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Abstract Forecasts of maximum and minimum air temperatures are essential to mitigate the damage of

extreme weather events such as heat waves and tropical nights. The Numerical Weather Prediction

(NWP) model has been widely used for forecasting air temperature, but generally it has a systematic bias due

to its coarse grid resolution and lack of parametrizations. This study used random forest (RF), support

vector regression (SVR), artificial neural network (ANN) and a multi‐model ensemble (MME) to correct the

Local Data Assimilation and Prediction System (LDAPS; a local NWP model over Korea) model outputs

of next‐day maximum and minimum air temperatures (Tmaxtþ1 and Tmintþ1) in Seoul, South Korea. A total of

14 LDAPS model forecast data, the daily maximum and minimum air temperatures of in‐situ

observations, and five auxiliary data were used as input variables. The results showed that the LDAPSmodel

had an R2 of 0.69, a bias of −0.85 °C and an RMSE of 2.08 °C for Tmaxtþ1 forecast, whereas the proposed

models resulted in the improvement with R2 from 0.75 to 0.78, bias from −0.16 to −0.07 °C and RMSE from

1.55 to 1.66 °C by hindcast validation. For forecasting Tmintþ1 , the LDAPS model had an R2 of 0.77, a bias of

0.51 °C and an RMSE of 1.43 °C by hindcast, while the bias correction models showed R2 values ranging

from 0.86 to 0.87, biases from −0.03 to 0.03 °C, and RMSEs from 0.98 to 1.02 °C. The MMEmodel had better

generalization performance than the three single machine learning models by hindcast validation and

leave‐one‐station‐out cross‐validation.

1. Introduction

Reliable forecasting of air temperature at 2 m above the land surface plays a significant role when preparing

for potential weather‐related disasters, such as heat waves (i.e., maximum daytime air temperature) and cold

spells (i.e., minimum nighttime air temperature). Extreme air temperatures can also cause various social and

economic problems such as heat‐related disease and high energy consumption (Klinenberg, 2015; Russo

et al., 2019). In particular, the increasing intensity, frequency and duration of extreme air temperatures

during the summer season (Perkins et al., 2012), and the fact that more than half of the Earth's population

now lives in cities (Schulze & Langenberg, 2014) suggest that accurate air temperature forecasting is

essential for urban areas.

Numerical Weather Prediction (NWP) models based on the physical relationships of parameters and the

mechanisms of atmospheric dynamics have become a valuable tool for forecasting various weather compo-

nents, including air temperature. However, due to the coarse grid resolution and imperfectness of physical

parameterizations, NWP models have typically simplified the detailed characteristics of land, atmosphere,

and ocean systems. Despite continuous improvements to model performance, uncertainties of the NWP

models, caused by uncertain physical parameterization, inaccurate initial/boundary conditions, and depen-

dency to domain and resolution, result in model bias in air temperature forecasting. Thus, post‐processing of

the model output to reduce the bias may be required for the operational use of the models. Several statistical

methods have been used for the bias correction of air temperature data produced from NWP models

(Anadranistakis et al., 2004; de Carvalho et al., 2011; Stensrud & Yussouf, 2003). In many countries, these

©2020. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use
is non‐commercial and no modifica-
tions or adaptations are made.

RESEARCH ARTICLE
10.1029/2019EA000740

The first two authors equally contribu-
ted to the paper.

Key Points:

• Machine learning based bias
correction of air temperature
forecasts of a numerical model

• All machine learning models
improved prediction skills of air
temperature

• An ensemble of three machine
learning models resulted in more
robust bias correction than
individual machine learning models

Correspondence to:

J. Im,
ersgis@unist.ac.kr

Citation:

Cho, D., Yoo, C., Im, J., & Cha, D.‐H.
(2020). Comparative assessment of
various machine learning‐based bias
correction methods for numerical
weather prediction model forecasts of
extreme air temperatures in urban
areas. Earth and Space Science, 7,
e2019EA000740. https://doi.org/
10.1029/2019EA000740

Received 20 JUN 2019
Accepted 8 FEB 2020
Accepted article online 14 MAR 2020

CHO ET AL. 1 of 18



techniques have been applied to weather elements generated in the NWP models to increase forecasting

performance.

The most commonly used bias correction methods in the air temperature forecasting fields are the Model

Output Statistics (MOS) and Kalman Filter (KF) techniques. The MOS improves forecasting accuracy by

applying a statistical linear model developed between the past model results and observation data to the

NWP model output (Stensrud & Yussouf, 2003). With recent advances in computer resources, KF has been

widely used to solve nonlinear problems. When forecasting air temperature, KF first bias‐corrects NWP

model output. Observed air temperatures are then used to recursively update the parameters applied to

the next forecast step (Anadranistakis et al., 2004; de Carvalho et al., 2011; Libonati et al., 2008). Recently,

researchers have applied machine learning techniques to improve the prediction accuracy of various types

of high‐impact weather phenomena (Kim et al., 2017; Lee et al., 2017; Sim et al., 2018; Yoo et al., 2018).

Machine learning techniques are not sensitive to the multi‐collinearity of input variables, and thus can deal

with many input variables. Unlike MOS and KF—in which bias‐correction is required to construct a model

for each station—machine learning can be used to develop a model that works for a multitude of stations.

Because of these advantages, the spatial distributions of the predictand (e.g., air temperature) can be mon-

itored when spatially continuous input variables are fed into machine learning models.

Among various machine learning classifiers, Artificial Neural Network (ANN) has been the most popular

technique for air temperature forecasting in the literature (Isaksson, 2018; Marzban, 2003; Vashani

et al., 2010; Zjavka, 2016). Marzban (2003) used ANN for post‐processing of the Advanced Regional

Prediction System (ARPS) model's hourly temperature outputs, getting an average 40% reduction in the

mean squared error for all validated weather stations. Vashani et al. (2010) found that the ANN and KF

methods demonstrate better bias correction performance than the other methods for the summing accuracy

of 30 weather stations in Iran, and ANN produced slightly higher accuracy than KF for longer forecast

ranges (i.e., 2 to 5 days ahead forecasts). Zjavka (2016) reported that a polynomial neural network could suc-

cessfully bias‐correct the National Oceanic and Atmospheric Administration (NOAA) meso‐scale model to

forecast hourly air temperature. Isaksson (2018) compared a deep neural network with KF for the bias cor-

rection of air temperature forecasted by the European Centre for Medium‐Range Weather Forecasts

(ECMWF) model. That paper found that the neural network model shows superior accuracy to KF in error

reduction for most validated stations. In addition to ANN, some other machine learning approaches (i.e.,

Support Vector Regression (SVR) and Random Forest (RF)) have been used to correct the bias of the

NWP model's air temperature outputs (Eccel et al., 2007; Yi et al., 2018). Eccel et al. (2007) tested various

approaches, from simple correction (i.e., mean bias) to machine learning approaches—ANN and RF, to

improve the minimum temperature forecasting skills of two NWP models, ECNWF and Local Area Model

Italy (LAMI) in a region of the Italian Alps. They found that, compared to other approaches, RF yielded

the best results with the advantage of an easily automated process. Yi et al. (2018) improved the accuracy

of air temperature from the Local Data Assimilation and Prediction System (LDAPS) model in Seoul,

South Korea, by using SVR and a linear regression model, finding that SVR showed higher correction accu-

racy than the linear regression model.

In fact, the choice of a regressor among various machine learning options significantly affects the prediction

results (Lee et al., 2018; Liu et al., 2018; Park et al., 2018; Wylie et al., 2019). Although several machine learn-

ing algorithms have already been used in temperature bias‐correction, improving the modeling accuracy

remains challenging. Recently, some researchers have tried to increase predicting performance by combin-

ing (i.e., ensemble) the results of various machine learning approaches in several different fields (Chou &

Pham, 2013; Healey et al., 2018; Ren et al., 2016). All of these studies showed that using various machine

learning models together improves performance by overcoming the limitations of each individual classifier.

To the best of our knowledge, however, there has been no research on bias correction for the NWP

model‐derived air temperature through an ensemble of multiple machine learning approaches. Because of

the complex atmosphere–surface interactions, a single machine learning algorithm cannot reduce the

NWP model bias consistently and effectively. Therefore, combining different machine learning models

might reduce daily variations in the errors of the NWP models.

This study aims to correct the bias of the LDAPS air temperatures, one of the NWP model outputs produced

by the Korea Meteorological Administration (KMA) using various machine learning–based post‐processing
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methods. We designed our bias correction models through the integration of NWP model's forecast, in‐situ

maximum and minimum air temperatures of present‐day, and auxiliary data including location (i.e., coordi-

nate) and topographic variables, to correct the NWPmodel's next‐day maximum andminimum air tempera-

tures forecast for urban areas. The key objectives of this study were to (1) develop machine learning‐based

bias correction models—RF, SVR, ANN, and a multi‐model ensemble (MME)—to improve NWP

model‐derived daily maximum and minimum air temperature, and (2) examine the spatiotemporal charac-

teristics of the corrected temperature in comparison with the NWP model output.

2. Study Area and Data

2.1. Study Area

The study area is a metropolitan city, Seoul (~605 km2) with over 10 million people, which is situated in the

northwestern part of South Korea (Figure 1). Seoul is geographically surrounded by four distinct mountains

and is divided into the northern and southern parts by the Han River. It is hot and humid due to the East

Asian monsoon in summer, so there are a lot of days with hot weather above 30 °C, and precipitation is con-

centrated in summer. (i.e., seasonal rainfall is 892.1 mm in summer and 67.3 mm in winter during 1981–

2010.)

2.2. Local Data Assimilation and Prediction System (LDAPS) Model Data

The KMA has operated several NWPmodels which were constructed by adopting the United Model (UM) of

the UKMet Office inMay 2008. The Global Data Assimilation and Prediction System (GDAPS) and Regional

Data Assimilation and Prediction System (RDAPS) models have been operating since May 2010. However,

these models have a limitation to capture extreme weather events (e.g., heavy precipitation, severe snowfall

and heat wave) in small areas due to their coarse spatial resolution. To overcome the spatial resolution and

time scale limitations of the GDAPS and RDAPS models, the KMA has also been operating the LDAPS

model based on the UM.

The LDAPS model is designed to predict mesoscale weather phenomena in the region including the Korean

peninsula and the surrounding seas. It is a grid‐point model and uses non‐hydrostatic dynamics with

semi‐Lagrangian advection and semi‐implicit time stepping (Orr et al., 2014). The LDAPS has a rotated

latitude‐longitude grid with 1.5 km horizontal resolution and a hybrid‐height vertical coordinate with 70

layers up to 40 km. It is operated every three hourly, that is, eight times a day (i.e., 0, 3, 6, 9, 12, 15, 18

and 21 UTC). However, the forecasts only for 0, 6, 12, and 18 UTC are official operations with 36‐hour fore-

cast leading time, while the others with 3‐hour forecast time are conducted for model initialization.

The present study is focused on a 5‐year period of data of July and August, from 2013 to 2017 when the

LDAPS model data are available. The lowest layer (surface layer) data of LDAPS model produced at 21

KST (12 UTC) for the next‐day forecast was used: next‐day maximum and minimum air temperatures (

LDAPSTmax and LDAPSTmin, respectively) and relative humidity, next‐day average wind speed and latent heat

flux, and next‐day 6‐hour split average (e.g., each average of 0–5, 6–11, 12–17, and 18–23 hour) cloud cover

and precipitation forecast data. The cloud cover value was calculated by averaging high, medium and low

cloud cover values.

2.3. In‐situ Data

The next‐day maximum and minimum air temperatures (Tmaxtþ1 and Tmintþ1 , respectively) during July and

August from 2013 to 2017 were obtained from 25 Automatic Weather Stations (AWSs) operated by KMA

in Seoul. Hourly air temperature data from the 25 AWSs were also collected to determine present‐day max-

imum and minimum air temperatures (Tmaxt and Tmint, respectively). Tmaxt and Tmint were determined as the

maximum and minimum air temperature values between 0 and 21 KST because the LDAPS model data pro-

duced at 21 KST was used, which was compared with post‐processing bias correction models.

2.4. Auxiliary Variables

Latitude, longitude, elevation, slope, and solar radiation were used as additional auxiliary input data in this

study. Latitude and longitude values were extracted as the median of the grid in the LDAPS model. The ele-

vation and slope values were derived from Shuttle Radar Topography Mission (SRTM) Digital Elevation

Model (DEM) with 30 m spatial resolution. Solar radiation was calculated using the ‘Area Solar radiation’
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tool and elevation and day of year (DOY) values in ArcMap to obtain the daily average incoming solar

radiation for each pixel. It was assumed that incoming solar radiation follows the same temporal pattern

by year. Latitude and longitude were considered as location (i.e., coordinate) variables, while elevation,

slope, and solar radiation were grouped as topographic variables in this study.

3. Methods

3.1. Data Processing

Figure 2 summarizes the process flow of our proposedmethodology. In this study, a total of 14 LDAPSmodel

forecast data,Tmaxt,Tmint
, and five auxiliary variables were used as input variables, whileTmaxtþ1

andTmintþ1

were used as target variables (Table 1). LDAPS‐derived temperature forecast data were processed using lapse

rates with elevation data developed by Yun et al. (2001) to calculate more reliable temperature values

because the elevation information used in the LDAPS model was not accurate due to its smoothed surface

which is applied to eliminate grid‐scale numerical noise in NWP models (Bosart et al., 1998; Wallace

et al., 1983; Webster et al., 2003). For mapping Tmaxtþ1
and Tmintþ1

using the developed models,

point‐based in‐situTmaxt andTmint
data were rasterized through cokriging interpolation. The cokriging tech-

nique is known to have a higher estimation accuracy than the kriging or the Inverse Distance Weighted

Method (IDW) in interpolating hourly air temperature (Ishida & Kawashima, 1993). With cokriging, the ele-

vation data was used as a co‐variable, which is considered to be one of the most important additional vari-

ables for estimating air temperature (Aznar et al., 2013). We selected the ordinary cokriging method among

several cokriging techniques (e.g., simple cokriging and universal cokriging) through a comparison of their

performance.

3.2. Machine Learning Approaches

The first bias correction model, RF, is an ensemble machine learning algorithm that predicts a target vari-

able from a set of predictors by growing multiple trees (CART; Breiman, 2001) and aggregating their

Figure 1. Study area and the location of automatic weather stations (AWS) operated by KMA. Landsat 8 RGB band composite acquired onmay 19, 2016 is used as a
background image. Elevation is from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with 30 m spatial resolution.
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results. RF has been widely used to solve a multitude of classification and regression problems (Kim

et al., 2015; Lee, Im, et al., 2016; Liu et al., 2015; Yoo et al., 2012). RF generates a multitude of CARTs

(typically 500–1000 trees) through bootstrapping‐based randomization approaches for the selection of

both training samples for a tree and predictors at each node of the tree (Im et al., 2016; Richardson

et al., 2017). This approach alleviates any existing problems in the CART such as overfitting and

sensitivity to training samples (Forkuor et al., 2018; Yoo et al., 2018). R software with the ‘randomForest’

package was used to develop and apply the statistical models using default model parameter settings (Ho

et al., 2014; Yoo et al., 2019).

The second model we used, the SVR algorithm, aims to get the optimal hyperplane that fits the data and pre-

dicts with minimal empirical errors. SVR generally converts training data from the original dimension to a

higher dimension to effectively find the optimum hyperplane. Selecting a kernel function that is used to con-

vert training data to a higher dimension is crucial for successful implementation of SVR. Linear, polynomial

and Gaussian functions are typically used as kernels. In this study, SVRwas implemented inMATLAB 2018a

using the ‘fitrsvm’ function (https://mathworks.com/help/stats/fitrsvm.html) with the linear kernel func-

tion. To determine the parameters of SVR, many previous studies used the grid search method (Das &

Padhy, 2018; Han et al., 2017; Mansaray et al., 2019; Shao & Lunetta, 2012). However, we used an automatic

kernel scaling approach, which selects the appropriate parameters using a heuristic procedure because of the

time‐consuming drawback of the grid search method in the hindcast validation (Boardman &

Trappenberg, 2006; Wang et al., 2005). A Sequential Minimal Optimization (SMO) was used as a solver in

the training process (Flake & Lawrence, 2002; Platt, 1998).

The third model, ANN, has an interconnected structure which emulates the operations and connectivity of

biological neurons in human brain (Özçelik et al., 2010; Tiryaki & Aydın, 2014). Among numerous proposed

ANN algorithms including Radial Basis Function (Kecman, 2001), Elman recurrent (Rakkiyappan &

Balasubramaniam, 2008), and Hopfield neural networks (Nguyen et al., 2006), this study used a

multi‐layer perceptron (MLP) neural network that consists of input, output and hidden layers with a

back‐propagation algorithm, which is the most popular due to its ease of training, meaning it has been

widely used in many applications including forecasting (Omrani et al., 2017; Pham et al., 2017; Sonobe

et al., 2017; Yang et al., 2019). The architecture of ANN is crucial to its performance. A simple network with

few hidden layers and neuronsmay restrict the learning ability, while a complex network with toomany hid-

den layers and neurons may lead to overfitting and poor generalization (Moghim & Bras, 2017). A trial and

error procedure determined that two hidden layers consisting of 22 and 19 neurons, respectively, with the

Figure 2. The process flow diagram of the proposed approach. The subscript of ‘s’ in the LDAPSCC and LDAPSPPT implies the series of the 6‐hour split.
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rectified linear unit (ReLU) activation function and Adam optimization algorithm is an appropriate choice

for the bias correction model of temperature prediction. In addition, since ANNmight not accurately predict

the required output with the randomly selected initial weights and biases (Lee, Geem, & Suh, 2016), the

near‐global optimal weights and biases were determined through a trial and error procedure.

Previous studies have proposed MME to combine multiple machine learning models. Generally, this

approach enables users to achieve higher accuracy and robustness when compared to using a single model

(Adeodato et al., 2011; Van Wezel & Potharst, 2007). With the bias‐variance trade‐off in machine learning,

the generalization of predictive models is more likely to be improved by an ensemble approach from the

models. We constructed an MMEmodel using simple average ensemble, which does not require extra train-

ing to finding the weights of each ensemble member and has a low level of complexity (Gorissen et al., 2009),

although the other methods can be further explored to improve results. In addition, three cases—MMEwith-

out location (i.e., coordinate) variables (case 1), MME without topographic ones (case 2), and MME without

both location and topographic ones (case 3)—were further compared to the MME model developed with all

variables to see the effect of using geographic information as input data for bias correction.

3.3. Accuracy Assessment

Hindcast validation was conducted for the period from 2015 to 2017. The validation results of the developed

machine learning‐based bias correction models were compared to those of the LDAPS model. For example,

samples from the first day of the study period to July 31, 2016 were trained to predict air temperature on

August 1, 2016. In addition, leave‐one‐station‐out cross‐validation (LOSOCV) was conducted to spatially

compare the generalization ability of the developed bias correction models. Three accuracy metrics—coeffi-

cient of determination (R2, Equation 1), bias (Equation 2), and root mean square error (RMSE, Equation 3—

were used for accuracy assessment.

R2 ¼ 1−
∑n

1y i− y¯2

∑n
1yi− y¯2

; y¯ ¼
1

n
∑n

1yi (1)

Bias ¼∑n
1

byi− yið Þ

n
; (2)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
1

byi− yið Þ
2

n

s

; (3)

where yi is the measured value, byi is the predicted value of each model, and n is the number of samples. The

skill score (SS) was also used to summarize the improvement of corrected forecasts with respect to the

LDAPS model forecasts at each weather station (Libonati et al., 2008; Wilks, 2011). The SS as measured in

terms of the RMSE is given by,

SS ¼
RMSELDAPS−RMSEBCð Þ

RMSELDAPS
× 100%; (4)

where RMSELDAPS and RMSEBC are the RMSEs of LDAPS model and bias corrected forecasts. Positive

(negative) SS values indicate that bias corrected forecasts improved (worsened) the predictions.

4. Result and Discussion

4.1. LDAPS Model Performance Analysis

The LDAPS model forecast performances for each station are Presented in Table 2. The average R2 and

RMSE values of the LDAPS model for the 25 stations in Seoul were 0.74 and 1.91 °C for forecasting

Tmaxtþ1
and 0.83 and 1.38 °C for forecasting Tmintþ1

, respectively. Stations that had a higher RMSE than

the average had more than one degree absolute bias value with a high R2, implying that the LDAPS model

might have systematic errors at these stations. These temperature errors of the numerical model can be asso-

ciated with uncertain physical parameterizations within boundary layer/land surface (Zheng et al., 2017)

and inaccurate lower boundary conditions (i.e., land‐use and topography) (Li et al., 2018; Zhang et al., 2009).
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For stations 4 and 20, the differences between the SRTM elevation aggregated with the LDAPSmodel spatial

resolution and the topographic height in the LDAPS model were greater than 200 m. Such elevation differ-

ences reaching several hundreds of meters are one of the main reasons that large systematic errors in the

temperature forecasts are generated (Hart et al., 2004; Libonati et al., 2008). As a result, it is concluded that

the LDAPSmodel had a distinct high cold bias at stations 4 and 20 when forecasting bothTmaxtþ1
andTmintþ1

.

For the other stations in terms of systematic errors, such as stations 7 and 18 for Tmaxtþ1
and stations 12 and

16 for Tmintþ1
, the LDAPS model forecast mostly showed a cold bias for Tmaxtþ1

, whereas it showed a warm

bias for Tmintþ1
, which implies that the LDAPS model generally underestimates the next‐day daily tempera-

ture range.

4.2. Comparative Evaluation of Bias Correction Models

The hindcast validation results of LDAPS and all bias corrected models during July and August from 2015 to

2017 forTmaxtþ1
andTmintþ1

are depicted in Figures 3 and 4, respectively. The LDAPSmodel had an R2 of 0.69,

a bias of−0.85 °C, and an RMSE of 2.08 °C for forecastingTmaxtþ1
(Figure 3(a)), while all three bias correction

models and the MME model resulted in various levels of improvement, with R2 ranging from 0.75 to 0.78,

Table 1

Description of Variables Used in This Study

Variable type Acronym (unit) Description

LDAPS model data
LDAPSTmax (°C)

LDAPS model forecast of next‐day maximum air temperature

LDAPSTmin (°C)
LDAPS model forecast of next‐day minimum air temperature

LDAPSRHmax (%)
LDAPS model forecast of next‐day maximum relative humidity

LDAPSRHmin (%)
LDAPS model forecast of next‐day minimum relative humidity

LDAPSwind (m/s) LDAPS model forecast of next‐day average wind speed
LDAPSLH (W/m2) LDAPS model forecast of next‐day average latent heat flux

LDAPSCC1 %ð Þ
LDAPS model forecast of next‐day 1st 6‐hour split average

cloud cover (0–5 h)

LDAPSCC2 (%)
LDAPS model forecast of next‐day 2nd 6‐hour split average

cloud cover (6–11 h)

LDAPSCC3 (%)
LDAPS model forecast of next‐day 3rd 6‐hour split average

cloud cover (12–17 h)

LDAPSCC4 (%)
LDAPS model forecast of next‐day 4th 6‐hour split average

cloud cover (18–23 h)

LDAPSPPT1 (%)
LDAPS model forecast of next‐day 1st 6‐hour split average

precipitation (0–5 h)

LDAPSPPT2 (%)
LDAPS model forecast of next‐day 2nd 6‐hour split average

precipitation (6–11 h)

LDAPSPPT3 (%)
LDAPS model forecast of next‐day 3rd 6‐hour split average

precipitation (12–17 h)

LDAPSPPT4 (%)
LDAPS model forecast of next‐day 4th 6‐hour split average

precipitation (18–23 h)

In‐situ data
Tmaxt (°C)

Maximum air temperature between 0 and 21 h on the
present‐day

Tmint (°C)
Minimum air temperature between 0 and 21 h on the

present day

Tmaxtþ1 (°C)
The next‐day maximum air temperature

Tmintþ1 (°C)
The next‐day minimum air temperature

Auxiliary data Location variables Lat (°) Latitude
Lon (°) Longitude

Topographic variables Elev (m) Elevation
Slop (°) Slope
Sol (wh/m2) Daily incoming solar radiation

Note. All data were aggregated to the spatial resolution of the LDAPS model (1.5 km).
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bias from −0.16 to −0.07 °C and RMSEs from 1.55 to 1.66 °C

(Figure 3(b)‐(e)). Among the bias correction models, the RF model had

the largest RMSE (1.66 °C) when compared to the other models for fore-

castingTmaxtþ1
. Especially, the RF model overestimated low temperatures

which were outside the range of the observed values in the training data.

RF is known to be prone to overestimating low values and underestimat-

ing high values because it averages over all independent trees, which

means that RF cannot extrapolate outside of the training data

(Horning, 2013; Kühnlein et al., 2014; Shah et al., 2014). While the SVR

and ANN models produced similar results, the SVR model yielded better

estimates of low temperatures than the ANN model. This is consistent

with the findings of a previous study, which noted that ANN is very accu-

rate but not able to solve extrapolation problems, whereas SVR is capable

of solving extrapolation tasks (Balabin & Smirnov, 2012). The MME

model showed the lowest RMSE (1.55 °C) compared to the other models.

When forecasting Tmintþ1
, the LDAPS model had an R2 of 0.77, a bias of

0.51 °C and an RMSE of 1.43 °C (Figure 4(a)), whereas the bias correction

models showed R2 ranging from 0.86 to 0.87, biases of−0.03 to 0.03 °C and

RMSEs of 0.98 to 1.02 °C (Figure 4(b)‐(e)). Among the bias correction

models, all single machine learning‐based bias correction models yielded

similar results in terms of R2, bias and RMSE. The MME model showed

slightly better performance when compared to the other methods in terms

of RMSE when forecasting Tmintþ1
, which is a similar result to that noted

when it was used to correct Tmaxtþ1
.This result is consistent with the find-

ings of previous studies which found that a machine learning‐based

ensemble model outperformed individual machine learning models

(Adeodato et al., 2011; Chou & Pham, 2013).

All bias correction models forecasting both Tmaxtþ1
and Tmintþ1

improved

upon the LDAPS model by year (Table 3). In particular, they had the most

improved performance in 2016 for forecastingTmaxtþ1
and in 2017 for fore-

casting Tmintþ1
, because the LDAPS model forecast had the highest abso-

lute bias in 2016 for Tmaxtþ1
, and in 2017 for Tmintþ1

. When comparing the

individual machine learning‐based bias correction models, we found that the best model among the three

single machine learning‐based bias correction models varied by year. For example, the SVR model had

the lowest RMSEs of 1.06 °C in 2015 and 2016 for forecasting Tmintþ1
, whereas the RF model had the lowest

RMSE of 0.85 °C in 2017. However, the MME model showed an RMSE lower than the other models in most

years for forecasting bothTmaxtþ1
andTmintþ1

. Since this work used a hindcast validation approach, this result

ensures that the generalization performance of forecasting air temperature is improved by the MMEmodel.

Figure 5 shows the SS values of each bias correction model from the hindcast validation results at the 25 sta-

tions. The SS values were strongly station‐dependent. All bias correction models yielded positive SS values

between 20% and 70% at the stations where the LDAPS model had a remarkable bias (e.g., stations 4, 7,

20 and 23 for Tmaxtþ1
and stations 4, 10, 12 and 20 for Tmintþ1

). Especially, for forecasting both Tmaxtþ1
and

Tmintþ1
, great improvements reaching around 60% were observed at stations 4 and 20, which had a negative

bias due to the high elevation errors in the LDAPSmodel. For the RF, SVR, and ANNmodels, the SS value at

each station differed from model to model. On the contrary, the MMEmodel had values similar to the high-

est SS among the three single machine learning models at all stations, and achieved higher improvements

when compared to the other models for most stations. This shows that the MME model produced better

accuracy and robustness than a single machine learning model. However, there were some stations with

negative SS values in all bias correctionmodels, includingMME. One possible reason is that themodels were

trained for multiple stations (i.e., 25 stations in Seoul). Isaksson (2018) found that the results of training

using multiple stations were not as good as using a single station when correcting bias in temperature fore-

casts produced by NWP models. Another possible reason is that the LDAPS model has been constantly

Table 2

The LDAPS Model Forecast Performances for Each Station During July and

August From 2013 to 2017

Station
number

Tmaxtþ1
Tmintþ1

ΔElev
(m)R2

Bias
(°C)

RMSE
(°C) R2

Bias
(°C)

RMSE
(°C)

1 0.76 0.10 1.44 0.87 1.01 1.29 41
2 0.77 −0.37 1.51 0.85 1.35 1.64 52
3 0.74 0.54 1.68 0.86 0.87 1.24 3
4 0.75 −3.46 3.79 0.83 −2.14 2.35 247
5 0.71 −0.85 1.83 0.85 0.37 0.96 21
6 0.77 −0.23 1.47 0.84 0.33 0.98 −32
7 0.73 −1.58 2.18 0.81 −0.07 1.02 6
8 0.76 −0.30 1.51 0.84 0.42 1.04 −35
9 0.71 −1.51 2.23 0.82 0.40 1.06 −18
10 0.75 −0.29 1.50 0.77 1.48 1.88 −97
11 0.74 −0.04 1.58 0.83 0.69 1.15 −10
12 0.69 0.23 1.86 0.86 1.91 2.11 −64
13 0.74 0.15 1.62 0.87 0.30 0.91 −40
14 0.73 0.08 1.55 0.81 1.09 1.48 −20
15 0.69 −0.06 1.71 0.86 1.22 1.51 −5
16 0.73 −0.06 1.50 0.82 1.59 1.86 −14
17 0.74 −0.33 1.57 0.84 1.51 1.84 −14
18 0.71 −1.94 2.63 0.81 −0.13 1.01 −24
19 0.73 −0.24 1.63 0.85 1.48 1.76 −26
20 0.76 −3.57 3.86 0.84 −1.75 1.97 230
21 0.75 0.58 1.63 0.83 0.45 1.07 20
22 0.73 −0.80 1.78 0.82 0.39 1.09 −6
23 0.73 −1.71 2.32 0.82 0.11 1.00 7
24 0.75 −0.88 1.73 0.82 0.20 1.02 −1
25 0.75 −0.14 1.57 0.84 0.60 1.14 −7
Average 0.74 −0.67 1.91 0.83 0.55 1.38 9

Note. ΔElev represents the difference between the SRTM elevation aggre-
gated to 1.5 km and topography height in the LDAPS model.
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updated throughout the study period, which may affect the performance of the machine learning‐based bias

correction models.

The time‐series of the daily RMSE and R2 values of the LDAPS and all bias correctionmodels were compared

for 2017, the last year of the study period (Figure 6). Both bias corrected Tmaxtþ1
and Tmintþ1

forecasts

Figure 3. Scatter plots between forecasted and observed air temperatures from hindcast validation results based on
(a) LDAPS and bias corrected models using (b) RF, (c) SVR, (d) ANN, and (e) MME during July and august from 2015 to
2017 for Tmaxtþ1

forecast. The color ramp from blue to red corresponds to increasing point density.

Figure 4. Same as Figure 3 but for Tmintþ1
forecast.
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generally showed a lower daily RMSE than the LDAPSmodel, resulting in

an increasing pattern as the RMSE of the LDAPS model increased

(Figure 6(a), (c)). This is because the time‐series of the bias corrected tem-

peratures were closer to the observations but behaved similarly to the

LDAPS model (not shown), which is consistent with the results of

Isaksson (2018), in that the machine learning‐based bias correction model

depends on the initial forecast without radically producing different

results. For the Tmaxtþ1
forecast, there were days when all bias correction

models had higher RMSEs than that of the LDAPS model such as DOY

196, 204 and 208.Tmaxt was used as an input variable of the bias correction

models, and for these days, the observedTmaxtþ1
tended to be significantly

lower thanTmaxt (not shown), because it was clear on the present‐day, but

mostly cloudy and rainy the next‐day. Thus, bias corrected models overes-

timated Tmaxtþ1
, resulting in higher RMSEs than the LDAPS model.

The LDAPS model generally showed very low R2 for both Tmaxtþ1
and

Tmintþ1
forecasts (Figure 6(b), (d)), which means that the LDAPS model

does not properly simulate the spatial distribution of the temperature

within a city (i.e., local scale). The main reason is that the LDAPS model

has a high cold bias at stations 4 and 20. All bias correction models had

high R2 variations, but generally higher than those obtained with the

LDAPS model. Among them, the RF model generally showed the highest

R2 for the Tmaxtþ1
forecast, while the RMSE of the RF model was higher

than the other bias correction models as well as for the Tmintþ1
forecast.

The MME model had a higher R2 than SVR and ANN models, which is

considered to be due to the high R2 of the RF model.

4.3. Spatial Performance of the Bias Correction Models

All bias correction models were validated through LOSOCV for forecasting both Tmaxtþ1
and Tmintþ1

(Figure 7). The RF model had the highest RMSE as well as the lowest R2 for forecasting both Tmaxtþ1
and

Table 3

Yearly Hindcast Validation Results of LDAPS, RF, SVR, ANN, and MME

Models for Tmaxtþ1
and Tmintþ1

Forecasts

Tmaxtþ1

Year LDAPS RF SVR ANN MME

2015 R2 0.58 0.62 0.67 0.68 0.68
Bias (°C) −0.93 −0.23 −0.34 −0.36 −0.31
RMSE (°C) 2.07 1.65 1.56 1.56 1.53

2016 R2 0.80 0.85 0.87 0.85 0.87
Bias (°C) −1.22 −0.33 −0.45 −0.41 −0.40
RMSE (°C) 2.15 1.56 1.49 1.55 1.45

2017 R2 0.65 0.70 0.74 0.74 0.74
Bias (°C) −0.41 0.35 0.33 0.28 0.32
RMSE (°C) 2.04 1.76 1.69 1.64 1.65

Tmintþ1

Year LDAPS RF SVR ANN MME

2015 R2 0.69 0.79 0.80 0.78 0.80
Bias (°C) 0.57 −0.01 0.04 0.02 0.02
RMSE (°C) 1.47 1.09 1.06 1.12 1.05

2016 R2 0.81 0.89 0.89 0.89 0.90
Bias (°C) 0.38 −0.11 −0.09 −0.08 −0.09
RMSE (°C) 1.43 1.09 1.06 1.07 1.03

2017 R2 0.77 0.89 0.87 0.88 0.89
Bias (°C) 0.58 0.03 0.14 0.04 0.07
RMSE (°C) 1.39 0.85 0.92 0.87 0.84

Figure 5. Skill scores from hindcast validation results based on RF, SVR, ANN, and MME models at the 25 stations for
(a) Tmaxtþ1

and (b) Tmintþ1
forecasts.
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Tmintþ1
. For SVR and ANN models, they showed similar results from the hindcast validation, but the SVR

model had a lower RMSE than the ANN model from LOSOCV, implying that the SVR model had a better

spatial generalization ability. The MME model showed a slightly lower RMSE than the other models both

forecasting Tmaxtþ1
and Tmintþ1

. This result indicates that the spatially generalized ability is improved by

the MME model.

The SS values of each bias correction model from the LOSOCV results at the 25 stations are shown in

Figure 8. The SS values of all bias correction models were lower than the hindcast validation results at all

stations because the models were not trained for each station, but they still showed positive values at most

stations, especially for Tmintþ1
forecast. These bias correction models can be judged to have been spatially

generalized using multiple stations, which implies that they were able to bias correct the LDAPS model out-

put where stations were not provided in Seoul. However, at station 1 for Tmaxtþ1
forecast, all bias correction

models had SS values 20% lower than the hindcast validation results (Figure 8(a)), which may be because the

observed Tmaxtþ1
was substantially lower than the readings at the other stations. There were no stations at

which all bias correction models had significantly lower SS values than the hindcast validation results for

Tmintþ1
forecast (Figure 8(b)), but only the RF model had such stations (i.e., stations 1, 4, 17 and 20). One

possible reason is that the LDAPS model had a distinct cold bias at stations 4 and 20, but a warm bias at

the others, and stations 1 and 17 had lower Tmintþ1
than the others, which may have affected the RF model,

so that it was unable to extrapolate beyond the range of the training data (Shah et al., 2014).

Figure 6. Time‐series of daily RMSE and R2 of LDAPS, RF, SVR, ANN, and MME models for (a) and (c) Tmaxtþ1
and

(b) and (d) Tmintþ1
forecast in 2017.
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To produce the spatially distributed maps of Tmaxtþ1
and Tmintþ1

from machine learning‐based bias

correctionmodels,Tmaxt andTmint
of in‐situ observations were interpolated using a cokriging technique with

elevation, which is useful for predictions (Baskan et al., 2009). Figures 9 and 10 show theTmaxtþ1
andTmintþ1

forecast maps of the LDAPS model and all bias correction models which averaged across days with

non‐missing in‐situ observations at all stations (i.e., 135 days) during July and August from 2015 to 2017.

Tmaxtþ1
and Tmintþ1

forecast maps of the LDAPS model showed low temperatures in the northern part of

Seoul around stations 4 and 20 wider than actual high elevation area (Figures 9(a), 10(a)), which may have

Figure 7. Scatter plots between forecasted and observed air temperatures from leave‐one‐station‐out cross‐validation
results based on RF, SVR, ANN, and MME models for Tmaxtþ1

and Tmintþ1
forecasts.

Figure 8. Skill scores from leave‐one‐station‐out cross‐validation results based on RF, SVR, ANN, andMMEmodels at the
25 stations for (a) Tmaxtþ1

and (b) Tmintþ1
forecasts.
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been affected by the smoothed elevation surface used as the initial condition of the LDAPS model (Hart

et al., 2004; Libonati et al., 2008). All bias correction models were similar in terms of the spatial patterns

ofTmaxtþ1
andTmintþ1

forecast maps (Figures 9(b)‐e, 10(b)‐(e)). The corrected temperature distributions were

generally higher than the temperature distribution of the LDAPS model for Tmaxtþ1
forecast, while lower

than that of the LDAPSmodel forTmintþ1
forecast. This is because themodels corrected cold and warm biases

of the LDAPS model for Tmaxtþ1
and Tmintþ1

forecasts, respectively. All bias correction models also showed

relatively low temperatures in high elevation areas when compared to low elevation areas, having a similar

pattern by elevation. This result implies that the bias correction models clearly reflected the elevation which

is one of the main factors affecting temperature.

However, the maximum values ofTmaxtþ1
andTmintþ1

forecast maps of all bias correction models were lower

than the maximum values of the in‐situ observations. This may be because theTmaxt andTmint
of the in‐situ

observations were calculated using the cokriging technique, which produces more plausible interpolation

fields than the other techniques but does not perform well with respect to typical validation indices such

as the mean square error (Appelhans et al., 2015; Collins, 1995). Moreover, the RFmodel had narrower tem-

perature ranges than the other bias correctionmodels forTmaxtþ1
andTmintþ1

forecasts. This might be because

Figure 9. Map of spatial distribution of average forecasted Tmaxtþ1
based on (a) LDAPS, (b) RF, (c) SVR, (d) ANN and

(e) MME models, and (f) SRTM elevation aggregated to 1.5 km resolution.
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RF cannot extrapolate temperature values beyond the range of the observed temperatures in the training

data, while the SVR and ANN models can (Bramer, 2006; Crone et al., 2006; Shah et al., 2014).

4.4. Effect of Local Characteristics

The MME model used all station data with the same input variables. The importance of input variables for

bias correction might vary by location, and thus the locality could be a crucial element of daily temperature

fluctuations. In particular, inaccurate simulation of elevations of LDAPS may be a major cause of different

biases for each station. With this in mind, the LDAPS‐derived temperature forecast data were first corrected

using lapse rates with elevation in this study. After this process, the accuracy of LDAPSmodel forecasting for

Tmaxtþ1
increased resulting in R2 of 0.73 and RMSE of 1.91 °C when compared to the original data described

in Figure 3(a) (i.e., R2 of 0.69 and RMSE of 2.08 °C). Similarly, the accuracy of LDAPS model forecasting for

Tmintþ1
also increased resulting in R2 of 0.82 and RMSE of 1.28 °C (from R2 of 0.77 and RMSE of 1.43 °C in

Figure 4(a)). It is widely known that air temperature of a day (i.e.,Tmaxt andTmint
) shows a very high corre-

lation with air temperature of the next day (i.e.,Tmaxtþ1
andTmintþ1

) for each station (Ustaoglu et al., 2008). In

addition, the LDAPS model also incorporates local characteristics such as elevation and land cover, which

can be reflected in the forecast data. These suggest that locality characteristics could be included in the

LDAPS model forecast and in‐situ data, which were used as input variables in this study.

Figure 10. Same as Figure 9 but for Tmintþ1
forecast.
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We further tested the impact of the five location and topographic variables

(i.e., latitude and longitude, elevation, slope, and solar radiation) to the

MME model by selectively excluding them from input variables

(Table 4). When compared to the hindcast validation results of the

MME model in Figures 3(e) and 4(e) for Tmaxtþ1
, all three cases (cases

1–3) produced similar performance with a slightly increased RMSE

(0.01–0.02 °C). Similarly, a slightly decreased R2 (~0.01) and increased

RMSE (0.01–0.05 °C) were achieved by three case models forTmintþ1
when

compared to the MME model developed using all variables. However, the

decrease of accuracy for both Tmaxtþ1
and Tmintþ1

was not large, which

implies that using additional local characteristics as input variables to

machine learning might not be always required for air temperature fore-

casting at a city level (e.g., Seoul in this study). As mentioned before, the

LDAPS model forecast and in‐situ data that were used as input variables

in this study already contain local characteristics to some extent.

However, the use of additional local variables is likely beneficial to bias

correction of air temperature for a large area (i.e., country to continental

scale) as the spatial variation of air temperature is quite large when compared to a city.

4.5. Novelty and Limitations

Most previous studies that have used machine learning approaches to correct the bias of the NWP model

temperature forecasts only applied single machine learning methods (Marzban, 2003; Yi et al., 2018;

Zjavka, 2016). In contrast, this study utilized three machine learning models (i.e., RF, SVR and ANN) and

their ensemble (MME) for the bias correction of the LDAPS model's Tmaxtþ1
and Tmintþ1

forecasts. We found

that the MMEmodel with an ensemble of three single machine learning showed a better generalization per-

formance than the single machine learning models for forecasting both Tmaxtþ1
and Tmintþ1

.

In addition, many previous studies that implemented various statistical techniques (i.e., MOS and KF) to cor-

rect the NWPmodel temperature forecasts compared the models by performing bias corrections for each sta-

tion, which cannot produce the spatial distribution maps of air temperature (Isaksson, 2018; Vashani

et al., 2010). However, machine learning methods that use all stations can produce the spatial distribution

of air temperature. Nevertheless, few researchers have conducted comparative bias corrected model studies

with NWP models through spatial distribution as well as by station. In this study, we examined the perfor-

mances of the bias correction models by conducting two validations (i.e., hindcast validation and LOSOCV),

and compared the results with the LDAPS model in detail, not only by station but also based on the

spatial distribution.

This study still has some limitations. The bias of the LDAPSmodel was corrected based onmachine learning

methods without considering the fact that the LDAPS model was being updated throughout the study per-

iod. In order to further improve the forecast accuracy of the NWP model, it is thus necessary to consider the

update of the NWP model in future research. The cokriging technique was applied to theTmaxt andTmint
of

in‐situ observations to produce the spatial maps of the bias correctedTmaxtþ1
andTmintþ1

forecasts. However,

not only does cokriging require regularly spaced input data (Hulme et al., 1995; Price et al., 2000), but also

does not perform well with respect to typical validation indices, such as the mean square error. Appelhans

et al. (2015) evaluated cokriging and machine learning approaches for interpolating the monthly mean air

temperature with geographical variables (i.e., DEM, slope, aspect and sky‐view factor) and Normalized

Difference Vegetation Index (NDVI) at Mt. Kilimanjaro, Tanzania. They found that machine

learning‐based interpolation, which does not require regularly spaced input data, could produce more reli-

able spatial estimates than cokriging. However, monthly data was used in their study, and the study area was

not an urban area. Thus, daily air temperature interpolation based on machine learning in urban areas

deserves future exploration, which might further improve the forecasting skills of the air temperature bias

correction models. Another solution is to use air temperatures estimated from remote sensing‐based data,

such as land surface temperatures (Noi et al., 2017; Salcedo‐Sanz et al., 2016; Shamshirband et al., 2015;

Xu et al., 2014), although it requires careful gap‐filling over cloud‐contaminated areas.

Table 4

Hindcast Validation Results of MME Model Runs Without Location and

Topographic Variables for Tmaxtþ1
and Tmintþ1

Forecasts

MME model run without auxiliary variables, for Tmaxtþ1

Case 1 Case 2 Case 3

R2 0.78 0.78 0.78
RMSE (°C) 1.56 1.56 1.57

MME model run without auxiliary variables, for Tmintþ1

Case 1 Case 2 Case 3

R2 0.87 0.86 0.86
RMSE (°C) 0.99 1 1.03

Note. Case 1 excluded location variables (i.e., Lat and Lon); case 2
excluded topographic variables (i.e., Elev, Slop, and Sol); and case 3
excluded all five variables.
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5. Conclusion

In this study, we evaluated the bias correction performance of three machine learning methods and their

ensemble for improving the LDAPS model outputs of Tmaxtþ1
and Tmintþ1

in Seoul Metropolitan Area. The

bias correction models were developed by fusing a total of 14 LDAPS model forecast data, Tmaxt and

Tmint
of in‐situ observations, and five auxiliary data as input variables. Hindcast validation and LOSOCV

were conducted to evaluate the four machine learning approaches and the LDAPS model.

When forecasting Tmaxtþ1
, the LDAPS model had an R2 of 0.69, a bias of −0.85 °C and an RMSE of

2.08 °C, whereas according to hindcast validation all bias correction models improved performance with

R2 ranging from 0.75 to 0.78, biases from −0.16 to −0.07 °C and RMSEs from 1.55 to 1.66 °C. When

forecasting Tmintþ1
, the LDAPS model had an R2 of 0.77, a bias of 0.51 °C and an RMSE of 1.43 °C,

whereas the bias correction models showed R2 from 0.86 to 0.87, biases from −0.03 to 0.03 °C and

RMSEs from 0.98 to 1.02 °C. LOSOCV for the four machine learning approaches also revealed corre-

sponding improvements when compared to the NWP model for both Tmaxtþ1
and Tmintþ1

. In particular,

the MME model, the ensemble method of three different machine learning approaches, demonstrated

its strength by producing more stable and accurate results compared to single machine learning models

in terms of temporal and spatial aspects. We found that the weather stations where the LDAPS model

had a large elevation bias showed a distinct improvement in performance after bias correction, which

helps the spatial distribution of air temperature derived from the machine learning models be much more

similar to that of in‐situ observed air temperatures. Despite the necessity for more investigation with other

NWP models, this approach is likely to be successful if applied to other NWP models for the study area

that can predict temperatures deterministically over the next‐day. This is because we confirmed that the

LDAPS model has cold and warm biases for Tmaxtþ1 and Tmintþ1 forecasts, respectively, and the MME model

generally reduced these biases. This study used a simple averaging technique for the MME model, but it is

expected that a more sophisticated ensemble technique (i.e. weighted) can be utilized for operational

purposes in the future.
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