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ABSTRACT Human recognition technologies for security systems require high reliability and easy accessi-
bility in the advent of the internet of things (IoT). While several biometric approaches have been studied for
user recognition, there are demands for more convenient techniques suitable for the IoT devices. Recently,
electrical frequency responses of the human body have been unveiled as one of promising biometric signals,
but the pilot studies are inconclusive about the characteristics of human body as a transmission medium
for electric signals. This paper provides a multi-domain analysis of human body impulse responses (HBIR)
measured at the receiver when customized impulse signals are passed through the human body. We analyzed
the impulse responses in the time, frequency, and wavelet domains and extracted representative feature
vectors using a proposed accumulated difference metric in each domain. The classification performance
was tested using the k-nearest neighbors (KNN) algorithm and the support vector machine (SVM) algorithm
on 10-day data acquired from five subjects. The average classification accuracies of the simple classifier
KNN for the time, frequency, and wavelet features reached 92.99%, 77.01%, and 94.55%, respectively.
In addition, the kernel-based SVM slightly improved the accuracies of three features by 0.58%, 2.34%, and
0.42%, respectively. The result shows potential of the proposed approach for user recognition based onHBIR.

INDEX TERMS Biosignal, human body channel, identification, impulse response, user recognition.

I. INTRODUCTION
As the growth of the Internet-of-Things (IoT) technology has
accelerated the collection, processing, and dissemination of
digital personal information, the social concern about leakage
of personal information and the necessity to protect that
information are growing, and the extent to which data should
be considered as personal information is being investigated
[1], [2]. User recognition is being increasingly required to
achieve high reliability and easy accessibility to personal
information, and it is becoming prevalent in several aspects of
life, such as border crossing, access control, administration,
social welfare, healthcare, and finance [3]–[5].

Biometric recognition leveraging unique biological char-
acteristics of individuals, including fingerprints [6], [7], face
[8], [9], hand geometry [10], iris [11], and voice [12], has
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been extensively studied given its convenience and accuracy
for personal identification over conventional methods, such
as identification cards that can be easily lost or falsified
[13], [14]. Still, users are required to properly operate the
sensors by conducting specific actions to obtain the desired
biometric recognition performance. For example, the user
should swipe the finger over a fingerprint sensor at proper
speed and alignment. When intrinsic biometric information is
mutilated or leaked, it cannot be properly recovered or even
cause misidentification [15].

Sensor-based biometric recognition using bio-signals, such
as those from electrocardiogram [16], [17], photoplethys-
mography [18], and electroencephalogram [19], along with
pattern mining provides an alternative to overcome con-
cerns over identity forgery [20], [21]. Pattern mining can be
implemented by three main consecutive procedures, namely,
data preprocessing with dimensionality reduction, classifi-
cation, and clustering and validation based on sensor data
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acquisition [22]. Its performance can be adjusted by sensor
operation and measurements to obtain bio-signals with the
desired quality.

In this study, we present a user recognition approach
that exploits the human body impulse response (HBIR) to
obtain an identification measure, where different delays and
amplitudes according to body channel characteristics allow to
distinguish individuals. The proposed recognition approach
consists of an impulse transmitter (ITx) and an impulse
receiver (IRx) based on human body communications (HBC)
[23]–[26]. A signal electrode from the ITx applies a nar-
row pulse signal to the body, and then the IRx electrode
receives the HBIR from the body. The previous studies on
the body impulse response (HBIR) in [27] and [28] showed
the variation of the HBIR for about 70 people measured in
a fixed experimental setup, due to the difference of indi-
vidual intrinsic capacitance affected by different electrical
behaviors of cells and fluids in the body [29], which are
unique characteristics for respective people. Hence, we were
motivated that the HBIR can be adopted as a bio-metric to
identify people if the proposed system can detect unique
features to distinguish people. Most previous studies in HBC,
dealing with the human body channel as a reference for
designing a communication system to achieve a maximum
data rate or improve the communication stability [30], have
presented representative channel models based on statistical
analysis using measured data. On the other hand, the aim
of this study is to figure out the features leading to channel
difference for each person, and to present a method to utilize
the factors for distinguishing individuals.

Zensei is an approach to measure the impedance through
body tissue characterized by electrical responses between
pairs of electrodes for user recognition applications [31], and
it has been evaluated over 22-day data from 46 subjects for
three different configurations (hand pad, chair, and smart-
phone). The results showed promising classification accuracy
after intense training. An excitation signal generated by a
frequency sweep from 1 KHz to 1.5 MHz was employed, and
the amplitude and frequency responses of multiple electrode
combinations were used for extracting features. Our work
focuses on the HBIR across a wide range of frequencies over
only a pair of electrodes. In [32], the Fourier transform of the
body response to a square wavewith width of 100 ns was used
to enhance security of PIN entry systems. While presenting
the user recognition by experiments conducted using a labo-
ratory wave generator with five subjects over several weeks,
the previous studies did not investigate how to extract most
identifiable features, such as specific components in the time
and frequency domains for classifying individual users.

In our study, we aimed to obtain specific measures that
are reliable for distinguishing individuals, such as certain fre-
quency components and time intervals of the HBIR showing
unique characteristics for each person based on classification
performance evaluated by applying a suitable classification
algorithm. In particular, we tried to figure out the factors
to improve the recognition performance in the process of

signal processing for classification. Hence, we have applied
various technical approaches to obtain unique features in the
time, frequency, and wavelet domains with consideration of
the implementation feasibility, in terms of signal generation
and reception, signal processing, and classification algorithm.
The classification performance was evaluated by applying
simple classification algorithms such as the k-nearest neigh-
bors (KNN) algorithm and the support vector machine (SVM)
algorithm [33], [34], for the measured HBIRs from five sub-
jects in terms of the selected measures and by processing
the signals in the time, frequency, and wavelet domains. The
highest classification accuracy from the five subjects was
obtained from the wavelet measure according to sensitivity
and specificity analyses. The average classification accura-
cies for KNN in the time, frequency, and wavelet domains
achieved 92.99%, 77.01%, and 94.55%, respectively, while
93.57%, 79.35%, and 94.97% for SVM.

The rest of this paper is organized as follows. Section II
presents the principles of electric signal transmission in the
human body along with the experimental setup, and detailed
experimental procedure and design of the transmission sig-
nal to obtain the HBIR. The analysis results for feature
extraction using signal processing of the HBIR are reported
in section III. Section IV presents performance evaluations
applying the KNN and SVM algorithms considering the time,
frequency, and wavelet domains. Conclusions are drawn in
section VI.

II. SYSTEM MODEL
A. CHANNEL MODEL OF CAPACITIVE COUPLING
There are two methods to apply electric signals to the human
body: galvanic coupling and capacitive coupling [35]. The
signal and ground electrodes for both the ITx and IRx in
galvanic coupling are attached to the body and create sig-
nal paths by passing alternating current through the body,
regarding the human body as a waveguide [36]. In capacitive
coupling, the signal electrode is attached to the body for
transmitting and receiving electric signals, while the ground
electrode is floating. The signal is generated by forming a
current-loop with a signal-electrode attached to the body and
a floated ground-electrode coupled with the external-ground,
in the both sides of the ITx and IRx. Capacitive coupling
can achieve better performance in the frequency range over
60 kHz and signal transmission for longer distances, reach-
ing the arms and legs, than galvanic coupling [37]. Hence,
we adopt capacitive coupling for signal transmission to com-
ply with the required frequency band for the HBIR of up to
100 MHz.

Fig. 1 shows the system model to measure the HBIR based
on capacitive coupling, where the ITx and IRx are placed on a
nonconductive table, and a standing subject keeps the posture
by touching ITx and IRx with left- and right-hand fingers,
respectively. The signal from the ITx is transmitted to the IRx
by changes of the electric field created between the signal and
ground electrodes of the IRx. The amplitude of the received
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FIGURE 1. System model to measure HBIR based on capacitive coupling.

signal increases as the ground electrode for both sides of the
ITx and IRx are closely coupled with the earth ground and
decoupled from the human body [30]. The ground electrodes
of the ITx and IRx connected to the earth ground can secure
a fixed capacitance to prevent variations from measurement
conditions.

The channel model document from the IEEE Standard
802.15.6 wireless body area networks for body surface to
body surface over frequency range of 5–50 MHz provides
the phase response, amplitude attenuation, and equations to
create generalized HBIRs according to the distance between
the ITx and IRx and the sizes of ground electrodes [38].
In addition, the human body channel has been interpreted as
circuit models using capacitances and resistances to deter-
mine the path loss over frequency [29]. Likewise, the signal
transmission mechanism on the surface of the human body
has been evaluated using theoretical formulations to deter-
mine the path loss in terms of transmission distance and
frequency [39]. In [27], the channel delay parameters and
path loss were obtained from empirical HBIR measurements.
HBIR modeling has been proposed using a series of random
variables based onmeasured data [28]. For practical wearable
applications, channel modeling for battery-powered devices
has been investigated in terms of path loss according to
the frequency [40]. The previous study in [41] investigated
the channel loss for important measurement issues in the
HBC, in terms of ground sharing for a wearable measure-
ment system, dependence on the excitation conditions for
capacitive coupling and galvanic coupling, and impedance
conditions for the measurement terminations. These works
on capacitive coupling have contributed to the development
of measurement setups dedicated to the human body channel
and presented their unique channel properties by analyzing
measured data. With statistical analysis of the measured data,
they presented generalized channel models for communi-
cation channels in terms of channel path loss according to

TABLE 1. Human body channel modeling for communication systems.

frequencies, and channel delay parameters, such as coher-
ence bandwidth, mean delay, and root mean square (RMS)
delay spread. Unlike the current studies on the generalization
of channel models, our work aimed to identify quantitative
features that cause differences in individual HBIRs for appli-
cations for user recognition.

B. PROPOSED EXPERIMENTAL SETUP
FOR DATA ACQUISITION
We devised a data acquisition platform consisting of cus-
tomized ITx and IRx. Fig. 2(a) shows an example of the
measurement setup and experiment. When a subject touches
the electrodes on the ITx and IRx with the left- and right-
hand thumbs, respectively, pulse signals from the ITx travel
to the IRx through the subject, and then the received HBIR
can be measured by an oscilloscope. Fig. 2(b) shows the
ITx device with its block diagram and a diagram of the
measurement setup. The ITx main components include an
Xilinx XC3S200 FPGA [42] to generate a pulse signal of
approximately 10 ns, a Texas Instruments TPS61041 DC–DC
converter [43] to boost the voltage of the transmitted signal,
and a Texas Instruments TLV3501 output buffer [44] to main-
tain the voltage level by enhancing the current driving capac-
ity when the signal from the ITx is applied to the body. The
dimension of the ground electrode, equivalent to that of the
device, is 34× 52mm2. The IRx consists of a signal electrode
and a ground electrode of the same dimension as those of
the ITx. The signal electrodes of the ITx and IRx contact the
corresponding fingers through one-point copper electrodes.
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FIGURE 2. (a) An example of measurement experiment. (b) The HBIR
measurement with a human subject.

FIGURE 3. Transmitted pseudo impulse signal.

The devices are embedded in a transparent non-conducting
container to avoid unnecessary contacts with the fingers.

Fig. 3 shows a generated pseudo-impulse signal with an
approximately 10 ns width and 6 V amplitude, which is
repeatedly transmitted for every 1 ms. The impulse signal
is a superposition of an infinite number of cosine functions
with different frequencies, and its Fourier transform is one
over all frequencies. In addition, the narrow pulse signal
outperforms every other signal type by a remarkable mar-
gin. The sync function of the pulse signal provides a valid
flat band reflecting the differences between the magnitude
responses of the impulse signal and the corresponding HBIR.
The previous study in [32] used a pulse signal with a 100 ns
width, while the signals under 10 MHz can be available to
be used for the classification. We intended to extend the
available signal bandwidth up to 100MHz using a 10 nswidth
of the transmitted impulse signal, leading to an increase in the
searching region of analysis metrics in the frequency band
such that it is 10 times wider than that of the 100 ns pulse
width.

Data were collected from five subjects over approxi-
mately 8 weeks considering inter-subject physiological diver-
sity and time-varying physiological changes. Participants
were all students from the Hanbat National University in
South Korea and voluntarily participated in the study. Each
subject was assigned a username for anonymization and
asked to provide basic biographical information. The sub-
jects’ height was 163–180 cm (mean, 172 cm), their weight
was 65–80 kg (mean, 70.6 kg), their age was 20–27 years
(mean, 23.7 years), and comprised 2 females and 3 males.

III. FEATURES OF HBIR SIGNALS FOR
USER RECOGNITION
To use themeasuredHBIR signals for user recognition among
the five subjects, we analyzed the characteristics in three
different domains – time, frequency, and wavelet domains.
We arbitrarily indexed the five subjects from P1 to P5.

FIGURE 4. HBIR signals from five subjects (100 samples per subject) over
(a) the entire time interval −50–450 ns, and (b) the classification period
0–50 ns.

A. TIME-DOMAIN ANALYSIS
Fig. 4(a) depicts measured HBIR signals expressed as a volt-
age for all of the five subjects between −50 and 450 ns,
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thus including the first and second highest peaks around
18 and 63 ns, respectively. HBIR variations over 10 days
and during the same session are depicted in 5. It is observed
that 10 consecutive HBIR signals measured on a day show
smaller variations in shape and amplitudes per subject than
those measured over different days.

Fig. 4(a) depicts measured HBIR signals expressed as a
voltage for all of the five subjects between −50 and 450 ns,
thus including the first and second highest peaks around
18 and 63 ns, respectively. HBIR variations over 10 days
and during the same session are depicted in Fig. 5. It is
observed that 10 consecutive HBIR signals measured on a
day show smaller variations in shape and amplitudes per
subject than those measured over different days. Thus, it may
be challenging to recognize a subject from measured HBIR
signals. Table 2 lists the means and ranges between the values
of maximum and minimum at the first and second highest
peaks. The means are distinguishable but the ranges retrieve
overlapping values, thus hindering the subject’s identification
using the HBIR signals.

FIGURE 5. Variation of HBIR signals per subject within 1 day and over
10 days.

TABLE 2. Variation of first and second peaks in HBIR signals per subject.

Each HBIR signal consists of 1,000 data points sampled
every 0.5 ns i.e., sampling rate of 2 GHz. Let the HBIR signal
of subject Pi be defined as

Ui,xy = {Ui,xy(n) | 0 ≤ n ≤ 999}, (1)

for 1 ≤ i ≤ 5 and 0 ≤ x, y ≤ 9, where i is the subject
index, the time index n represents the sample instant between
−50 and +449.5 ns with increments of 0.5 ns, the date index

x indicates different sessions, and y represents the signal
index within one session. To arrange the HBIR signals of
subject Pi in terms of first peak values in descending order,
the following conditions are assumed:

(I) Ui,x0,Ui,x1, . . . ,Ui,x9 are measured in the same day;
(II) maxn{Ui,x0(n)} ≥ maxn{Ui,x1(n)}

≥ · · · ≥ maxn{Ui,x9(n)};
(III) maxn{Ui,00(n)} ≥ maxn{Ui,10(n)}

≥ · · · ≥ maxn{Ui,90(n)}
for any 1 ≤ i ≤ 5 and 0 ≤ x ≤ 9. Condition (I)
groups the HBIR signals from a subject within a day.
Condition (II) indicates that the grouped HBIR signals are
arranged in descending order according to the highest peaks.
By Condition (III), the grouped HBIR signals among differ-
ent dates are also ordered according to the magnitudes of
highest peaks.

After arranging the HBIR signals, we determine a 100-data
point interval to maximize the group distance of HBIR
signals among different subjects for classification. Hence,
the most distinguishable interval can be chosen by avoid-
ing the ambiguity by overlapping intervals. As the interval
between −50 and 0 ns does not contain representative infor-
mation, it is excluded from our analysis. At instant k with
100 ≤ k ≤ 999, we define

Dσ [k] = (Uσ (1),99(k)− Uσ (2),00(k))

+ (Uσ (2),99(k)− Uσ (3),00(k))

+ (Uσ (3),99(k)− Uσ (4),00(k))

+ (Uσ (4),99(k)− Uσ (5),00(k)),

where S5 is the set of all permutations on {1, 2, 3, 4, 5}. The
difference measure Dσ [k] is sum of differences between the
minimum of a subject and the maximum of another one
subject at that time, in which the five subjects are sorted
according to permutation σ . If we accumulate the difference
through 100 data points for a fixed σ , it can show how
the subjects are separated from each other on that interval.
For a given n, we call maxσ∈S5

∑n+99
k=n Dσ [k] the accumu-

lated difference. Fig. 6 shows the accumulated difference for
100 ≤ n ≤ 899. Larger values of the accumulated dif-
ference at the corresponding time interval indicate higher
distinguishability among subjects, whereas small values indi-
cate overlapping HBIR signals among subjects in the corre-
sponding intervals. Thus, this measure can be used to assess
how subjects are distinguishable to each other over the time
interval. The initial time index of a refined interval can be
defined as

nmax = argmax
100≤n≤899

{
max
σ∈S5

n+99∑
k=n

Dσ [k]

}
. (2)

Given that nmax is the initial point of the interval that sat-
isfies the maximum accumulated difference, the interval
[nmax, nmax + 99] is the classification interval for HBIR
signals in the time domain. The classification interval can be
considered from 0 to 50 ns, where the maximum value of the
accumulated difference is achieved at n = 100 corresponding
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FIGURE 6. Accumulated differences in 0–400 ns.

to 0 ns with σ = (1 4 2 3 5). The HBIR signals in the
classification interval are depicted in Fig. 4(b).

B. FREQUENCY-DOMAIN ANALYSIS
The acquired HBIR signals have 1,000 data points sampled
at 2 GHz, and hence the 1,000-point fast Fourier transform
(FFT) gives a resolution of 2 MHz. Considering the trans-
mitted pulse width of 10 ns, we can consider that the rep-
resentative signal power is concentrated below 100 MHz.
Then, we have only 50 points for that frequency band,
which is insufficient for analysis. The frequency resolution
is determined by the time length of the original signal, T ,
as 1R = 1/T , but we can improve the FFT resolution by
applying zero-padding to the HBIR signal [45]. The total
length of the HBIR signal increases to 16,384 points, and
this signal is transformed into the frequency domain by the
FFT. According to our choice of FFT length, the bandwidth of
our 100-point classification interval in the frequency domain
is approximately 12.2 MHz. Fig. 7(a) shows the magnitude
response of the HBIR signal obtained from the 16384-point
FFT. The frequency domain data is plotted with linear scale
in accordance with the time-domain plot.

As defined in (2), the magnitude response of each HBIR
signal can be represented as

Wi,xy = {Wi,xy(m) | 0 ≤ m ≤ 16383} (3)

where Wi,xy corresponds to the magnitude response of Ui,xy
for 1 ≤ i ≤ 5 and 0 ≤ x, y ≤ 9. Similar to the time domain,
the initial index of the target interval used for classification
can be determined by

mmax = argmax
0≤m≤16284

{
max
σ∈S5

m+99∑
l=m

Eσ [l]

}
(4)

where

Eσ [l] = (Wσ (1),99(l)−Wσ (2),00(l))

+(Wσ (2),99(l)−Wσ (3),00(l))

+(Wσ (3),99(l)−Wσ (4),00(l))

+(Wσ (4),99(l)−Wσ (5),00(l)).

FIGURE 7. Magnitude response of HBIR signals over (a) 0–140 MHz and
(b) the classification interval 15.5– 27.7 MHz in linear scale.

The optimal mmax retrieving the maximum accumulated dif-
ference is 127 and interval [mmax,mmax+99] = [127, 226] is
selected for classification. Its corresponding frequency band
is between 15.5 and 27.7 MHz as shown in Fig. 7(b).

C. WAVELET ANALYSIS
In both the time and frequency domains, we found that the
HBIR signals from different subjects overlap across several
points as shown in Figs. 4 and 7. To recognize the sub-
jects, we selected 100-point intervals with the maximum
accumulated difference. Because the FFT is applied through
the entire time interval, it cannot sufficiently reflect the
time-varying features of the HBIR signals. In this section,
a time-frequency analysis based on the wavelet transform is
considered. Time-varying spectrum is subdivided into over-
lapping windows and estimated locally at each window using
Fourier or wavelet based methods. The wavelet transform
gives time-frequency localization by decomposition with
multi-resolution [46], [47]. If wavelets are sampled at dis-
crete times in the wavelet transform, it is called a discrete
wavelet transform (DWT). It allows us to analyze time-
varying properties of sampled signals. The DWT has different
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FIGURE 8. Wavelet and scaling functions Daubechies 5 for DWT.

representations depending on the type of mother wavelet
employed. Daubechies wavelets [48] have been commonly
used in classification of one-dimensional signals such as
those from electroencephalography and electrocardiogra-
phy [49], [50]. Hence, we adopted the Daubechies 5 as
wavelet function, alongwith its scaling function. Fig. 8 shows
the wavelet and scaling functions of Daubechies 5.

In our time-domain analysis, we found that time signals
over 0-50 ns could be significant features to maximize the
accumulative distance. We want to extract high-level features
from the time segment by using wavelet decomposition based
on DWT, ultimately, to improve the classification accuracy.
The DWT creates approximated and detailed coefficients in
terms of decomposition levels. At each level, the coefficients
provide decomposition of the signal in lower- and upper-half
frequencies, respectively. For an HBIR signalUi,xy, the DWT
present decomposition of different levels as

Ui,xy = a(1)i,xy + d
(1)
i,xy

= a(2)i,xy + d
(2)
i,xy + d

(1)
i,xy

= · · ·

= a(h)i,xy +
h∑
l=1

d (l)i,xy

where a(l)i,xy = {a
(l)
i,xy(n) | 0 ≤ n ≤ 999} is the decomposition

with the approximate coefficients, and d (l)i,xy = {d
(l)
i,xy(n) | 0 ≤

n ≤ 999} is the decomposition with the detailed coefficients
at level l, respectively. The covered frequency ranges are
[0, 2 ·109/2l] MHz for decomposition with the approximate
coefficients, and [2 · 109/2l, 2 · 109/2l−1] MHz for decom-
position with the detailed coefficients of level l, respectively.
To select the best decomposition in DWT for classification,

we observed the FFT of the classification interval for the
time-domain segment of 0–50 ns (Fig. 9). In the frequency
spectrum of the segment, 7–16 MHz is the most distin-
guishable band, which include the range 7.8–15.6 MHz of
the decomposed signal with detailed coefficients of level 8.
Hence, classification with the decomposition d (8)i,xy is expected
to outperform classification with the time-domain segment of
0–50 ns.

IV. CLASSIFICATION RESULTS
A. PROCESS OF CLASSIFICATION
For classification of the HBIR signals, we adopted two super-
vised machine learning algorithms - the KNN algorithm [33]

FIGURE 9. FFT of the time-domain segment of 0–50 ns over
(a) 0–140 MHz and (b) 6–16 MHz in linear scale.

and the SVM algorithm [34]. The KNN algorithm can be
employed for classification and regression with low com-
plexity, and is easy to implement. In the algorithm, the k
nearest neighborhoods of a target sample are determined
according to a metric, such as the Euclidean distance. Then,
a decision is made upon the group with the highest number of
neighbors. In the SVM algorithm, a support vector machine
create a hyperplane for classification in a high- or infinite-
dimensional space. When it is too hard to separate a given
data set with linear classification, a kernel trick is applied
to the data set. The radial basis function (RBF) kernel [51]
is most commonly used, and it shows good performance in
ordinary cases.

For time-domain HBIR signals, let Ûi,xy be a segmen-
tation of Ui,xy that consists of 100 points specified by the
classification interval calculated in Section III.A, which is
given by

Ûi,xy = {Ui,xy(n) | nmax ≤ n ≤ nmax + 99}. (5)

Then, the total dataset of segmentation for each subject, Ûi =
{Ûi,xy | 0 ≤ x, y ≤ 9}, can be partitioned into 10 groups by
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FIGURE 10. Decomposed signals with detailed coefficients at level 8 in
Daubechies 5 DWT over (a) the entire time interval and (b) the
classification interval.

date and represented by

Ûi =
9⋃

x=0

Ûi,x , (6)

where Ûi,x = {Ûi,x0, Ûi,x0, . . . , Ûi,x9} is a set of segmented
HBIR signals successively measured within a day. By using
10 data groups, we evaluated the classification performance
with 10-fold cross-validation which is equivalent to leave-
one-out cross-validation in our setup. The goal of cross-
validation is to test the performance to predict new data
that were not used in training, and thus mitigate overfitting.
We have 10 sets and one by one, a set is randomly selected
as test set. Then, the other 9 sets are used for training until
all possible combinations are evaluated. The classification
results show that subjects can be identified using training sets
acquired at different dates.

Let σi be a permutation on {1, 2, . . . , 10} for subject Pi.
At the j-th test of the 10-fold validation, the HBIR signals
with date index σi(j) are selected as the test set:

Test set =
5⋃
i=1

Ûi,σi(j);

Training set =
5⋃
i=1

(
Ûi \ Ûi,σi(j)

)
,

where A \ B denotes the set difference between two sets A
and B, that is, the resulting set consists of the elements of
A which are not in B. Then, the KNN algorithm is tested on
the training and test sets. The best choice of k depends on
the data and we set k = 17 by a cross-validation check.
For SVM, we selected C = 1 and γ = 10−2 as the
parameters of the RBFs. At the j-th test, if a sample Ûi,σi(j)y
in the test set is correctly classified to subject Pi, it can be
regarded as a correct detection or a true positive. We tested
the 10-fold validation for 50 different combinations of
{σ1, σ2, . . . , σ5}.

B. RESULTS OF USER RECOGNITION
The sensitivity, or true positive rate, is defined as the number
of true positives divided by the number of actually positive
samples (Fig. 11). Table 3 lists the classification results in
terms of sensitivity. In the time and wavelet domains, the sen-
sitivity is above 90%, except for P2, while sensitivity below
70% is obtained for P2 and P4 in the frequency domain.
The confidence interval of sensitivity for KNN is depicted
in Fig. 12(a).

FIGURE 11. The example of sensitivity and specificity for
identification of P1.

The specificity, or true negative rate, measures the pro-
portion of false positives over actually negative samples
(Fig. 11). In almost all the cases, the average specificity for
KNN is above 95% as shown in Table 3. Hence, the probabil-
ity of a false positive is very low.Moreover, the variance of the
specificity is much smaller than that of sensitivity, as shown
in Fig. 12(b).

The classification accuracy can be defined as the number
of correct detection over the total number of test samples.
As listed in Table 4, the average accuracy of our test is above
90% in the time and wavelet domains, and below 80% in
the frequency domain. Moreover, the results in the wavelet
domain show the smallest variation for different choices of
{σ1, . . . , σ5}. Classification in the wavelet domain shows the
best performance for both KNN and SVM, as in Table 4.
It can be deduced that our selection of decomposition level
by DWT in subsection III.C correctly extract distinguishable
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FIGURE 12. 95% confidence interval of (a) sensitivity and (b) specificity of classification by KNN (%).

TABLE 3. Average sensitivity and specificity of classification using KNN in
different domains (%).

TABLE 4. Classification accuracy using KNN and SVM (%).

frequency components from the time-domain segment
of 0–50 ns.

V. CONCLUSION
The reliability of a user recognition method employing a
bio-metric is evaluated, which is based on HBIR differences

caused by distinctive features of individual human body chan-
nels. The HBIR signals of the human body were acquired for
five subjects using customized impulse signals. The proposed
signal processing on the measured data allowed to derive
effective measures for distinguishing subjects in the time,
frequency, andwavelet domains. The highest average classifi-
cation accuracy of 94.55% for KNN (94.97% for SVM) was
obtained in the wavelet domain, in which the classification
range was extracted from time-frequency analysis of HBIR
signals.

In this study, we investigated the feasibility of using HBIR
for user recognition in a small group, such as a household,
but five subjects are not enough to fully cover physiological
variations of HBIR. Indeed, it is very important to analyze
how many users can be recognized by HBIR, which will be
investigated in further work. Moreover, due to limitation of
the sampling rate provided by the oscilloscope, the activities
at low frequencies below 1 MHz was not analyzed. A higher
sampling rate will enable HBIR to capture even more behav-
ioral and physiological features. As future work, we plan
to investigate how low-frequency features can help improve
accuracy. Furthermore, we will develop a customized sens-
ing hardware to measure specific HBIR signals employing
distinctive features.
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