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Abstract: This study aimed to investigate the chloride-binding capacity of alkali-activated fly ash
(denoted as FSW) and slag (denoted as SSW) samples and their synthesized Cl-bearing phases,
which are capable of binding and immobilizing chloride when seawater is used as the mixing water.
This study also examined the progressive changes in the pore structures of the FSW and SSW samples
over time. The results show that the SSW sample is significantly more effective in the uptake of
chloride ions compared to the FSW sample at 28 days of curing. While the FSW sample forms
Cl-bearing zeolites (Cl-chabazite and Cl-sodalite) (possibly with similar types of geopolymeric gels),
the SSW sample synthesizes Cl-bearing, layered double hydroxides (LDH) (Cl-hydrocalumite and
Cl-hydrotalcite). Although both samples involve Cl-binding phases, the FSW sample is likely to be
less efficient because it largely produces zeolites (or similar geopolymeric gels) with no Cl-binding
capability (i.e., zeolites X and Y). Meanwhile, the SSW sample produces Cl-bearing LDH phases as
well as C-S-H(I), which can physically adsorb chloride. The SSW sample exhibits both pore-size
refinement and porosity reduction over time, while the FSW sample only exhibits pore-size refinement.
Therefore, the SSW system is more advantageous in the use of seawater because it more effectively
prevents Cl ingression due to greater impermeability.

Keywords: alkali-activated binders; fly ash; ground-granulated blast furnace slag (GGBFS); seawater;
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1. Introduction

The global cement and concrete industry is facing environmental challenges. First, the calcination
process for cement clinkers releases 0.8–1.0 tons of carbon dioxide to produce one ton of ordinary
portland cement (OPC) [1,2]. As a result, the total CO2 emission from worldwide OPC production
is equivalent to 6–8% of global CO2 emissions [3]. Furthermore, the production of OPC concrete
consumes a significant quantity of fresh water, more specifically one billion tons of fresh water per
year [4]. Currently, water shortages are already serious problems in the Middle Eastern and North African
nations, which have already imported a huge volume of fresh water, such as Saudi Arabia, United Arab
Emirates, Bahrain, Qatar, Kuwait, Yemen, Libya, Jordan, and Israel [5]. This water shortage may become
a vital challenge to other nations in the near future due to climate change [6]. Finally, existing concrete
structures suffer durability issues due to chemical deteriorations, such as chloride attacks, corrosion, and
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sulfate attacks [2,7]. Therefore, the enhancement of concrete durability will help to improve environmental
sustainability by reducing unnecessary resource consumption for maintenance.

New eco-efficient binders, such as calcium sulfoaluminate cements [8], super-sulfate cements [9],
calcium aluminate cements [10], and alkali-activated binders [11,12], have been introduced and
developed to address the significant CO2 emissions from OPC production. The alkali-activated binder
is likely to be a high-profile candidate to replace OPC due to its significantly low production of CO2

and comparable performances of strength and durability to OPC [13].
To reduce the current level of fresh water consumption for OPC concrete production, many earlier

studies have explored the possible use of seawater in the concrete’s production [14,15]. However, the
presence of chloride from seawater in concrete likely induces serious corrosion of embedded steel bars [2].
In the previous literature, alkali-activated binders showed better durability against a saline environment
compared to OPC pastes [16]. Thus, in unavoidable situations leading to the use of seawater, the
application of alkali-activated binders would be a better choice than OPC in terms of chloride-induced
durability problems. In addition to using seawater, for concrete structures exposed to marine environments,
alkali-activated binders could also provide a longer service life of concrete structures with better durability
against seawater [17]. Consequently, alkali-activated binders may play important roles in addressing
the aforementioned environmental concerns (i.e., CO2 emissions, water shortages, and durability).
Therefore, it is important to understand the interactions between seawater and alkali-activated binders.

Among the alkali-activated binders, two representatives are alkali-activated fly ash (also called fly
ash-based geopolymer) and alkali-activated slag. In the previous literature, Arbi et al. well-reviewed
the recent research on the chloride resistance of alkali-activated fly ash/slag systems [18], and showed
that most studies on the chloride resistance of alkali-activated binders were based on measurements of
rapid chloride permeability tests (RCPT) and non-steady-state migration (NSSM). Few studies have
been conducted on Cl-bearing phases, which are capable of binding and immobilizing chloride, and
stable phases when seawater is used as the mixing water in alkali-activated binders, while Friedel’s
salt and Kuzel’s salt in OPC pastes have been studied actively [19,20]. Regarding the stable phases in
alkali-activated fly ash with seawater, Belviso et al. attempted to synthesize zeolite from alkali-activated
fly ash using seawater at various temperatures, and they found zeolite X, zeolite ZK-5, and sodalite in
the samples [21]. Regarding Cl-bearing phases in alkali-activated slag, Khan et al. recently reported
a formation of Friedel’s salt in 5 M NaOH-activated slag with 2.47% NaCl solution [22]. Aside from
these two studies, no study has compared alkali-activated slag and fly ash in terms of their Cl-binding
capacities and their Cl-bearing phases.

Therefore, the present study aimed to fill the research gap by comparing the Cl-binding capabilities
and Cl-bearing phases between alkali-activated slag and fly ash systems when seawater was used as a
mixing water. The progressive change in pore structure over time, which is related to impermeability
to Cl ingression, was also tested. A mixed solution of NaOH, Na2SiO3, and seawater was used
as the main activating solution in this study because NaOH and Na2SiO3 have been often used as
alkaline activators in alkali-activated binders [23]. Free and bound chloride contents were obtained
by measuring acid-soluble and water-soluble chloride contents. Cl-bearing phases were identified
through X-ray diffraction (XRD). Finally, mercury intrusion porosimetry (MIP) was conducted to
observe changes in the pore structures. The results provide a better understanding of the Cl-bearing
phases and pore structures in alkali-activated binders.

2. Experimental

2.1. Materials

Fly ash (Class F according to ASTM C 618 [24]) and ground-granulated blast furnace slag (GGBFS)
were obtained. Table 1 lists the chemical compositions of the raw materials measured through X-ray
fluorescence (XRF), and Figure 1 presents the XRD patterns of fly ash and GGBFS with the reference
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peaks of the identified phases. Table 1 and Figure 1 show that both raw materials are general fly ash
and GGBFS [25–27].
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(Ca2+, K+, Mg2+, and Na+) were measured using inductively coupled plasma atomic emission 
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Figure 1. XRD patterns of (a) fly ash (FA) and (b) ground-granulated blast furnace slag (GGBFS).

A mixture of NaOH and Na2SiO3 (reagent grade, 10.6% Na2O, 26.5% SiO2, 62.9% H2O,
Sigma-Aldrich, St. Louis, MO, USA) was used as the alkaline activator. Ten moles (10 M) NaOH
solution was made from NaOH pallet (reagent grade, ≥98% purity) and the seawater.



Appl. Sci. 2017, 7, 971 4 of 14

The seawater was collected from Songdo in South Korea (35◦04′32′ ′ north, 129◦01′01′ ′ east).
The pH value of the seawater was 8.4, and it contained several types of cations and anions. The cations
(Ca2+, K+, Mg2+, and Na+) were measured using inductively coupled plasma atomic emission
spectroscopy (ICP-AES), and the anions (Cl− and SO4

2−) were quantified using ion chromatography
(IC). Table 2 lists the chemical composition of the collected seawater and indicates that the used
seawater had a typical chemical composition of seawater [28].

Table 1. Chemical compositions of fly ash and ground-granulated blast furnace slag (GGBFS) used in
this study.

FA GGBFS

Oxide wt % Oxide wt %

SiO2 51.29 CaO 47.42
Al2O3 22.16 SiO2 31.97
Fe2O3 9.71 Al2O3 12.51
CaO 6.44 MgO 3.21
K2O 1.87 SO3 2.51

Na2O 1.73 TiO2 0.66
MgO 1.72 K2O 0.53
TiO2 1.36 Fe2O3 0.41
P2O5 1.29 MnO 0.34
SO3 1.24 Na2O 0.21
SrO 0.37 SrO 0.08

MoO3 0.34 BaO 0.07
BaO 0.23 ZrO2 0.05
MnO 0.08 Cl 0.02
V2O5 0.05 - -
ZnO 0.02 - -

Cr2O3 0.02 - -
CuO 0.02 - -
NiO 0.02 - -
Cl 0.01 - -

Table 2. Ionic concentrations of seawater (ppm).

Ca2+ K+ Mg2+ Na+ Cl− SO4
2−

480 300 1200 10,000 15,000 2600

2.2. Sample Preparation

Fly ash and GGBFS were independently mixed with the alkaline activator. NaOH solution was
prepared by dissolving NaOH pellets in seawater to 10 mol/L, and then cooling to room temperature.
Na2SiO3 solution was mixed with NaOH solution with a weight ratio of 3:7 [29,30]. The weight ratio
of the activator (10 M NaOH in seawater + Na2SiO3 solution) to the binder (fly ash or GGBFS) was
fixed at 0.45. Table 3 summarizes the detailed mixture proportion of the samples. In the present
study, the sample of alkali-activated fly ash with seawater (fly ash with seawater) will be denoted
FSW and that of alkali-activated GGBFS (GGBFS with seawater) will be SSW in the following sections.
After mixing, the pastes were cast into 50 × 50 × 50 mm cubic molds for strength and XRD tests,
and Φ 25.4 × 25.4 mm cylinder molds for MIP. The samples were cured at a temperature of 60 ◦C and
a relative humidity of 99%. The compressive strengths of the hardened samples were measured at
the age of 7 and 28 days of curing. The loading rate was 0.4 mm/min. Fractured specimens after a
compressive strength test were finely powdered for the XRD and chloride tests. At the age of 7 and
28 days of curing, cross sections with a thickness of 2 mm along the length of the hardened cylindrical
samples were prepared for MIP analysis using a precision saw. The specimens were immersed in
isopropanol to stop further hydration. After vacuum drying, the specimens were examined by MIP.
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Table 3. Mix proportions of samples.

Binder (g)
(GGBFS or Fly Ash)

Activator (g) Activator/
Binder Ratio

Curing Temp (◦C)
10 M NaOH in Seawater Na2SiO3 Solution

1600
(1240 or 1130 kg/m3) 504 216 0.45 60

2.3. Test Methods

2.3.1. Compressive Strength Test

The compressive strengths of the hardened samples were measured at 7 and 28 days of curing.
Figure 2 presents the test results as an average of the triplicate samples. Since the present study focused
on the chloride-binding capabilities of the samples, the results of the strength tests are presented in
this section. The strength development of the samples similarly followed the alkali-activated binders
reported in previous studies [11–13,17,23,31]. The specimens that fractured after the compressive
strength tests were finely ground for chloride content tests and XRD.
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Figure 2. Compressive strengths of prepared samples of this study at 7 and 28 days. FSW: alkali-activated
fly ash; SSW: alkali-activated GGBFS.

2.3.2. Measurement of Free and Bound Chloride Contents

Regardless of whether chloride ions originate from internal or external sources, chloride ions
can be either free or bound chloride contents. Free chloride ions are presented in a free form in
a pore solution, indicating that they can freely move through the pore solution in concrete, while
bound chloride ions are immobilized chloride ions. The bound chloride contents can be calculated
by subtracting a free chloride content from a total chloride content [32–34]. The free chloride and
total chloride contents can be respectively measured from water-soluble (see ASTM C 1218 [35]) and
acid-soluble (see ASTM C1152 [36]) chloride contents [35,36]. Even though the acid-soluble chloride
contents depend on the solubility of Cl-bearing phases, ASTM C 1152 is the only well-established test
method to measure the total chloride contents of cement-based samples.

2.3.3. XRD and MIP Tests

XRD was performed using a high-power X-ray diffractometer (D/Max2500V/PC, Rigaku, Tokyo,
Japan) with a Cu Kα radiation, at a scanning rate of 1◦/min from 5 to 60◦ 2θ. The XRD data was
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analyzed using X’pert HighScore Plus software [37] with the International Centre for Diffraction Data
(ICDD) PDF-2 database [38].

At 7 and 28 days of curing, MIP samples with a thickness of 2 mm were prepared using a precision
saw. The specimens were immersed in isopropanol to stop further hydration until the MIP tests was
conducted. After vacuum drying of the samples, MIP (AutoPore IV 9500, Micromeritics, Norcross, GA,
USA) was performed.

3. Results and Discussion

3.1. Free and Bound Cl Contents

Figure 3 shows the measured contents of free and bound chloride in the FSW and SSW samples.
In this case, the bound chloride content of the FSW sample increased from 59% to 69%, while that of the
SSW sample did from 42% to 91% between 7 and 28 days. Although SSW did not show any noticeable
advantage in immobilizing free chloride, compared to FSW, at 7 days, it clearly did at 28 days.
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3.2. XRD Results

Figure 4 presents the XRD results of the hardened FSW and SSW samples and identified phases at
7 and 28 days.

Before discussing the phase identifications in detail (see Sections 3.2.1 and 3.2.2), it is worth noting
that two major binding mechanisms for chloride in hydrated portland cements are known: (1) the
formation of Cl-bearing Al2O3-Fe2O3-mono (AFm) phases, such as Friedel’s salt and Kuzel’s salt, and
(2) surface-sorption by calcium silicate hydrate (C-S-H) [39]. Among these two mechanisms, Hosokawa
reported that the chemical binding by AFm phases more greatly contributed to chloride uptake than
the physical binding by C-S-H surfaces [40], indicating that the chemical binding by Cl-bearing phases
would be an effective way to increase the Cl-binding capacity of hydrated portland cements. Therefore,
similarly, the chloride-binding capabilities of the FSW and SSW samples would be importantly affected
by the formation of Cl-bearing phases.
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3.2.1. XRD for the FSW Sample 

In Figure 4a, the FSW sample contains original phases of raw fly ash (e.g., quartz, mullite, 
hematite, and magnesioferrite) that have been often observed in alkali-activated fly ash binders 
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of an amorphous hump at 28–35° in XRD [12,13,43], with several crystalline zeolite phases. At 7 days, 
besides geopolymeric gel, zeolite Y (Al71Na71O384Si121) and Cl-sodalite (Al6Cl2Na8O24Si6) are only 
visible. At 28 days, while zeolite Y was more synthesized, zeolite X (Al92Ca32K28O384Si100) and Cl-
chabazite (Al2Ca1Cl2O8Si2) are newly grown. 

Zeolites X and Y are very similar zeolites that belong to faujasite. Their main difference is simply 
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Figure 4. XRD patterns of (a) raw fly ash and FSW, and (b) raw GGBFS and SSW samples at 7 and
28 days; dashed line ‘S’ is the location of the (0 1 1) basal reflection of Cl-sodalite; dashed line ‘C’ is the
location of the (0 0 3) basal reflection of Cl-Chabazite.

3.2.1. XRD for the FSW Sample

In Figure 4a, the FSW sample contains original phases of raw fly ash (e.g., quartz, mullite, hematite,
and magnesioferrite) that have been often observed in alkali-activated fly ash binders [11,41,42].

As reaction products, the FSW sample produced geopolymer, which manifests itself in the form
of an amorphous hump at 28–35◦ in XRD [12,13,43], with several crystalline zeolite phases. At 7 days,
besides geopolymeric gel, zeolite Y (Al71Na71O384Si121) and Cl-sodalite (Al6Cl2Na8O24Si6) are only
visible. At 28 days, while zeolite Y was more synthesized, zeolite X (Al92Ca32K28O384Si100) and
Cl-chabazite (Al2Ca1Cl2O8Si2) are newly grown.

Zeolites X and Y are very similar zeolites that belong to faujasite. Their main difference is simply
the Si/Al ratio [44]. It is worth noting that Belviso et al. synthesized zeolites from NaOH-activated
fly ash using seawater within the temperature range of 35 to 60 ◦C [21]; in their study, zeolite X was
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observed when the samples were prepared with seawater at 35 ◦C, while it was not found in the
samples prepared with a distilled water at the identical temperature. This result implies that zeolite X
is a more stable phase in seawater than in distilled water at the atmospheric temperature. Similarly,
in the present study, the active formation of zeolite X was observed along with zeolite Y. However,
zeolites X and Y were not likely to contribute to the chemical Cl-binding because they contain no
chlorine in their chemical compositions.

In the FSW sample, the Cl-bearing phases were Cl-chabazite and Cl-sodalite, as shown in Figure 4a.
These phases are the resultant zeolites after binding the chloride. Note that geopolymeric gel resembles
zeolites in terms of structure on the nanometer scale [13,31], and thus the presence of Cl-chabazite and
Cl-sodalite may indicate that a portion of the geopolymeric gel in the FSW sample is very similar to
them in terms of structure and composition. Therefore, these types of geopolymeric gels are likely to
chemically hold a portion of the chloride in the FSW sample. However, given that the XRD peaks for
zeolites X and Y are much larger than those of Cl-chabazite and Cl-sodalite, the zeolite X and Y types
of geopolymer gel seem to have a more significant portion in the FSW sample. This may explain the
limited degree of chloride binding in the FSW sample as shown in Figure 3.

3.2.2. XRD for the SSW Sample

Figure 4b presents the XRD patterns of the SSW sample at 7 and 28 days. Here, calcium
silicate hydrate I (C-S-H(I)), which is a more crystalline form of C-S-H, is found as a main reaction
product [31,45]. Earlier studies have showed that C-S-H in concrete has the capacity to adsorb chloride
ions on its surface area, referred as physical Cl-binding in hydrated portland cements [46–48]. Although
the peaks of C-S-H(I) have not much grown after 7 days, C-S-H(I) would adsorb chloride to some extent.

In XRD, Cl-hydrocalumite and Cl-hydrotalcite are also identified. In hydrated portland cements,
AFm phases, which belong to layered double hydroxides (LDH), play important roles in chloride
chemical binding. In general, Mg, Ca, and Al sources in raw GGBFS lead to the formation of hydrotalcite
(Mg-Al LDH) and hydrocalumite (Ca-Al LDH) in alkali-activated GGBFS [39]. Both hydrotalcite and
hydrocalumite have LDH structures with interlayered anions, which can be exchanged with chloride
ions [40,49]. In the present study, Figure 4b illustrates the formation of Cl-exchanged hydrotalcite (i.e.,
Cl-hydrotalcite) and Cl-exchanged hydrocalumite (i.e., Cl-hydrocalumite) in the SSW sample. Khan
et al. recently found Friedel’s salt as a chloride “sink” in four M-NaOH-activated GGBFS prepared
with 2.47% NaCl solution [22]. Although Friedel’s salt and Cl-hydrocalumite are often mistaken as
an identical phase [50,51], their XRD patterns [38] are not the same to each other even though these
phases have a great similarity in their structures (i.e., LDH); Cl-hydrocalumite contains chloride as a
dominantly interlayered anion with a small quantity of OH ions in its interlayer spaces, while Friedel’s
salt has only Cl ions. Due to their structural and compositional similarities, Cl-hydrocalumite may
have a similar binding capability for chloride. However, as shown in Figure 5, which is the detailed
XRD figure that shows the strongest peaks of Cl-hydrotalcite and Cl-hydrocalumite in 8◦ to 15◦ 2θ [38],
only Cl-hydrotalcite seems to have significantly grown in its peak intensity from 7 to 28 days compared
to Cl-hydrocalumite. Given that the bound chloride content in the SSW sample considerably increased
from 7 to 28 days (Figure 3), Cl-hydrotalcite would play a more important role in binding chloride
rather than Cl-hydrocalumite in this study.
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Figure 5. Detailed XRD figure of the SSW sample in 8–15◦ 2θ at 7 and 28 days with reference patterns
of Cl-hydrocalumite and Cl-hydrotalcite.

3.3. MIP

Figure 6 (see also appendix Table A1) show the MIP results of the FSW and SSW samples at 7 and
28 days.

As shown in Figure 6a, the FSW sample at 7 and 28 days has similar values of total porosity (i.e.,
an insignificant reduction of total porosity). However, in Figure 6b, the pore-size distributions display
notable differences between 7 and 28 days in two size ranges: (1) 200–500 nm, and (2) below 30 nm.
Pores with sizes of 200–500 nm have decreased while pores smaller than 30 nm increased from 7 to
28 days. Thus, the FSW sample had a pore-size refinement.

In contrast, the SSW sample demonstrates a great reduction in total porosity from 0.08 to
0.03 mL/g, as shown in Figure 6c. The SSW sample also shows a substantial pore-size refinement (see
Figure 6d). For instance, the pores larger than 0.1 µm at 7 days mostly disappeared at 28 days, while
the pores smaller than 0.005 µm increased. The simultaneous reduction of pore size and total volume
are advantageous to improve impermeability to chloride ingression.
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3.4. Summary and Further Discussion

In the present study, the alkali-activated slag system revealed a better Cl-binding capacity than
the alkali-activated fly ash system after 7 days, although they had similar capacities at 7 days.
In the alkali-activated slag system, Cl-hydrotalcite remarkably formed after 7 days compared to
Cl-hydrocalumite, which has a similar structure with Friedel’s salt. Therefore, the chemical Cl-binding
mechanism in the alkali-activated slag is considerably different from the hydrated portland cement
system, of which the chemical Cl-binding mostly depends on Friedel’s salt.

In the alkali-activated fly ash system, the Cl-bearing zeolites did not extensively form after
7 days as much as Cl-hydrotalcite in the alkali-activated slag system; however, zeolite X and Y were
substantially synthesized after 7 days. Given that, in earlier studies [12,13,31], when no Cl was present,
dominant crystalline zeolite phases in the alkali-activated fly ash system were mostly sodalite and
chabazite rather than faujasite, it is possible that the extensive formation of zeolite X and Y might
suppress the formation Cl-bearing zeolites in this study, although a further study is required to
understand the interactions between zeolite X/Y and Cl-bearing zeolites in the system.

Regarding the pore structures, the alkali-activated slag system revealed both pore-size refinement
and porosity reduction after 7 days, while the alkali-activated fly ash system had only pore-size
refinement. Therefore, considering Cl-binding and pore structure, the alkali-activated slag system
would have a better durability performance in seawater environments than the alkali-activated fly
ash system.

4. Conclusions

The present study compared and discussed the chloride-binding capability, synthesized
Cl-bearing phases, and pore characteristics between alkali-activated fly ash and GGBF systems when
seawater is used as the mixing water. Overall, the alkali-activated GGBFS system showed a significantly
better Cl-binding capacity than the alkali-activated fly ash system at 28 days although it demonstrated
a slightly lower performance at 7 days. More detailed conclusions are given as follows:

1. The main Cl-bearing phases were zeolites (i.e., Cl-chabazite and Cl-sodalite) in the FSW sample,
while they were LDH phases (i.e., Cl-hydrotalcite and Cl-hydrocalumite) in the SSW sample.

2. The bound chloride content of the SSW sample was 91% at 28 days, whereas that of the FSW
sample was 69%. Therefore, at 28 days, the alkali-activated GGBFS system is more advantageous
for Cl-binding than the alkali-activated fly ash system.
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3. The FSW sample contained zeolite X, zeolite Y, Cl-chabazite, and Cl-sodalite as crystalline zeolite
phases. Zeolite X and Y, which do not contribute to the chemical Cl-binding, comprised a larger
portion of the XRD pattern than Cl-chabazite and Cl-hydrocalumite.

4. The SSW sample contained C-S-H(I), Cl-hydrocalumite, and Cl-hydrotalcite. Its Cl-binding
mechanisms are similar to hydrated portland cement systems. C-S-H(I) is responsible for physical
binding and Cl-LDHs contribute to chemical binding.

5. Between the two Cl-LDHs in the SSW sample, the XRD peak of only Cl-hydrotalcite grew
significantly from 7 to 28 days, and the bound chloride content of the SSW sample considerably
increased from 42% to 91% over that time. Therefore, after 7 days, Cl-hydrotalcite is an important
phase for chemical Cl-binding in the alkali-activated GGBFS system.

6. The SSW sample showed both pore-size refinement and porosity reduction from 7 to 28 days.
In contrast, the FSW sample only showed pore-size refinement over that time.
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Appendix A

Table A1. The detailed pore volumes of mercury intrusion porosimetry (MIP) results.

Pore size Diameter
(µm)

Log Differential Intrusion (mL/g) Pore size Diameter
(µm)

Log Differential Intrusion (mL/g)

FSW 7 Days FSW 28 Days SSW 7 Days SSW 28 Days

0.00329 0 0.12304 0.00303 0.12477 0.03992
0.00362 0 0.14457 0.00329 0.11614 0.24018
0.00402 0 0.11852 0.00362 0.07304 0.12966
0.00452 0 0.0805 0.00402 0 0.06723
0.00517 0 0.06687 0.00452 0 0
0.00603 0 0.07686 0.00517 0 0
0.00724 0 0.06765 0.00603 0 0
0.00906 0 0.06558 0.00724 0.00464 0
0.01105 0 0.05297 0.00906 0.00489 0
0.01224 0 0.05159 0.01105 0.01095 0
0.01373 0.01259 0.04108 0.01224 0.00332 0
0.0171 0 0.03531 0.01373 0 0

0.02108 0.00507 0.02946 0.0171 0 0
0.02629 0.01781 0.03803 0.02108 0 0
0.03239 0 0.03331 0.02629 0.0025 0
0.04033 0.07809 0.05043 0.03241 0 0
0.05034 0.02662 0.04926 0.04032 0 0
0.06249 0.05212 0.05721 0.05035 0 0
0.0771 0.05404 0.0631 0.0625 0.00274 0

0.09539 0.06335 0.07466 0.07709 0 0
0.12075 0.08667 0.08664 0.09537 0.00672 0
0.15107 0.09919 0.1101 0.12082 0.01236 0
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