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An ultra-high gain and efficient 
amplifier based on Raman 
amplification in plasma
G. Vieux   1,2, S. Cipiccia1,9, D. W. Grant1, N. Lemos3,10, P. Grant1, C. Ciocarlan1,4, B. Ersfeld1,  
M. S. Hur5, P. Lepipas1, G. G. Manahan1, G. Raj1,11, D. Reboredo Gil1, A. Subiel1,12, G. H. Welsh1, 
S. M. Wiggins   1, S. R. Yoffe   1, J. P. Farmer   6, C. Aniculaesei1,13, E. Brunetti1, X. Yang1,14,  
R. Heathcote7, G. Nersisyan8, C. L. S. Lewis8, A. Pukhov6, J. M. Dias3 & D. A. Jaroszynski1

Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers 
that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J 
pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads 
to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma 
fluctuations that competes with externally injected seed pulses, which are amplified to similar levels 
at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 
14 J sr−1, and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 
180 cm−1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of 
a minimum of 640 J sr−1 directly backscattered from noise, corresponding to ≈10% of the pump energy 
in the observation solid angle, implies potential overall efficiencies greater than 10%.

Stimulated Raman scattering in plasma has been extensively investigated over the last three decades. Studies were 
initially motivated by the need to understand parametric instabilities occurring in laser-driven fusion experi-
ments (e.g. see ref. 1). However, more recently, stimulated Raman backscattering (SRBS) has been studied both 
experimentally2–14 and theoretically15–38, as potential compact plasma-based laser amplifiers/compressors that 
could pave the way to achieving exawatt laser powers.

Stimulated Raman scattering is a three-wave interaction where an electromagnetic (EM) wave of frequency ω0 
and wave vector k0 transfers energy to a lower frequency EM wave (ω1, k1) through resonant excitation of a 
plasma wave (ω ε= n e m/p e e

2
0 , kp), which occurs when ω ω ω≈ + p0 1  and ≈ +k k k0 1 p

39. ne is the electron 
plasma density, ε0 the permittivity of vacuum, and −e and me are the electron charge and mass, respectively. 
While the linear regime of stimulated Raman backscattering is considered unsuitable for amplification of 
ultra-short laser pulses because of pulse lengthening16, 40, the nonlinear8, 9, 41, autoresonance30 and wavebreaking 
regimes26, 36–38 are potentially efficient ways of obtaining ultra-short duration and ultra-intense laser pulses. 
However, the highest efficiency measured to date for double-pass amplification is 6.4%, for amplification of a 16 μJ 
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pulse to a 5.6 mJ pulse9. Unfortunately, this is almost an order of magnitude lower than what simulations predict, 
even when taking Raman forward scattering, filamentation and wavebreaking into account22, 26. The discrepancies 
between experiments and theoretical predictions have driven the search for a better understanding of what limits 
their efficiency.

Amplification is governed by the relative phase and amplitude of the resonantly excited plasma echelon. 
Saturation of the plasma wave amplitude arises from several processes, e.g. detuning caused by Landau damp-
ing/trapped electrons18, optical frequency chirps12, 14, 19, 42, group velocity dispersion29, plasma mode coupling43 
and the simultaneous excitation of Raman, Brillouin and electron-acoustic scattering13. To interpret experi-
ments it is necessary to incorporate these complex processes into theoretical models. Some are easily included in 
particle-in-cell (PIC) simulations, but inverse bremsstrahlung (IB), which is responsible for plasma heating and 
Bohm-Gross shifts, is difficult to model or computationally inefficient and therefore is often not included.

In this paper, we investigate Raman amplification of extremely low intensity seed pulses with pump pulse 
energies up to 100 J. The large range of pump intensities, up to 1017 W cm−2 available, has enabled a detailed study 
of amplification and competing Raman amplification from noise to be carried out. The feasibility of amplification 
in a counter-propagating geometry is evaluated by measuring the angular energy density of Raman amplification 
from noise both in the direct backscattered direction and at an oblique angle. This demonstrates efficiencies in 
excess of 10%. While simulations are not yet fully able to model realistic systems because of their susceptibility to 
numerical instabilities, dispersion and enhanced statistical noise, qualitative observations compare well with the 
experimental results. In the Supplementary Information we also discuss the role of wavebreaking that may occur 
in the period prior to the arrival of the seed pulse.

Experimental setup
The results presented here have been obtained during two experimental campaigns performed at the Vulcan laser 
facility at the Rutherford Appleton Laboratory (RAL), which are described below. Further details can be found in 
Supplementary Information.

The λ0 = 1.053 μm pump pulse has on-target energies of up to 100 J and a duration of 10 ps (FWHM). This 
is focused into a 3-mm-long hydrogen gas jet by a f/21 lens, giving a ~50 μm focal waist radius (radius at 1/e2 in 
intensity with 25–30% of the energy within the beam waist). Amplification is studied for pump peak intensities 
of up to 1017 Wcm−2 (calculated from the focal spot image), which has enabled observation of non-linearities and 
competing effects at high power densities.

The seed is produced by down-shifting a 1-ps duration, 1.053 μm laser pulse to 1.138 μm (close to the theo-
retical value of 1.147 μm), in a KGW Raman crystal44. It is focused into the gas jet using a f/40 plano-convex lens. 
However, poor beam quality due to non-linearities in KGW enlarge the focal waist to ≈1.5 mm, which results 
in the pump beam being fully enclosed by the seed, i.e. the seed cross-section is much larger than the pump 
cross-section. As a result, only a few100s of pJ of the ≈130 nJ seed pulse interacts with the pump within the ionized 
gas volume. The seed spectrum has a Lorentzian profile with a full width at half maximum (FWHM) of 15 nm.

The nearly counter-propagating pump and seed form an angle of 175° with respect to each other to avoid 
feedback into the laser chain. Therefore, the interaction lengths for different parts of the seed are constrained to 

° ≈ .~ w2 /sin5 1 1 mm0 , where w0 is the pump waist.
To obtain resonance between pump and seed, a plasma density of 6–7 × 1018 cm−3 is required, which is 

achieved by focusing 1.25 mm above the gas jet nozzle with a backing pressure of 12 bars. The ionization thresh-
old of hydrogen allows for intensities from 1014 W cm−2 upwards.

Experimental results
Here we compare the Raman signal characteristics of both seeded Raman scattering (S-RS) and amplified noise 
Raman scattering (N-RS) as a function of pump intensity. To determine the extent of N-RS we compare the 
energy scattered in the oblique (175°) direction with that backscattered in the direct counter-propagating direc-
tion. The focused pump and seed beams define a solid angle of 1.8 × 10−3 sr and 5 × 10−4 sr, respectively, while the 
detection solid angles are 7.8 × 10−3 sr on-axis and 5 × 10−3 sr off-axis.

Energy measurements.  To determine the energy gain and efficiency in the oblique direction, the 
energy of the Raman signal has been measured as a function of pump energy both with and without the pres-
ence of the external seed, as shown in Fig. 1, where we identify the two respective measurements by the labels 
(S-RS + N-RS) and (N-RS). The Raman signal energy is observed to increase from 4 nJ(N-RS)/1 μJ(S-RS + N-RS) 
to 70 mJ/170 mJ, respectively, as the nominal pump energy is increased from 1 to 70 J. At the highest pump ener-
gies the seed is amplified by nearly nine orders of magnitude. Because the seed interaction length is 1.1 mm at 
175°, the observed maximum gain in 5 × 10−3 sr sets a lower limit to the gain coefficient of 180 cm−1, which is two 
orders of magnitude larger than conventional high power solid state amplifying media.

For pump energies of ~1 J, the amplified seed pulse is a factor of 250 larger than the noise signal, which is 
sufficient for pJ seed signals to be amplified above the noise. At higher pump energies, this ratio drops to 2.5 
(at 70 J), which shows that N-RS can reach significant levels, comparable with S-RS. Because N-RS depends on 
both the particle density and temperature at any time, and is integrated in time convectively, the seed sees a 
spatio-temporal evolving gain medium, as we show later, which accounts for the variation of the gain. Above 
70 J the Raman signal appears to drop, but this should be interpreted cautiously because the laser beam quality 
degrades rapidly at higher energies. Furthermore, significant N-RS energy is scattered directly backwards with an 
energy angular density of up to 50 times that of obliquely scattered radiation, as is discussed later.

To distinguish between the energy gained by the seed, S-RS, and that resulting from N-RS, the two sets of 
measurements are subtracted. We find that in the range of 600 nJ to 100 mJ the amplified seed energy, ε1, approx-
imately fits an exponential dependence, ε ε ε∝ c( ) exp( )1 0 1 0 , on the pump energy, ε0, up to a pump energy of 70 J, 
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where c1 is a fitting parameter. However, the growth rate is much lower than predicted theoretically for the linear 
regime. We observe that the total efficiency measured in the oblique (175°) direction, within 5 × 10−3 sr, is less 
than 0.5%, when only considering the energy of the amplified seed, and around 1% for the total signal. As we 
show below, the total fraction of the pump that is directly backscattered can be significantly larger, which suggests 
that much higher efficiencies, in excess of 10% should be possible for properly angular matched collinear Raman 
amplification geometries.

Transverse profile of the Raman signal.  Measurement of the transverse profiles of the obliquely backs-
cattered Raman radiation provides information on the beam quality and peak fluence. A selection of six typical 
shots for three different nominal pump energies, 3, 20 and 70 J, are presented in Fig. 2. Figures 2a–c illustrate 
N-RS shots, while Fig. 2d–f represent S-RS + N-RS shots. At comparable pump energies, S-RS + N-RS and N-RS 
profiles are similar. The transverse energy distribution is inhomogeneous and the scattered radiation profile seems 
mainly to be determined by the (poor) optical characteristics of the pump beam. Increasing the pump energy 
results in larger volumes of ionized gas, i.e., larger scattering volumes, which is accentuated by the non-uniformity 
of the pump transverse profile. As the pump energy is varied between 1 and 70 J, the cross-section area of the 
backscattered light grows by an order of magnitude. The largest fluence measured from the radiation profiles is 
12.8 J cm−2 for injection of the external seed. This is still two orders of magnitude less than predicted theoretically 
for an efficient Raman amplifier33. However, it demonstrates the potential of the medium for amplifying seed 
pulses with initial energies as low as a few 100s of pJ for non-optimal pump beams.

Spectral analysis.  The measured signal spectra, shown in Fig. 3, are typical spectra obtained for a pump 
energy of ~35 J, which reveal several interesting features. The N-RS spectra are broad and roughly Gaussian in 
profile, while for S-RS a narrow peak is superposed on the N-RS feature (Fig. 3b). The central wavelengths and 
the spectral widths are shown in Fig. 3a, where it is observed that the spectral width of the amplified seed varies 
between 10 and 20 nm, which is close to the original KGW spectral width. However, an increase in the N-RS 
signal is accompanied by a rapid broadening of the spectral bandwidth, from 10 nm at low pump energies to 
60 nm at 20 J and above. This is consistent with noise amplification45, where the bandwidth of the N-RS spectra 
is determined by the linear gain bandwidth. For joule-level (1–2 J) pump energies, the central wavelength of 
the spectra remains around 1.15 μm for both sets of measurements. This value is very close to the seed central 
wavelength, which confirms that the plasma is resonant. Above several joules, the central wavelength of the N-RS 
spectra is strongly blue-shifted by up to 50 nm, which is consistent with trapping of electrons in the plasma wave, 
which leads to an effective local reduction in the plasma density14, 46. This is confirmed by a less pronounced blue 
shift in S-RS spectra of approximately 20 nm, which is within the initial bandwidth of the seed and shows that the 
lower intensity blue parts of the spectrum are preferentially amplified when the pump energy is low and Raman 
gain bandwidth is narrow. The increase in the gain bandwidth at very high pump intensities also reduces these 
bandwidth effects, as is evident in Fig. 3a. Measurement of seed spectra show that it maintains its initial spectral 
characteristics, particularly at low pump energies, which demonstrates the fidelity of the amplifier, with some 

Figure 1.  Measured and numerically calculated Raman signal energies. Experimental (numerical) results are 
shown by filled (empty, gray) symbols. (Blue) square: N-RS; (orange) circle: S-RS + N-RS; (green) up-pointing 
triangle: S-RS with the (green) dashed line showing an exponential fit with respect to the square root of the 
pump energy. For comparison, results from simulations are shown. Cross: results from Leap. down-pointing 
triangle: OSIRIS simulations; Diamond: cplPIC simulations. The effective pump intensity is an estimated value 
used to enable comparison between experimental and simulation results. See Methods for details. Measured 
Raman signal energies backscattered along the pump axis are presented (right-pointing, purple triangle) in 
addition to results from OSIRIS simulations for a 2.6 mm long plasma (up-pointing triangle). (Purple) dash-dot 
line: power law fit to on-axis scattering data with exponent 2.2. Note that the horizontal lines across the symbols 
are error bars.
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evidence of nonlinearities at higher intensities. However, it should be noted that spectral features at wavelengths 
beyond ~1.165 μm, the CCD’s sensitivity range limit, cannot be observed, if present.

Stimulated Raman backscattering from noise.  Our studies show that N-RS becomes significant, and 
even dominant, as the pump intensity is increased, even at large angles. At pump intensities of around 1014 W cm−2 
(a0 ≈ 0.01), the level of amplified noise is more than two orders of magnitude below that of the amplified seed. 
However, the ratio of S-RS to N-RS decreases rapidly as the pump intensity increases because the initial noise 
signal is proportional to the pump intensity.

The total N-RS energy in the direct-backscattered direction can become significant because the interaction 
length and gain are maximised in this direction, for a Fresnel number (of the central spot) F ≈ 1. To investigate 
N-RS, light transmitted through the final pump mirror (before the gas jet) is measured using a calorimeter, for 
energy measurements, and an imaging spectrometer, for spectral measurements. The on-axis collection solid 
angle is 7.8 × 10−3 sr, which is 1.6 times larger than for off-axis measurements. Figure 4 shows the ratio of the 
Stokes-shifted (Raman) energy compared with (near-)unshifted (elastic/Brillouin) scattering, for pump energies 
ranging from 1 to 50 J. At 50 J approximately 5 J (10%) of the pump energy is converted to backscattered radiation, 
giving an angular energy density of 640 J sr−1, calculated by assuming the scattered radiation fills the collection 
solid angle. This underestimates the efficiency as some pump energy is scattered outside the measurement solid 
angle. The backscattered energy is almost fifty times larger for 50 J than what is collected off-axis for 70 J, where 
the maximum angular energy density is 14 J sr−1 (70 mJ). These measurements are consistent with N-RS strongly 
dominating for our interaction geometry, F ≈ 1, even at low pump intensities. At higher energies noise backscat-
tering is dominant and can exceed 10%. Elastic scattering is at least one order of magnitude lower. To compare the 
energy measurements of N-RS in the direct-backscattered direction with off-axis scattering we have also included 
this data in Fig. 1, notwithstanding the different collection angles. The scaling law follows a dependence on the 
pump energy of ε .

0
2 2, which may indicate amplification in the superradiant regime with the noise source being 

proportional to the pump laser power, giving an overall scaling of ε .
0
2 5.

Discussion and numerical simulations
In the experiments we observe that S-RS and N-RS exhibit exponential gain with a growth factor that is much 
smaller than expected from linear theory, for a fixed interaction length. We also observe N-RS to scale as ε .

0
2 2 on 

axis with more than 10% of the energy backscattered at 50 J pump energies. To interpret these results we consider 
two main hypotheses. The first hypothesis is that the interaction length depends on the pump intensity: an 
increase in pump intensity leads to wave breaking, and/or noise driven superradiance, which shortens the length 
of relatively undisturbed plasma where the seed can be efficiently amplified. In the second hypothesis, the growth 
factor is reduced due to damping of the plasma wave amplitude.

To gain a deeper understanding of the observed amplification we have undertaken numerical simulations 
using OSIRIS47, cplPIC (based on ref. 48) and Leap49. The input parameters are chosen to match the experimental 
ones (see the Methods and Supplementary Information sections for details).

Figure 2.  Transverse profile of the Raman signal. Recorded beam profiles for three different nominal pump 
energies: 3 J (a,d), 20 J (b,e) and 70 J (c,f). (a–c) are obtained from amplification from noise, while (d–f) are 
recorded with external seed injection. Note the very different fluence scales.
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Figure 3.  Spectra analysis. (a) Comparison between the central wavelengths of (blue circle) N-RS spectra and 
(orange square) S-RS + N-RS spectra. The error bars in the vertical axis represent the measured bandwidth at 
FWHM. The grey area illustrates the initial seed features. (b) Examples of spectra for a nominal pump energy 
of 35 J: N-RS spectrum shown in dashed (blue) line, S-RS + N-RS spectrum presented in solid (orange) line. (c) 
and (d) spectral images of Raman amplification without and with seed, respectively. The spectra correspond to 
the ones presented in (b). (e) example of a spectrum showing strong modulations, obtained for a 6 J pump beam 
only.

Figure 4.  Measurements of backscattered energy. (a) Ratio of (blue circle) backscattered Raman and (orange 
square) elastic/Brillouin scattering energy to initial pump energy. Up to 10% of the pump energy is converted 
to SRBS. Elastic/Brillouin scattering accounts for one order of magnitude less. (b) Example of a corrected 
spectrum obtained for a pump energy of 38 J. An estimated backscattered energy of 5 J is measured.
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For near-perfect matching conditions, the three codes produce comparable results but fail to quantitatively 
reproduce the measured energy trend. Raman signal energies from the simulations are shown in Fig. 1 to enable 
direct comparison with the experimental results. While agreement is obtained at high energy, the gain in the 
simulation is 107 for the lowest pump intensity (1014 W cm−2), whereas 104 is measured experimentally. The N-RS 
energy is strongly enhanced by the reduced number of macro-particles, nm, because the noise signal scales as 

n1/ m . In the simulations the strong noise-driven source also depends on the pump energy. Rapid amplification 
quickly leads to particle trapping and breaking of the plasma wave, which masks amplification of the seed (the 
first hypothesis). However, the measured scattered energy is also consistently low for low pump energy. This 
implies that a different mechanism reduces the scattering efficiency, most likely collisional and/or Landau damp-
ing, whereas wavebreaking is expected not to be important at low pump energies.

To test our second hypothesis on damping of the plasma wave due to Landau damping and thermal effects, 
we have carried out cold plasma simulations using Leap with fixed damping factors. Initial results show that 
damping delays the onset of saturation, giving exponential growth for lower pump intensities (See Supplementary 
Information).

Simulations in warm plasma using cplPIC highlight the importance of nonlinear effects and show that fil-
amentation can develop even at low pump intensities, and Raman side scattering may be important for mod-
erate pump intensities, consistent with our measurements that show large spectral broadening (details in the 
Supplementary information).

Finally, 1D simulations have been carried out using OSIRIS with a fixed frame (i.e. no moving window) to 
qualitatively evaluate the amount of N-RS energy back scattered, which also clearly demonstrates an enhance-
ment due to the reduced number of particles used in the simulations. Figure 5 shows the evolution of N-RS from 

Figure 5.  1-dimensional simulation results. (a) (red) Initial pump envelope for an intensity of 1 × 1014 W cm−2 
and (e) corresponding spectrum. In (a) is also shown (black) the position of the plasma. (b–d) backscattered 
Raman signal for 3 different pump intensities (a0): 1014 (0.01), 1015 (0.03) and 1016 cm−2 (0.1), respectively. (f–h), 
Corresponding spectra.
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a long backscattered pulse at low pump intensity, as expected from the linear theory (Fig. 5b), to a spiky structure, 
accompanied by spectral modulations (Fig. 5d,h) at higher pump intensity when strong wavebreaking and parti-
cle trapping occurs. The spiky modulations have a similar periodicity to those observed in experiments, as shown 
in Fig. 3e. A strong spectral component that is up-shifted by ω /2p , as illustrated in Fig. 5g, is observed for pump 
intensities of 1015 W cm−2. This is evidence of a limit cycle50 that leads to period doubling followed by a cascade, 
which are similar to that occurring in saturated free-electron lasers and damped, driven nonlinear oscillators, 
where sidebands, chaotic behaviour and broad spectral bandwidths51 are observed even at modest intensities. 
This suggests that the strength of the ponderomotive potential is of the same order of magnitude as the electro-
static potential, and therefore the amplifier operates in an intermediate regime between the Raman and superra-
diant or Compton regimes. A realistic estimate for the bounce frequency, ωB, gives ω ω≥ /2B p  for a pump intensity 
larger than 1015 W cm−2. In this case, superradiance occurs in segmented regions of the plasma, each arising from 
different noise spikes, and is dominated by synchrotron behaviour of electrons in the potential, which gives rise 
to sidebands that produce a modulated spectrum.

Both experiment and simulations suggest that a pump intensity below 1 × 1015 W cm−2 is preferred for 
amplification as N-RS is significantly reduced, which ensures that the plasma medium is not significantly dis-
rupted. In addition, a lower intensity would limit the amount of Raman side scattering and filamentation. The 
Supplementary Information section presents further 1-D simulations to illustrate the deleterious effect of wave-
breaking/particle trapping on the amplification even for moderate intensity pumps.

Conclusions
In conclusion, a large Raman backscattered energy of up to 170 mJ has been measured for a monochromatic 70 J 
pump pulse incident at an angle of 175°. Injected pJ seed pulses are observed to grow by eight orders of magni-
tude, corresponding to a gain coefficient of 180 cm−1. However, 70 mJ of the backscattered pump is attributed 
to amplification of noise, which is proportional to the pump intensity and inversely proportional to the square 
root of the plasma density. Operating with a pump intensity below 1015 W cm−2 is desirable because: (i) noise 
amplification is suppressed; (ii) Raman side scattering is reduced; and (iii) the onset of noise amplification and 
wavebreaking prior to the arrival of the seed, leading to gain reduction or suppression, is delayed.

Measurements of N-RS along the pump axis indicates that more than 10% of the pump energy can be backs-
cattered. This clearly shows the potential of the amplifying medium for high efficiency amplification. Finally, 
to avoid the deleterious effects of N-RS, tailoring of the plasma density and/or a frequency chirped pump may 
be required16. Otherwise, short laser pulse amplification starting in the Raman regime is limited by chaotic 
non-linear behaviour for a beatwave above a certain amplitude. We also observe that the seed profile is dominated 
by the pump profile, which it mimics.

Methods
Diagnostics.  A 3″ wedge pick-off is used to collect 1% of the light along the seed axis after interaction, which 
is then transported to a diagnostics table. A calorimeter is set up behind the wedge to directly measure the seed 
energy. The diagnostics system consists of a CCD camera, which images the seed beam at the gas jet, and an 
imaging spectrometer. In addition, neutral density filters attenuate the signal energy and notch filters are used to 
attenuate radiation at 1.053 μm. The diagnostics setup for the pump includes a ×10 magnification imaging system 
and a CCD camera, for beam alignment and observation, and a linear array spectrometer and calorimeter.

Experimental data analysis.  The set of data presented represents the best single shot measurements 
obtained. The spectral responses of all neutral density filters have been measured to correct/calibrate the recorded 
spectra. Theoretical values for the CCD camera response, the spectrometer grating and mirrors are also used for 
the calibrations. When the Raman signal energy is below the threshold of the calorimeter, it is deduced from the 
number of counts on the imaging camera, which is energy calibrated. Furthermore, corrections/calibration of 
the spectra and energy measurements for the Raman signal directly backscattered along the pump axis have been 
obtained from a reliable theoretical transmission curve of the coating of the mirror through which light leakage 
is collected. Finally, the effective pump intensities used in Fig. 1 are calculated by mapping the intensity profile 
of the pump focal spot images in vacuum recorded for different energies. The effective intensity is then evaluated 
by averaging the 1% highest values from the image. A linear fit is then performed between energy and intensity.

2-dimensional PIC simulations.  cplPIC is an averaged envelope code coupled to a standard PIC particle 
solver48. The vector potential for the laser is separated into a complex envelope and phase. The wave equation for 
the envelope is averaged over the beat wavelength for the two colliding pulses and solved numerically to update 
the envelope. Second-order derivatives are retained, relaxing the slowly-varying approximation. The response of 
the plasma to the laser pulses is evaluated from the ponderomotive force at the position of the particles. Charge 
is deposited on the grid and used to calculate the electric and magnetic fields caused by the plasma, which are 
evaluated and updated using Maxwell’s equations. The fields are then interpolated to the positions of the parti-
cles, which are then pushed using the Boris method. The envelope for the vector potential is reduced to a single 
(complex) component, which is exact for a plane wave and a good approximation provided that the pulses are not 
strongly focused.

10 particles per cell are used with 8 cells per beat wavelength. The seed (pump) characteristics are central 
wavelength, λ = . .1 147(1 053)c  μm, full bandwidth, Δλ = 15(≤2) nm, pulse duration (intensity at FWHM), 
τ = 1(10) ps, linear optical chirp, α = 3.87% (0.154%), beam waist, w = 250 (50) μm. The initial seed amplitude is 
a1 = 1.13 × 10−6, and 3 different pump amplitudes are used, a0 = 8.98 × 10−3, 2.84 × 10−2 and 8.98 × 10−2 repre-
senting powers of 1 × 1014, 1 × 1015 and 1 × 1016 W cm−2, respectively. The plasma density is chosen to be 
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6.38 × 1018, and the plasma temperature is set to 10 eV, 7 eV and 3 eV for pump powers 1 × 1014, 1 × 1015 and 
1 × 1016 W cm−2, respectively. Resonant conditions are perfectly matched for the lowest pump amplitude, corre-
sponding to the experimental optimization. The plasma density profile consists of a linear up/down ramp of 
150 μm and a flat top of 1.5 mm. An angle of 175° is used between the seed and pump. Leap49. The laser pulses are 
modeled by two counterpropagating envelope fields, which couple to an electrostatic PIC solver through the 
ponderomotive force. Particle positions are used to calculate the refractive properties of the plasma, which are 
then used to calculate dispersion and the coupling between the two pulses to update the laser fields. The relatively 
low resolution required to model the laser envelopes means that the model has a significantly lower computa-
tional overhead than conventional electromagnetic PIC codes. The low resolution has the additional advantage 
that the optical characteristics are based on integrals of the electron distribution over a relatively large volume, 
making simulations less susceptible to instabilities growing from noise, such as N-RS.

1-dimensional simulations.  1D-numerical simulations have been performed using the fully explicit, fully 
relativistic, PIC code OSIRIS47 in a static window. The number of particles per cell is 640 with 50 cells per laser 
wavelength. Plasma density and pump beam parameters are identical to the ones used for the 2D-simulations, 
except for the fact that the pump beam is monochromatic. The plasma density profile consists of a linear up/down 
ramp of 200 μm and a flat top of 1.1 mm.

Data Availability.  Data associated with research published in this paper is accessible at http://dx.doi.
org/10.15129/2fd625bf-2d54-4514-a664-04876145f6a8.
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