fig. S3). ATR-FTIR re- 

ults demonstrated that a broad O-H stretch at 30 0 0-370 0 cm 

−2 

nd phenolic C = C stretch at 1630 cm 

−1 were present after coat- 

ng with EGCG ( Fig. 2 b), indicating successful coating with EGCG. 

hese results are consistent with a previous report [26] . In addi- 

ion, specific peaks of Na1s and Mg1s were detected by XPS anal- 

sis on the surface of Na-E and Mg-E, respectively ( Fig. 2 c). In

he XPS C1s high-resolution spectra, peak intensity of C-O bond- 

ng (286.4eV) was elevated in Na-E and more in Mg-E than PCL 

Supplementary Fig. S4). SEM results showed that bare PCL had a 
170 
mooth surface while agglomerated particles were found on the 

g-E surface ( Fig. 2 d). Following EGCG coating, bare PCL film (67 

2 o ) became hydrophilic and complete wetting was observed on 

he PCL surface coated with the greater TPC ( Fig. 2 e). As shown in

ig. 2 f and g, the conversion ratio of Fe (%/cm 

2 ) was significantly

levated after EGCG coating as compared to bare PCL (2 ± 0%/cm 

2 ), 

nd Mg-E (16 ± 1%/cm 

2 ) had a significantly greater Fe conversion 

atio than Na-E (6 ± 1%/cm 

2 ). Similarly, Mg-E inhibited ABTS radi- 

als significantly more than bare PCL and Na-E ( Fig. 2 g). 

The divalent cation Mg 2 + led to a greater level of MPN-based 

oating than the monovalent cation Na + . MPN is the supramolec- 
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lar network structure, in which metal ions are coordinated to 

henolic ligands with π-cation interactions playing a crucial role 

 19 , 27 ]. In a previous study, no catechin (CA) coating was formed

n a PCL nanofiber surface in the absence of sodium ion (Na + ) 
28] . Similar to our findings, more pyrogallol (PG) coating was 

chieved on the titanium surface with magnesium ion (Mg 2 + ) 
han Na + [29] . In the XPS C1s high-resolution results, the grad- 

al improvement in C-O bonding in Na-E and Mg-E than in PCL 

an be estimated by the improvement of phenolic C-O contents 

ue to the increase in TPC of the surface. The structure of MPN 

ith non-covalent interactions between metal ions and pheno- 

ic molecules has been indirectly estimated by stoichiometry and 

PS analysis [ 19 , 30 ]. For example, mono/bis/tris-complex was esti- 

ated through the relative ratio of Fe 3 + and TA, and the peak shift 

o higher binding energy through XPS analysis would have caused 

lectron transfer from TA to Fe ions. In our results, the increased 

henolic C-O content indirectly shows that Mg 2 + can form more 

PN than Na + . SEM analysis consistently supported more coating 

ith Mg 2 + than Na + . The formation of small aggregates was re- 

orted during polyphenol coating when coating exceeded a certain 

evel [29] . The surface hydrophilicity increased with increase in 

PC, indicating that the -OH groups of catechin and gallol in EGCG 

fter coating may have contributed to the formation of hydrogen 

onds with H 2 O on the surface and the increased hydrophilicity. 

onsistently, the Mg-E surface exhibited 2-3-fold greater Fe con- 

ersion/ABTS scavenging activity than Na-E surface, suggesting that 

henolic contents on the surface appear to be responsible for an- 

ioxidant activity to reduce Fe (Fe 3 + → Fe 2 + ) and to scavenge radi- 

als [31] . It has been reported that the hydroxyl groups in pheno- 

ic ring structure of EGCG can scavenge radicals and chelate metal 

on during self-oxidation, and the electron transfer in phenolic π- 

lectrons is dependent on the amount of EGCG coated on the sur- 

ace of the substrate [32] . 

.2. Adhesion of hADSCs and ROS scavenging activity of EGCG-coated 

CL films 

To confirm the viability of hADSCs after EGCG treatment, cells 

ere observed after LIVE/DEAD staining and cellular metabolic ac- 

ivity was quantified by MTT assay ( Fig. 3 a and b). Cell morphol-

gy and viability were not significantly affected by EGCG treat- 

ent. EGCG has been reported to be cytotoxic to mesenchymal 

ells only at concentration higher than 50 μM [33] . Consistent with 

his previous study, EGCG at concentrations lower that 50 μM was 

ot cytotoxic to hADSCs. The number of attached cells on films 

ultured for 24 hr was significantly greater on the EGCG-coated 

urfaces (Na-E, 177 ± 21/mm 

2 and Mg-E, 128 ± 7/mm 

2 ) than on 

he PCL film (87 ± 20/mm 

2 ) ( Fig. 3 c). In addition, hADSCs be-

ame narrower and thinner (spreading area 5.2 ± 1.6 10 3 μm 

2 

er cell) on the PCL film, while they had a more broad polygo- 

al shape on Na-E and Mg-E films (spreading area 9.0 ± 3.5 10 3 

m 

2 and 7.3 ± 1.5 10 3 μm 

2 per cell, respectively) ( Fig. 3 d and e).

ccording to previous reports, surface characteristics such as hy- 

rophilicity and roughness are altered by polyphenol coating, and 

ell attachment and spreading area change accordingly. For exam- 

le, the Fe 3 + /TA coated surface of PCL nanofiber mesh became hy- 

rophilic and small aggregates formed on the surface, similar to 

ur findings [34] . Furthermore, human umbilical vein endothelial 

ells (HUVECs) cultured on PCL nanofiber mesh showed greater 

dhesion and spreading than HUVECs cultured on uncoated PCL 

anofibers [34] . The reduced number of adherent cells on the Mg- 

 surface may be due to the roughness of the Mg-E surface. It has

een reported that the adhesion force of cells decreases as sur- 

ace roughness increases above a certain level (adhesion inhibition) 

35] . 
171 
Viability of hADSCs after H 2 O 2 treatment decreased signifi- 

antly as the concentration of H 2 O 2 increased and exposure time 

ncreased ( Fig. 4 a). For example, after 24 hr, the viability of hAD- 

Cs decreased from 83 ± 2% at 200 μM H 2 O 2 to 11 ± 0% at 400 μM

 2 O 2 compared to the control. However, when cells were treated 

ith both H 2 O 2 and EGCG (0, 12.5, 25, 50 μM), the viability of 

ADSCs after 24 hr improved significantly (by ~ 10–20%) as com- 

ared to that without EGCG (74 ± 5%) ( Fig. 4 b). Changes in the 

orphology of hADSCs cultured on PCL film and EGCG-coated PCL 

lm were observed after 12 hr of exposure to 200 μM H 2 O 2 . Cells

ultured on PCL film were shrunken and had a low spread area (3 

2 10 3 μm 

2 per cell) while cells cultured on Na-E and Mg-E ex- 

ibited an increased spread area relative to cells cultured on PCL 

lm (12 ± 3 10 3 μm 

2 and 11 ± 3 10 3 μm 

2 per cell, respectively) 

 Fig. 4 c and d). 

EGCG treatment protected hADSCs against H 2 O 2 mediated-ROS 

amage, consistent with a previous study that reported that 75% 

f hMSCs treated with 200 μM of H 2 O 2 for 24 hr were senes-

ent based on β-galactosidase staining whereas pre-treatment of 

MSCs with 50 μM EGCG for 6 hr reduced senescence to 50% 

36] . Control of oxidative stress generated during biomaterial trans- 

lantation or cell transplantation is important, and several stud- 

es have confirmed that tissue regeneration improves when an- 

ioxidants are used [ 37 , 38 ]. For example, silk fibroin nanofibers in-

orporating the antioxidant fenugreek (1:1) had 67% DPPH radi- 

al scavenging effect after 24 hr and improved wound healing in 

 rat full thickness excision model as compared to control and 

ilk fibroin only [39] . In addition, anti-oxidative polyorganophos- 

hazene (PATGP) microspheres fabricated using aniline tetramers 

nd glycine ethyl ester co-substitution showed more than twice 

he DPPH, • OH scavenging activity and bone regeneration activ- 

ty in a rat calvarial defect model after 8 and 16 weeks com- 

ared to PLGA and PAGP microspheres [40] . We found that the 

pread area of hADSCs cultured on Na-E and Mg-E surfaces was 

ignificantly greater than that on PCL film. H 2 O 2 can form highly 

eactive hydroxyl radicals either spontaneously or through a fen- 

on reaction that causes oxidation, which directly attacks the cell 

alls (lipids) and DNA of hADSCs [41] . Therefore, it can be inter- 

reted that the reduced spread area of damaged hADSCs may be 

ue to the contraction of apoptotic cells, whereas cell adhesion 

nd spread area was improved on EGCG-coated PCL film due to 

rotective effect by ROS scavenging properties of EGCG. Phenols 

an react with the free radical species to delocalize unpaired elec- 

rons within the aromatic ring, giving phenol radicals that undergo 

esonance-stabilization within the molecule and thus, form stable 

ntermediates [42] . H 2 O 2 is a non-radical oxidizing agent that can 

ecompose in physiological conditions to form highly reactive hy- 

roxyl radicals ( • OH) [ 43 , 44 ]. The hydroxyl radicals cause cytotoxic-

ty, and the resonance-stabilization by the aromatic ring of phenol 

an remove this hydroxyl radicals by aforementioned resonance- 

tabilization [42] . Given that, the delocalization of unpaired elec- 

rons within the phenolic structure of MPN coated on the surface 

ay have removed cytotoxic hydroxyl radicals and produced stable 

 2 O and O 2 , improving cell viability. 

.3. Anti-apoptotic and anti-oxidative activities of EGCG-coated PCL 

lm against H 2 O 2 

H 2 O 2 treatment did not change the number of cells attached 

o the surfaces of Na-E and Mg-E, while it significantly decreased 

he number of cells attached to bare PCL film ( Fig. 5 b). In addi-

ion, the percentage of TUNEL-positive nuclei (%) was significantly 

reater for cells attached to PCL (75 ± 7%) than Na-E (35 ± 12%) 

nd Mg-E (10 ± 10%) ( Fig. 5 a and c). H 2 O 2 causes apoptotic DNA

ragmentation, and EGCG has been shown to reduce the damage 

aused by H O . For example, treatment of pancreatic alpha TC1-6 
2 2 
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Fig. 3. EGCG cytotoxicity and attachment of hADSCs to PCL film. (a) LIVE/DEAD staining of hADSCs after 24 hr of EGCG treatment (0, 12.5, 25, 50 μM) and (b) MTT assay 

results. (c) The number of hADSCs attached to PCL, Na-E, and Mg-E after 1 day of culture. After F-actin staining, (d) cell spread area and (e) fluorescence were quantified ( ∗ , 

# p < 0.05). 

Fig. 4. Viability and morphological change of hADSCs after H 2 O 2 treatment. (a) Viability of hADSCs after treatment with 0, 10 0, 20 0, or 40 0 μM H 2 O 2 for 4, 8, and 24 hr. (b) 

Viability of hADSCs after 1 day of culture with 200 μM H 2 O 2 + EGCG (0, 12.5, 25, 50 μM). After 12 hr of 200 μM H 2 O 2 treatment of hADSCs cultured for 1 day on the PCL 

film surface, changes in (c) cell spread area and (d) fluorescence were quantified ( ∗ , # p < 0.05). 

172 
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Fig. 5. EGCG-coated PCL film protects against H 2 O 2 -induced apoptosis. (a) Apoptotic signals of hADSCs cultured on the surface of PCL film after H 2 O 2 treatment as measured 

by fluorescence microscopy after the TUNEL assay. (b) Change in relative cell number of hADSCs on PCL film after H 2 O 2 treatment and (c) percentage of TUNEL-positive 

nuclei. Relative expression of the apoptosis-related genes (d) BAX, (e) BCL2, and (f) BCL2L1 in hADSCs ( ∗ , # p < 0.05). 
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ells for 4 hr with 100 μM H 2 O 2 resulted in 90% TUNEL-positive 

uclei, which was reduced to 70% and 5% after 1 h pre-treatment 

ith EGCG 30 μM and 100 μM, respectively [45] . Our results sug- 

est that EGCG coated on the polymer surface was also able to pro- 

ect against H 2 O 2 -induced apoptosis in a dose-dependent manner. 

he expression of the apoptotic gene BAX in cultured hADSCs was 

ignificantly decreased in cells cultured on Na-E and Mg-E rela- 

ive to bare PCL film, with the greatest decrease in expression of 

his gene observed for cells cultured on Mg-E ( Fig. 5 d). Expression 

f the anti-apoptotic genes BCL2 and BCL2L1 was significantly in- 

reased in Na-E and Mg-E with the highest expression observed 

or cells grown on Mg-E compared to bare PCL film ( Fig. 5 e and f).

GCG has previously been reported to have a modulatory effect on 

he expression of apoptosis-related genes; mouse vascular smooth 

uscle cells cultured in a conditioned environment with H 2 O 2 

howed significantly reduced expression of the pro-apoptotic genes 

aspase-3,8,9 and BAX and a significant increase in the expression 

f the anti-apoptotic gene BCL-2 after pre-treatment with EGCG 

46] . Our results confirmed that the EGCG coating on the surface of 

CL film was biologically active and influenced anti-oxidative sig- 

aling processes within hADSCs cultured on EGCG-coated film. 

To investigate the H 2 O 2 scavenging activity of the EGCG coat- 

ng, PCL film and EGCG-coated PCL film were incubated in 100 μM 

 2 O 2 solution for 2 hr. H 2 O 2 level was not reduced by the un-

oated PCL film while levels of H 2 O 2 were significantly decreased 

n solutions containing Na-E and Mg-E film to 97 ± 1% and 87 ±
% of control levels, respectively ( Fig. 6 a). The relative MFI per cell

n the DCFH-DA assay was significantly lower for cells cultured on 

a-E and Mg-E film at 43 ± 10% and 24 ± 5% of the MIF per cell
 b

173 
bserved for cells cultured on PCL film ( Fig. 6 b). Fluorescence mi- 

roscopy revealed that hADSCs cultured on PCL film without H 2 O 2 

howed little fluorescence signal ( Fig. 6 c), while there was a signif- 

cant increase in fluorescence signal after H 2 O 2 treatment ( Fig. 6 d). 

n addition, fluorescence intensity was reduced in Na-E and Mg-E 

ompared to PCL film ( Fig. 6 d). The expression of catalase, FOXO3, 

nd GPX-1 was significantly increased in cells cultured on Na-E 

nd highest for cells cultured on Mg-E compared to cells cultured 

n bare PCL film ( Fig. 6 e, f, and g). Polyphenols have been re-

orted to eliminate H 2 O 2 and related ROS. For example, real-time 

 2 O 2 monitoring of a skin membrane-covered oxygen electrode 

SCOE) revealed that 1 mM H 2 O 2 was rapidly reduced after treat- 

ent with 0.1 mM polyphenols such as hydroquinone, quercetin, 

iceatannol, and resveratrol [47] . As described in Section 3.2 , EGCG 

s expected to be able to remove H 2 O 2 by resonance-stabilization 

echanism, and our results suggest that EGCG retained its pheno- 

ic structure after coating. Furthermore, the EGCG coating appeared 

ot only to remove ROS through direct anti-oxidative processes 

nd resonance-stabilization, but also to regulate anti-oxidative en- 

yme expression in proportion to the TPC deposited on the film. 

.4. Characterization of EGCG-coated PLLA fibers 

We next investigated the anti-oxidative protective effects of an 

GCG coating on 3D spheroidal cultures of stem cells by preparing 

GCG-coated PLLA fibers. According to the EGCG coating, the white 

olor of PF turned brown in E-PF (Supplementary Fig. S5). SEM 

hotographs ( Fig. 7 a) demonstrated that the smooth surfaces of PF 

ecame rough after coating with 48 ± 2 μg/mg EGCG, indicating 
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Fig. 6. Anti-oxidative activity of EGCG-coated PCL film in response to H 2 O 2 treatment. (a) The amount of H 2 O 2 remaining in D.W. after a 2 hr incubation with PCL film. (b) 

Intracellular ROS level of hADSCs cultured on PCL, Na-E, and Mg-E as determined by DCFH-DA and fluorescence images (c) without H 2 O 2 treatment (d) with H 2 O 2 treatment. 

Relative expression of anti-oxidative genes (e) catalase, (f) FOXO3, and (g) GPX-1 in hADSCs ( ∗ , # p < 0.05). 
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omogeneous deposition of EGCG ( Fig. 7 b). Ferric reducing activ- 

ty [conversion rate (%)] increased up to 28 ± 5% as the percent- 

ge of fibers increased ( Fig. 7 c). Similarly, E-PF showed ABTS radi- 

al scavenging activity that increased in proportion to the amount 

f fibers, as shown in Fig. 7 d. In an aqueous environment con- 

aining H 2 O 2 , E-PF effectively reduced H 2 O 2 and thus decreased 

he amount of H 2 O 2 significantly (85 ± 2%) as a function of fiber 

oncentration ( Fig. 7 e). EGCG-coated fibers had no detrimental ef- 

ect on cell viability ( Fig. 7 f). Intracellular ROS level (relative MFI) 

ncreased rapidly in the positive control (143 ± 17) treated with 

 2 O 2 compared to the negative control (100 ± 1) without H 2 O 2 

reatment. In the PF-treated group, fluorescence intensity per in- 

ividual cell was not statistically different than that in the posi- 

ive control (140 ± 8), but was significantly decreased in the E-PF 

reated group (110 ± 4) ( Fig. 7 g and h). 

The aforementioned results suggest that EGCG directly removes 

OS through phenolic π-electron and resonance-stabilization of 

atechin and gallol groups, and/or stimulates anti-apoptotic and 

nti-oxidative cell signaling pathways. Similarly, EGCG-coated 

bers exhibited anti-oxidative properties as confirmed by Fe con- 

ersion, ABTS radical scavenging, and elimination of H 2 O 2 , indicat- 

ng maintenance of the biological activity of EGCG independent of 

he surface chemistry of the underlying materials. In addition, E- 

F effectively reduced the intracellular ROS level of hADSCs cul- 

ured on tissue culture plates. It has been reported that the level 

f intracellular ROS is indicative of cellular damage. For example, 
p

174 
he greater the intracellular ROS level of primary cardiac stem cells 

nd embryonic stem cells, the more DNA damage was found [48] . 

he antioxidant curcumin (0-4 μM) concentration-dependently de- 

reased the DCF fluorescence intensity of L-6 myoblasts [49] , while 

he antioxidant edaravone decreased the intracellular ROS level 

f human umbilical cord mesenchymal stem cells [11] , indicating 

hat these antioxidants can decrease the level of intracellular ROS. 

owever, directly delivered soluble antioxidants were rapidly elim- 

nated (8–90% removed within 24 hr) and showed decreased anti- 

xidative activity in vivo [12] . Our results indicate coating the sur- 

aces of biomaterials with EGCG can effectively remove ROS and 

otentially protect tissues against oxidative damage. It is known 

hat soluble EGCG exhibits anti-oxidative properties in proportion 

o the concentration, but its use has been very limited in tissue 

ngineering applications due to potential cytotoxicity at concentra- 

ions above 50 μM [ 33 , 50 ]. When EGCG was coated on biomaterial,

GCG can be stably coated on the surface via MPN formation and 

ould be maintained for a long time without cytotoxicity. 

.5. Spheroid formation with EGCG-fibers and their ability to protect 

ADSCs within the spheroids against H 2 O 2 

We next fabricated PLLA fibers for incorporation in stem cells 

pheroids and investigated their effects on 3D cultured stem cells. 

imilar to the aforementioned experiments, spheroids were ex- 

osed to 400 μM H O for 12 hr. Structural deformation was ob- 
2 2 
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Fig. 7. Characterization of PLLA fibers (PF) and EGCG-coated PLLA fibers (E-PF). (a) SEM image of PF and E-PF surfaces. (b) The TPC on E-PF. The anti-oxidative activity of PF 

and E-PF was measured by (c) ferric reducing antioxidant power assay, and (d) ABTS radical scavenging assay. (e) The amount of H 2 O 2 remaining after incubation of PF and 

E-PF in 100 μM of H 2 O 2 in D.W. for 2 hr. (f) Viability of hADSCs cultured with PF or E-PF for one day. (g) Fluorescence images of intracellular ROS in hADSCs cultured with 

PF or E-PF in the presence of H 2 O 2 for 1 day and (h) relative MFI per individual cell based on the DCFH-DA assay ( ∗ p < 0.05). 

Fig. 8. Structural deformation of hADSCs spheroid in response to H 2 O 2 exposure. (a) Phase contrast image of cell-only, PF, and E-PF spheroids and (b) percentage of deformed 

spheroids (%). (c) Survival of hADSCs in spheroids after LIVE/DEAD staining. (d) Internal morphology of spheroids as determined by H&E staining and (e) high resolution 

imaging of PF-incorporating spheroids ( ∗ , # p < 0.05). 
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Fig. 9. Anti-apoptotic activity of EGCG-coated PLLA fibers incorporated in hADSC spheroids in response to H 2 O 2 exposure. (a) Apoptotic signals of cell-only, PF, and E-PF 

spheroids and (b) percentage of TUNEL-positive nuclei (%). (c) Relative expression of (d) BAX and (f) BCL2L1 in cell-only, PF and E-PF spheroids ( ∗ p < 0.05). 

Fig. 10. Anti-oxidative activity of EGCG-coated PLLA fibers incorporated in hADSCs spheroids against H 2 O 2 . (a) Intracellular ROS in spheroids were observed by fluorescence 

microscopy and (b) levels were quantified. Relative expression of anti-oxidative genes (e) catalase, (f) FOXO3, and (g) GPX-1 in cell-only, PF and E-PF spheroids ( ∗ p < 0.05). 
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erved in the cell-only (45 ± 13%) and PF (85 ± 6%) spheroids, 

hile there was no deformation of spheroids incorporating E-PF 

3 ± 5%) ( Fig. 8 a and b). There were more dead cells in cell-

nly and PF spheroids than in E-PF spheroids ( Fig. 8 c). Histolog- 

cal analysis of cross-sectioned spheroids revealed that cells were 

omogeneously distributed and tightly integrated throughout the 

pheroids ( Fig. 8 d) while in the PF group, deformation of spheroids 

t the periphery was observed ( Fig. 8 e). Our results indicate that 

ell damage due to diffusion of H 2 O 2 in the media was localized 

t the periphery of the PF spheroids. Deformation (%) was larger 

n the PF group than the cell-only group because the diffusion 
176 
f H 2 O 2 was mitigated by the relatively loosely formed networks 

etween cells and fibers. In fact, histological images revealed a 

hicker cellular layer at the periphery of cell-only spheroids while 

he outer cell layer became thinner in spheroids containing fibers 

 Fig. 8 d). The protective function of E-PF against H 2 O 2 was evident.

ecrotic core formation or external damage can lead to contrac- 

ion and eruption of spheroids and thus structural deformation of a 

pheroid can serve as an indicator of the integrity of the spheroid. 

or example, extensive DNA damage was observed in multicellular 

umor spheroids (MCTSs) cultured with H 2 O 2 (0.1–5 mM) for 1 hr, 

esulting in structural changes [51] , while laser irradiation of MSC 
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pheroids caused destruction from the outside of the spheroid [52] . 

ur results indicate that the presence of E-PF protected against 

OS damage. 

There was a large number of TUNEL-positive nuclei in the 

F group in the region of deformation ( Fig. 9 a), and the num-

er of TUNEL-positive nuclei was significantly decreased in E-PF 

pheroids (24 ± 2%) compared to cell-only spheroids (35 ± 4%) 

nd PF spheroids (43 ± 7%) ( Fig. 9 b). Expression level of the apop-

otic gene BAX was significantly lower in E-PF spheroids than in 

ell-only and PF spheroids ( Fig. 9 c), and conversely, the expression 

f the anti-apoptotic gene BCL2L1 was significantly higher in E-PF 

pheroids than in cell-only and PF spheroids ( Fig. 9 d). Intracellular 

OS levels in spheroids were determined after H 2 O 2 treatment. The 

elative MFI per spheroid was 45 ± 11 for E-PF spheroids, which 

as significantly lower than that in PF spheroids (90 ± 7) and cell- 

nly spheroids (100 ± 11) ( Fig. 10 a and b). Catalase, FOXO-3, and 

PX-1 expression was significantly higher in E-PF spheroids than 

ell-only and PF spheroids ( Fig. 10 c, d, and e). Consistent with a

revious report that intraperitoneal injection of EGCG (70 mg/kg) 

mproved expression of the anti-oxidative enzyme GPX-1 in hep- 

tic tissue [36] , EGCG-coated fibers appear to modulate hADSC sig- 

aling in spheroids, resulting in improved anti-oxidative enzyme 

xpression. Our research group has been investigating strategies to 

eliver instructive signals to cells inside spheroids by incorporating 

iofunctionalized fibers into the spheroids during spheroid gener- 

tion. This approach could efficiently direct and modulate cellular 

ctivities within spheroids. For example, fibers have been function- 

lized with PDGF to improve the proliferation of hADSCs within 

pheroids [53] and to enhance osteogenic differentiation through 

denosine immobilization and mineralization [ 54 , 55 ]. Our results 

uggest that incorporating EGCG-coated fibers in spheroids confers 

he spheroids with sustained anti-oxidative properties and modu- 

ates signaling by cells inside the spheroid. 

. Conclusions 

In this study, PCL surfaces were coated with EGCG in the pres- 

nce of Na + or Mg 2 + cations via MPN formation, and the TPC 

as greater in the presence of Mg 2 + than Na + . EGCG coating in- 

reased surface hydrophilicity and roughness proportional to the 

PC. EGCG coating maintained its anti-oxidative properties as con- 

rmed by Fe conversion and ABTS radical scavenging activity of 

ADSCs cultured on EGCG-coated surfaces in the presence of H 2 O 2 . 

GCG coating directly removed surrounding H 2 O 2 and modulated 

ignaling in hADSCs, leading to a decrease in expression of the 

poptotic gene BAX and an increase in the expression of the anti- 

poptotic genes BCL2 and BCL2-L1 as well as the anti-oxidative 

nzymes catalase, FOXO3, and GPX-1. Furthermore, EGCG-coated 

LLA fibers exhibited anti-oxidative properties as evidenced by Fe 

onversion, ABTS radical scavenging activity, and removal of H 2 O 2 . 

GCG-coated PLLA fibers incorporated in stem cell spheroids re- 

uced apoptotic signals in the presence of H 2 O 2 -induced oxida- 

ive stress and induced anti-oxidative enzyme expression relative 

o cell-only spheroids and spheroids incorporating fibers without 

n EGCG coating. In conclusion, EGCG coating can effectively pro- 

ect against ROS-induced oxidative damage, suggesting its potential 

ersatility in various tissue engineering applications. 
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